Биологически активные производные аллоферона-1



Биологически активные производные аллоферона-1
Биологически активные производные аллоферона-1
Биологически активные производные аллоферона-1
Биологически активные производные аллоферона-1

 


Владельцы патента RU 2576830:

Общество с ограниченной ответственностью "Ликели" (RU)

Группа изобретений относится к медицине и касается применения производного Аллоферона-1 Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly в качестве средства, обладающего высокой иммуномодулирующей и противовирусной активностью. Группа изобретений также касается иммуномодулирующей и противовирусной композиции, содержащей пептид Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly или его фармацевтически приемлемые соли в сочетании со стандартными вспомогательными веществами. Группа изобретений обеспечивает стимулирование индукции интерлейкина-18, интерферона гамма и подавление вирусов гриппа А и В. 2 н.п. ф-лы, 4 пр., 4 табл.

 

Изобретение относится к белкам и биологически активным пептидам с иммуномодулирующей и противовирусной активностью.

Известна группа противовирусных пептидов, выделенных из насекомых, с общим названием Аллофероны и общей формулой: X1-His-Gly-Х2-His-Gly-Val-Х3 или их фармацевтически приемлемые соли, или эфиры, или амиды, где X1 отсутствует либо содержит не менее 1 аминокислоты, Х2 содержит не менее 1 аминокислоты либо представляет собой пептидную связь; Х3 отсутствует либо содержит не менее 1 аминокислоты, причем указанные аминокислоты выбраны из групп: алифатической, ароматической или гетероциклической (Патент РФ №2172322, МПК С07К 7/06, С07К 7/08, А61К 38/08, А61К 38/10, А61Р 37/02, опубл. 20.08.2001 г.).

На основе одного из пептидов этой группы Аллоферона-1, имеющего структуру His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly, был разработан лекарственный препарат «Аллокин-альфа лиофилизат для приготовления раствора для подкожного введения», который выпускается с 2003 г. в качестве лекарственного средства для лечения хронического рецидивирующего герпеса 1 и 2 типа, острого гепатита В и папилломовирусных инфекций.

Противовирусная активность Аллоферона-1 обусловлена многими факторами.

Так установлено, что он обладает прямым противовирусным действием (1). Однако основным механизмом биологической активности Аллоферона-1 можно считать индукцию цитокинов, в том числе интерферона-альфа (2) и интерлейкина-18 (3).

Семейство Аллоферонов, описываемое общей формулой:

X1-His-Gly-X2-His-Gly-Val-X3,

включает большое число молекул, построенных на основе природных аминокислот, обладающих широким спектром биологических свойств. Одной из возможностей изменения молекул и, соответственно, их биологической активности является введение в состав пептида химически модифицированных аминокислот. Наиболее простым объектом для модификации является введение в молекулу Аллоферона-1 фенилаланина, содержащего заместители в ароматическом ядре.

Технической задачей, на решение которой направлено заявляемое изобретение, является создание новых производных пептида Аллоферона-1, обладающих повышенной биологической активностью, которые могут быть использованы для создания лекарственных препаратов для лечения и профилактики вирусных и микробных инфекций.

Поставленная техническая задача решена путем замены в молекуле Аллоферона-1 гистидина в положении 1 на фенилаланин, имеющий в параположении нуклеофильный заместитель, получен пептид:

Предложено применение производного Аллоферона-1

Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly в качестве средства, обладающего высокой иммуномодулирующей и противовирусной активностью.

Кроме того, предложена иммуномодулирующая и противовирусная композиция, содержащая пептид Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly или его фармацевтически приемлемые соли в сочетании со стандартными вспомогательными веществами.

Технический результат состоит в том, что полученный пептид обладает высокой иммуномодулирующей и противовирусной активностью, что будет подтверждено примерами.

Синтез пептида произведен по стандартной Fmoc-процедуре твердофазным способом. Удаление защиты производилось 20%-ным раствором пиперидина в диметилформамиде. Реакцию сочетания проводили с помощью HBTU в присутствии HOBt и NMM в течение 2 часов при комнатной температуре. Финишное отделение пептида проводили с помощью TFA, EDT и воды (95:2,5:2,5) в течение 2 часов при комнатной температуре.

