Состав полирующего травителя для химико-механической полировки теллурида кадмия-цинка



Состав полирующего травителя для химико-механической полировки теллурида кадмия-цинка
Состав полирующего травителя для химико-механической полировки теллурида кадмия-цинка

 


Владельцы патента RU 2574459:

Акционерное общество "НПО "Орион" (RU)

Изобретение относится к материаловедению и может быть использовано при изготовлении полупроводниковых приборов. Состав полирующего травителя включает следующие компоненты: 7 объемных долей серной кислоты (98%), 1 объемную долю перекиси водорода (30%), 1 объемную долю воды, 3,5 объемных долей этиленгликоля. Изобретение позволяет обеспечить скорость полировки от 1 до 5 мкм/мин при заданной скорости вращения диска 60 об/мин. 2 ил., 1 табл.

 

Изобретение относится к материаловедению, в частности к области обработки поверхности теллурида кадмия-цинка (КЦТ) ориентации (111) химико-механическим полирующим травлением.

От состояния поверхности полупроводникового материала, ее дефектности зависит качество нанесения антиотражающего покрытия (АОП) при изготовлении полупроводниковых приборов. Для улучшения адгезии на границе раздела КЦТ-АОП необходимо, чтобы перед проведением нанесения АОП шероховатости поверхности были минимальны. Лучшим способом подготовки поверхности является полирующее химико-механическое травление.

Целью данного изобретения является разработка состава травителя, который позволяет вести процесс полирующего химико-механического травления теллурида кадмия-цинка.

Процесс полирующего травления может иметь место только в случае гомогенности физико-химических свойств обрабатываемой поверхности. Для гомогенизации поверхности необходимо обеспечить условия, при которых скорость электронного обмена между гетерогенными в физико-химическом отношении точками поверхности будет больше или равна скорости электронного обмена между этими точками и реагентами (травителем) в растворе.

Согласно известным теориям эффект химического полирующего травления может быть достигнут при условии, что в процессе травления вблизи поверхности образуется вязкая пленка из продуктов растворения полупроводников. Этот тип пленки является гомогенной.

Поэтому на практике для достижения эффекта полирующего травления обычно используют концентрированные вязкие растворы, часто с добавками ингибиторов (вода).

Процесс полирующего травления осуществляется за счет относительно малого содержания растворителя по сравнению с окислителем, то есть процесс растворения полупроводникового материала протекает в диффузионном режиме, при этом вблизи поверхности образуется вязкая пленка из продуктов растворения полупроводникового материала. Растворение полупроводникового материала в системе кислот зависит от стадии окисления поверхности и последующего растворения окисла (в заявляемом изобретении растворение теллурида кадмия-цинка) происходит за счет появления активного атомарного кислорода в процессе реакций взаимодействия:

(H2SO4+H2O2=H2SO5+H2O; H2SO5=H2SO4+2O*).

Для растворения образующихся на поверхности оксидов целесообразно добавлять в травитель комплексообразователь (в заявляемом изобретении функцию комплексообразователя выполняет этиленгликоль). Различные многоосновные спирты (например, этиленгликоль, глицерин) благодаря высокой вязкости и малой константе ионизации уменьшают скорость растворения, что очень важно при полирующем травлении. Таким образом, процессы растворения полупроводниковых материалов в области полирующих составов протекают по окислительно-гидротационному механизму.

В кислых растворах подавляется диссоциация органических веществ, которые являются комплексообразователями. Поэтому на практике для достижения эффекта полирующего травления подбирается пара: неорганическая кислота - комплексообразователь.

Для теллурида кадмия-цинка наиболее распространены травители на основе брома в метаноле или бромистоводородной кислоты с добавлением этиленгликоля, глицерина. Известны составы для травления теллурида кадмия-цинка, содержащие метанол, молочную кислоту, бром и этиленгликоль в различных соотношениях. Например, 5 объемных % (об. %) брома в метаноле + 20 об. % молочной кислоты + 2 об. % брома в этиленгликоле [Method for surface treatment of a cadmium zinc telluride crystal, US 55933706 А, дата публикации 3 авг.1999, авторы изобретения: Burger A., Chang Н., Kuo-Tong Chen, James R.]. Для случая полирующего травления теллурида кадмия-цинка травитель этого состава неприемлем, так как бром, являясь активным и токсичным веществом, сильно усложняет процесс химико-механического полирования.