Сырой пептид промывали холодным диэтиловым эфиром, растворяли в воде и лиофилизовали. Очистка пептида производилась методом HPLC с использованием колонок TOSOH Bioscience С18 (21,5 мм × 300 мм) (Tosoh, Japan) с UV-детектором 210/240 нм. Процесс проводили в градиенте вода - ацетонитрил содержащий 0,1% TFA при скорости потока 7 мл/мин. Очищенный лиофилизованный пептид имел чистоту более 95%.

Финишная стадия получения пептида - лиофилизация из раствора в 50% уксусной кислоте.

Химическая идентификация пептида была подтверждена методом масс-спектрометрии с использованием масс-спектрометра типа Microflex LT MALDI-TOF (Bruker Daltonics GmbH).

Возможность достижения цели изобретения подтверждается следующими примерами.

Пример 1. Изучение влияния Phe(р-NH2)-Аллоферона на индукцию IL-18

Индукция осуществлялась путем введения подкожно Phe(p-NH2)-Аллоферона и для сравнения Аллоферона-1 однократно в дозе 2 мг на кг веса лабораторных животных. Для эксперимента использовались мыши линии BALB/C, самки, массой 16-22 грамма, возраста 14 недель, полученные из питомника лабораторных животных и прошедшие необходимый карантин. Температура окружающей среды была 22±2°C, относительная влажность 60±5%, содержание аммиака составляло 10 ррм, углекислого газа - не превышало 0,15% к объему воздуха, кратность воздухообмена составляла 10-15 крат/час при скорости движения воздуха - 0,3 м/с. Фильтрование воздуха обеспечивали с помощью фильтров грубой фильтрации. Кормили мышей гранулированным комбикормом, изготовленным в соответствии со стандартами приготовления кормов для лабораторных животных. Корм предварительно стерилизовали в автоклаве с использованием вакуума при 121°C и 1,2 атм. в течение 20 мин. Кормление проводили 1 раз в сутки из расчета 8,0 г на одну мышь, после чистки клеток. Питьевую воду заливали в бутылки-поилки вместимостью 200 мл и стерилизовали при 121°С и 1,2 атм. в течение 45 мин, пробки автоклавировали отдельно. Поилки ежедневно заменяли на новые. Определялся уровень интерлейкина-18 (IL-18) в сыворотке крови методом иммуноферментного анализа, с использованием специфических антител. Количество IL-18 в сыворотке определяли на 1, 2, 3, 4, 5, 6, 8, 12, 16, 24, 32, 40, 48, 56 ч после введения препаратов.

Параллельно изучалось «фоновое» количество IL-18, присутствующее в сыворотке крови исследуемых животных. Для этой цели использовалось 14 мышей в качестве контрольной группы, которые получали подкожную инъекцию физиологического раствора. В опытной группе использовалось 84 животных. В случае контрольной группы доверительный интервал рассчитывался по измерениям разведения одного и того же образца. В опытной группе доверительный интервал вычислялся относительно трех образцов от трех животных на каждую измеряемую точку.

Через 3-4 часа после введения у пептидов наблюдается небольшой достоверный пик увеличения концентрации IL-18. Через 24 часа наблюдается второй пик значительного увеличения содержания IL-18 в сыворотке крови опытной группы животных, который длится около 20 часов. Наличие первого пика на 3-4 часу возможно обусловлено не специфической индукцией. Значительное повышение IL-18 на 2-3-й день эксперимента свидетельствует о специфической способности препаратов индуцировать изучаемый цитокин.

Результаты испытания препарата приведены в таблице 1.

Введение как Phe(p-NH2)-Аллоферона, так и Аллоферона-1, вызвало индукцию ИЛ-18, которая длилась до 3 суток. Максимальная концентрация ИЛ-18 достигается спустя 32 часа после однократного введения пептида. Характер индукции - интенсивность и временной диапазон - для пептидов одинакова. При этом Phe(р-NH2)-Аллоферон показывают более высокий уровень индукции интерлейкина-18, чем Аллоферон-1.

Максимальный уровень интерлейкина-18 был зафиксирован для Phe(p-NH2)-Аллоферона через 32 часа (395 пг/мл). Фоновый уровень в среднем в группе контрольных животных составил 200 пг/мл.

Пример 2. Изучение интерфероногенности Phe(p-NH2)-Аллоферона

Активность определялась путем введения Phe(p-NH2)-Аллоферона и Аллоферона-1 подкожно однократно в дозе 1 мг на кг веса лабораторных животных. Для эксперимента использовались мыши линии BALB/C, самки, массой 16-22 грамма, возраста 18 недель, содержавшиеся в соответствии с протоколом, изложенным выше в примере 1. Определялся уровень интерферона гамма в сыворотке крови методом иммуноферментного анализа, с использованием специфических антител. Количество интерферона в сыворотке определяли на 3, 6, 12, 16, 24, 32, 40 и 48 ч после введения препарата.

Параллельно изучалось «фоновое» количество интерферона гамма, присутствующее в сыворотке исследуемых животных. Для этой цели использовалось 8 мышей в качестве контрольной группы, которые получали подкожную инъекцию физиологического раствора. Среднее значение по контрольной группе на 5% уровне значимости составило 29±8 пг/мл исследуемой сыворотки. В каждой опытной группе также использовались по 8 мышей, которые получали подкожную инъекцию в дозе 25 мкг с изучаемым Phe(p-NH2)-Аллофероном, а также Аллофероном-1. Результаты испытания препаратов представлены в таблице 2.

Полученные данные свидетельствуют о том, что Phe(р-NH2)-Аллоферон вызывает индукцию интерферона гамма, превышающую уровень индукции Аллоферона-1.

На основании вышеизложенного можно утверждать, что разработанный пептид обладает всеми заявленными свойствами.

Пример 3. Изучение влияния Phe(p-NH2)-Аллоферона на резистентность мышей к вирусу гриппа А

Антивирусное действие пептида изучали на модели летальной вирусной инфекции мышей вирусом гриппа А. Суспензию вируса вводили интраназально в дозе, соответствующей 10 LD50. Аллоферон-1 и Phe(p-NH2)-Аллоферон в 0,5 мл 0.9% раствора натрия хлорида вводили внутрибрюшинно за одни сутки до инокуляции вируса, затем через 1, 2, 4, 6 и 8 дней после инокуляции. Препараты испытывали в дозе 25 мкг. В контроле мышам вводили равный объем растворителя. Критерием эффективности служила выживаемость животных через 10 суток после инфицирования вирусом. Для проведения эксперимента были отобраны половозрелые белые мыши, самцы, весом 20,0-22,0 г, полученные из питомника лабораторных животных и прошедшие необходимый карантин. Содержание мышей осуществлялось по протоколу, изложенному выше в примере 1. В эксперименте были использованы 60 мышей.

Введение Phe(p-NH2)-Аллоферона и Аллоферона-1 инфицированным животным вызывало дозозависимый протекторный эффект (Таблица 3). Препараты в дозе 25 мкг вызывали значительное увеличение числа выживших в течение срока наблюдения животных. Эффект данной дозы высокодостоверен.

Таким образом, результаты примера 3 свидетельствуют о том, что Phe(p-NH2)-Аллоферон в дозе 25 мкг оказывает выраженное антивирусное действие на мышей, инфицированных вирусом гриппа А, превышающее антивирусное действие Аллоферона-1.

Пример 4. Изучение влияния Phe(р-NH2)-Аллоферона на резистентность мышей к вирусу гриппа В

Исследование влияния Phe(р-NH2)-Аллоферона на устойчивость мышей к вирусу гриппа В проводилось на 120 мышах. Для проведения эксперимента были отобраны половозрелые белые мыши, самцы, весом 20,0-22,0 г, полученные из питомника лабораторных животных и прошедшие необходимый карантин. Содержание мышей осуществлялось по протоколу, изложенному выше в примере 1. Мышей инфицировали штаммом LEE 1/40 вируса гриппа В, взятым в инфекционной дозе, соответствующих 30 ЛД50. В качестве позитивного контроля использовали специфический антивирусный препарат Рибавирин.

Аллоферон-1 и Phe(р-NH2)-Аллоферон вводили внутрибрюшинно в дозе 25 мкг за 1 сутки до инфицирования вирусом, затем через 1, 2, 4, 6 и 8 суток.