Задача изобретения - разработка состава для химико-механического полирующего травления теллурида кадмия-цинка, который обеспечивает полирующее травление при шероховатости поверхности в среднем не более 7 нм.

Задача решается за счет того, что состав для химико-механического полирующего травления теллурида кадмия-цинка представляет из себя систему из 7 об. частей H2SO4 (98%), 1 об. части H2O2 (30%), 1 об. части H2O, 3,5 об. частей этиленгликоля.

В литературе схожий состав для полирующего травления теллурида кадмия-цинка при химико-механической полировки не упоминается.

Основа для нашего травителя была взята из кремниевой технологии для окисления верхнего слоя кремниевых пластин: серная кислота и перекись водорода.

Серная кислота, взаимодействуя с перекисью водорода, образует пероксомоносерную кислоту (кислота Каро), которая является сильным окислителем:

H2SO4+H2O2=H2SO5+H2O.

Раствор этой кислоты не стабилен и разлагается по следующей реакции:

H2SO5(раствор)=H2SO4+2O*.

Активный кислород окисляет теллур, кадмий и цинк по следующим реакциям:

Те2+2O2*=2TeO2,

2Zn+O2*=2ZnO,

2Cd+O2*=2CdO.

В этой системе H2SO4-H2O2 увеличили концентрацию серной кислоты и добавили этиленгликоль.

Добавление дополнительной серной кислоты способствует растворению оксидов и выведению их из зоны реакции.

Взаимодействие серной кислоты с оксидами происходит по следующим реакциям:

ZnO+H2SO4=ZnSO4+H2O,

CdO+H2SO4=CdSO4+H2O.

Добавление этиленгликоля увеличивает время контакта травителя с образцом.

Необходимость использования этиленгликоля обусловлена тем, что он, являясь многоосновным спиртом и имея высокую вязкость, имеет также малую константу ионизации, которая уменьшает скорость растворения, что очень важно при полирующем травлении.

Таким образом, процессы растворения полупроводниковых материалов в области полирующих составов протекают по окислительно-гидротационному механизму. В кислых растворах подавляется диссоциация органических веществ, которые являются комплексообразователями. Поэтому на практике для достижения эффекта полирующего травления подбирается пара: неорганическая кислота - комплексообразователь. В нашем случае это серная кислота и этиленгликоль.

При соблюдении объемных соотношений 7 об. частей H2SO4 (98%), 1 об. части H2O2 (30%), 1 об. части H2O, 3,5 об. частей этиленгликоля и скорости подачи травителя на полировальный диск 1 капля в 4 секунды (таблица, фиг. 1) обеспечивает шероховатость поверхности в среднем менее 7 нм (фиг. 2).

Таким образом, для осуществления полирующего травления состав отвечает следующим требованиям:

- процесс растворения полупроводникового материала протекает в диффузионном режиме, поэтому процесс полирования поверхности проходит с минимальной скоростью;

- за счет того, что радиус кривизны неровностей при дуффузионном режиме намного меньше толщины диффузионного слоя, искривление растворяющейся поверхности не будет оказывать существенного влияния на скорость переноса вещества внутри диффузионного слоя, и шероховатость поверхности будет минимальна.

Каждый из перечисленных признаков необходим, а вместе они достаточны для решения задачи изобретения.

Технический результат изобретения заключается в получении высококачественной поверхности теллурида кадмия-цинка с минимальной шероховатостью и улучшении качества адгезии АОП при изготовлении фотоэлектронных приборов. Сущность изобретения: для полирующего травления используют раствор теллурида кадмия-цинка, имеющий содержание следующих компонентов, в объемных долях: серная кислота (98%) - 7; перекись водорода (30%) - 1; вода - 1; этиленгликоль - 3,5.

В качестве примера осуществления изобретения приведем испытанный состав для химико-механического полирующего травления теллурида кадмия-цинка в составе следующих компонентов, в объемных соотношениях: серная кислота (98%) - 7; перекись водорода (30%) - 1; вода - 1; этиленгликоль - 3,5.