Результаты изложены в Таблице 4.

В контроле интраназальное введение вируса вызвало тяжелую пневмонию с высокой летальностью (80%). На этом фоне Рибавирин при высокой инфекционной нагрузке (30 ЛД50) в условиях данного эксперимента оказался малоэффективным. В то же время Phe(р-NH2)-Аллоферон оказал выраженное протекторное действие, превышающее антивирусное действие Аллоферон-1.

Таким образом, результаты примера 4 свидетельствуют о том, что Phe(p-NH2)-Аллоферон в дозе 25 мкг оказывает выраженное антивирусное действие на мышей, инфицированных вирусом гриппа В, существенно превышающее защитный эффект Рибавирина, хорошо зарекомендовавшего себя антивирусного средства, а также Аллоферона-1, и может служить основой для создания новых антивирусных препаратов.

1. Применение производного Аллоферона-1 Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly в качестве средства, обладающего высокой иммуномодулирующей и противовирусной активностью.

2. Иммуномодулирующая и противовирусная композиция, содержащая пептид Phe(p-NH2)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly или его фармацевтически приемлемые соли в сочетании со стандартными вспомогательными веществами.



 

Похожие патенты:
Изобретение относится к фармацевтической промышленности и представляет собой питательную композицию для стимулирования у человека по меньшей мере одного типа клетки врожденного иммунитета, содержащую источник жиров или липидов, источник белков и лактоферрин, присутствующий на уровне по меньшей мере 10 мг/100 ккал и произведенный отличным от человеческого организма источником, при этом лактоферрин характеризуется по меньшей мере 48% гомологией с аминокислотной последовательностью AVGEQELRKCNQWSGL в фрагменте (349-364) HLf, где введение питательной композиции стимулирует по меньшей мере один тип клетки врожденного иммунитета, выбранной из группы, состоящей из макрофагов, нейтрофилов, дендритных клеток и их комбинаций.

Группа изобретений относится к медицине и касается композиции для подкожного введения, содержащей ПЭГинтерферон альфа и вспомогательные вещества, в частности, динатрия эдетата дигидрат, натрия ацетата тригидрат, уксусную кислоту ледяную, осмотический агент.

Изобретение относится к новым соединениям формулы (I), которые обладают свойствами ингибитора HCV NS5B РНК-полимеразы. Соединения могут быть использованы для лечения или профилактики инфекции, вызванной вирусом гепатита С (HCV). В формуле (I) : X представляет собой СН или N, R1 выбран из группы, состоящей из R1a, R1c: где R1a возможно замещен C1-6алкилом, C1-6алкокси или гидрокси, и где R1c возможно замещен C1-6алкилом; R2 представляет собой (а) арил, выбранный из фенила, или (б) NRaRb, где указанный арил возможно замещен (CH2)nNRcRd; Ra и Rb вместе с атомом азота, к которому они присоединены, представляют собой 5-членный циклический амин, замещенный группой (CH2)nNRcRd, где n означает число от нуля до двух; Rc и Rd независимо представляют собой водород, O2SR4, где R4 представляет собой C16алкил; R3 представляет собой CR4aR4bR4c, где: 1) R4a, R4b и R4c независимо выбраны из С1-3алкила.

Группа изобретений относится к ветеринарии, а именно к способу иммунной активации для повышения вылупляемости оплодотворенного куриного яйца, зараженного Е. coli.

Изобретение относится к области медицины, а именно к педиатрии и неонатологии, и может быть использовано для лечения конъюгационных гипербилирубинемий у детей раннего возраста.

Группа изобретение относится к области ветеринарии и предназначена для повышения резистентности новорожденных телят и поросят. Заявленный способ получения препарата включает применение неспецифического иммуноглобулина, выделенного из сыворотки крови животных путем обработки полиэтиленгликолем с включением микроэлементов.

Настоящее изобретение относится к медицине, а именно к терапии и иммунологии, и касается лечения болезни Дего. Для этого вводят эффективное количество ингибитора комплемента в виде монотерапии или в составе общепринятой комплексной терапии.