В качестве образцов использовались подложки теллурида кадмия-цинка ориентации (111). Наличие полирующего эффекта травления устанавливалось наблюдением поверхности образцов после химико-механического полирования методом атомно-силовой микроскопии (АСМ). Шероховатость поверхности определялась при помощи анализа АСМ изображений профилей образцов. В предлагаемых соотношениях компонентов удалось осуществить полирующее химико-механическое полирование поверхности теллурида кадмия-цинка ориентации (111) со средней шероховатостью поверхности не более 7 нм. Данные, характеризующие шероховатости поверхности образцов, были получены при помощи программного обеспечения «Integra Maximus».

Таким образом, предлагаемый состав позволяет получать полирующий эффект на образцах теллурида кадмия-цинка с кристаллографической ориентацией (111) с шероховатостью поверхности не более 7 нм.

Состав полирующего травителя для химико-механической полировки теллурида кадмия-цинка, включающий этиленгликоль, серную кислоту, перекись водорода, воду при следующем соотношении компонентов, объемные доли: серная кислота (98%) - 7; перекись водорода (30%) - 1; вода - 1; этиленгликоль - 3,5.



 

Похожие патенты:

Изобретение относится к области химии, в частности к методикам наноструктурирования и модификации свойств поверхности. Изобретение может быть использовано для изменения смачиваемости поверхности кремния путем изменения пористости поверхности, в том числе для получения гидрофильных или гидрофобных поверхностей на основе кристаллического кремния.
Изобретение относится к способам обработки массивных (диаметром до 200 мм) оптических элементов из селенида цинка, используемых в качестве пассивных оптических элементов высокомощных СО 2-лазеров и других приборов, работающих в ИК-диапазоне длин волн.

Изобретение относится к микроэлектронике, в частности к способам приготовления атомно-гладких поверхностей полупроводников. .
Изобретение относится к области изготовления оптических элементов и может быть использовано в инфракрасной технике. .
Изобретение относится к способу гидротермального травления, обеспечивающего возможность создания экологически чистой методики травления монокристаллов танталата лития, используемых в электронной технике.
Изобретение относится к способу гидротермального травления, обеспечивающему возможность создания экологически чистой методики травления монокристаллов метаниобата лития, используемых в электронной технике.

Изобретение относится к области электронной техники, а именно к способам обработки подложек из оксидов, в частности из фианита, и может быть использовано в производстве эпитаксиальных структур, преимущественно с соединениями ВТСП (высокотемпературных сверхпроводников).
Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65, пероксид водорода 3-30, вода - остальное.
Изобретение относится к технологии химической обработки металлов и предназначено для использования в производстве печатных плат с защитной паяльной маской по меди.
Изобретение относится к технологии химической обработки металлов и может быть использовано в производстве двухсторонних печатных плат с защитной паяльной маской по меди.
Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении при ремонте лопаток турбин. .
Изобретение относится к технологической обработке металлов и предназначено для использования в гальванике и производстве печатных плат. .
Изобретение относится к травлению металла химическими способами и может быть использовано в полиграфической промышленности для изготовления форм высокой печати, а также в любых отраслях, использующих процессы размерного травления цинка и его сплавов.

Изобретение относится к химической обработке металлической поверхности, в частности к растворам для травления форм высокой печати на микроцинке. .

Изобретение относится к химической обработке ферритобариевых и ферритостронциевых магнитов. .

Изобретение относится к химической обработке металлических поверхностей, а именно к химическому травлению покрытий из нитридов и карбонитридов титана. .
Изобретение относится к технологии химической обработки металлов и предназначено для использования в производстве печатных плат с защитной паяльной маской по меди. Селективный травитель для снятия оловянно-свинцовых покрытий с медной основы содержит H[BF4] (40%-ный раствор) 910-930 мл/л, Н2О2 (35%-ный раствор) 70-90 мл/л, Сu(NO3)2 0,03-0,04 г/л, KF 5-8 г/л, NaNO3 5,5-7,5 г/л, олеокс-5 0,6-0,7 г/л. Изобретение позволяет повысить селективность травления гальванических оловянно-свинцовых покрытий с медной основы за счет снижения скорости травления меди. 1 табл.
Наверх