Изобретение относится к медицине, а именно к лечению рецидивно-ремиттирующего рассеянного склероза. Для этого пациенту, нуждающемуся в таком лечении, вводят модулятор рецептора S1P перорально в суточной дозе 0.5 мг.
Изобретение относится к химико-фармацевтической промышленности, а именно к настойке из травы Echinacea, обладающей иммуномодулирующей, иммуностимулирующей, антимикробной, противовоспалительной, противовирусной, активностью и к способу ее получения.

Изобретение относится к новому 2-изопентил-4,6-диметил-5-оксипиримидину формулы (I), обладающему иммуномодулирующей активностью. Соединение является малотоксичным с достаточно выраженными антиоксидантными свойствами, оказывающими противовоспалительное действие и повышающими резистентность организма к инфекциям.

Изобретение относится к области биотехнологии, в частности к получению конъюгата ПЭГ и интерферона-β-1a человека, и может быть использовано в медицине. Присоединением линейной молекулы ПЭГ 20-40 кДа к интерферону-β-1a человека получен конъюгат формулы (I): , где: n - целые значения от 454 до 909; m - целое число ≥4; IFN -природный или рекомбинантный интерферон-β-1a человека.

Изобретение относится к области биотехнологии, конкретно к получению пегилированного конъюгата варианта рекомбинантного консенсусного интерферона, и может быть использовано в медицине.

Изобретение относится к медицине, а именно к педиатрии и инфекционным болезням, и может быть использовано для профилактики острых респираторных инфекций у детей.

Изобретение относится к области биотехнологии, конкретно к синтетическим пептидам с иммуностимулирующими свойствами, и может быть использовано в медицине. Синтезирован ряд пептидов, отличающихся по химической структуре от известных биологически активных пептидов Аллоферонов и Аллостатинов.
Изобретение относится к области фармацевтики. Описано противовирусное средство на базе индуктора интерферона для наружного применения на эмульсионной основе.

Изобретение относится к химико-фармацевтической промышленности и представляет собой инъекционный раствор для лечения вирусных заболеваний, выбранных из гриппа H1N1, H3N2, H5N1, клещевого энцефалита и лихорадки Западного Нила, содержащий триазавирин в количестве 0,05-4,0 вес.%, вспомогательные вещества в количестве 0,1-30,0 вес.% и воду до 100 вес.%.

Изобретение относится к области органической химии, а именно к новым производным бензимидазола формулы 1а-з, где а, б X=N, R=4-ClC6H4OCH2CH2, Hal- отсутствует, a) R1 = 2-фуроил, б) R1 = 2-теноил; в-з Х=N+CH2R2, R1=Н, в) R=3,4-Cl2C6H4CH2, R2=CONH2; Hal=Cl; г) R=4-FC6H4OCH2CH2, R2=CONH2; Hal=Cl; д) R=3,4-Cl2C6H4CH2, R2=CH2OH; Hal=Cl; е) R=4-ClC6H4OCH2CH2, R2=CH2OH; Hal=Cl; ж) R=4-FC6H4OCH2CH2CH2, R2=CH=CH2; Hal=Br; з) R=4-(CH3)3СС6Н4ОСН2СН2, R2=CH=CH2; Hal=Br.

Группа изобретений относится к долговременному применению парентерального состава для производства лекарственного препарата для лечения субъекта, инфицированного ВИЧ, причем данный препарат предназначен для подкожной или внутримышечной инъекции и состоит из бреканавира, или его соли в форме водной суспензии микро- или наночастиц, содержащей полисорбат-20, и вводится периодически с интервалами от 6 до 12 месяцев и к указанной фармацевтической композиции.
Изобретение относится к химико-фармацевтической промышленности, а именно к настойке из травы Echinacea, обладающей иммуномодулирующей, иммуностимулирующей, антимикробной, противовоспалительной, противовирусной, активностью и к способу ее получения.

Изобретение относится к новым производным 1,3-диоксоиндена структурной формулы 1, которые могут быть использованы для профилактики или лечения вирусного заболевания, вызываемого пикорнавирусом.

Изобретение относится к области биотехнологии, конкретно к синтетическим пептидам с иммуностимулирующими свойствами, и может быть использовано в медицине. Синтезирован ряд пептидов, отличающихся по химической структуре от известных биологически активных пептидов Аллоферонов и Аллостатинов.
Наверх