Способ извлечения серебра из технологических азотнокислых растворов


 


Владельцы патента RU 2581958:

Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") (RU)

Изобретение относится к химической технологии и может быть использовано для извлечения и регенерации серебра из азотнокислых растворов. Способ извлечения серебра из технологических азотнокислых растворов, содержащих серебро до 0,5-8 г/л и азотную кислоту до 2-10 г/л, осуществляют на твердофазном платиновом катализаторе. Причем извлечение ведут в присутствии восстановителя гидразин-нитрата Техническим результатом изобретения является достижение степени извлечения серебра до 99,99%. 1 табл., 1 пр.

 

Изобретение относится к химической технологии и может быть использовано для извлечения и регенерации серебра из азотнокислых растворов.

Использование серебра в химической промышленности обусловлено, прежде всего, его каталитическими свойствами: серебро и его сплавы служат катализатором в неорганическом и органическом синтезе, в водных растворах серебро (Ag2+) используют для электрохимического растворения трудновскрываемых соединений. После проведения различных технологических операций содержание серебра в растворах (в том числе маточных и отходных) может достигать от нескольких миллиграммов до десятков граммов в литре. Отсюда, актуальной задачей является количественное выделение серебра из технологических растворов с целью его возвращение либо в «голову» процесса, либо для последующего выделения серебра в металлическом виде.

Из существующего уровня техники известен способ извлечения серебра из азотно- и сернокислых растворов, включающий сорбцию серебра на азотсеросодержащем органическом сорбенте [Патент RU 2076068, C01G 5/00, B01D 15/00, B01J 39/00, 27.03.1997]. Недостатками известного способа являются: статический режим проведения процесса, обуславливающий длительность установления сорбционного равновесия и, как следствие, всего процесса извлечения серебра; необходимость фильтрации для отделения сорбента; возможность проскока серебра в процессе сорбции; отсутствие данных по устойчивости и регенерации сорбента; степень извлечения серебра менее 92%.

Наиболее близким к заявленному способу является способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра [Патент RU 2524038 C1, С22В 11/00, С22В 3/24, 27.07.2014] (прототип), включающий пропускание раствора через полимерное волокно для сорбции ионов серебра с последующим восстановлением серебра до металлического состояния раствором смеси аскорбиновой кислоты с глюкозой. К недостаткам данного способа следует отнести возможность проскока серебра при сорбции на хемосорбционном волокне; невозможность повторного использования (регенерации) сорбента; длительность и сложность процесса выделения серебра в твердом виде после сорбции.

Задачей данного изобретения является разработка технологически пригодного способа, позволяющего производить количественное извлечение и регенерацию серебра из технологических азотнокислых растворов.

Техническим результатом изобретения является достижение степени извлечения серебра до 99,99%.

Для достижения указанного технического результата в способе извлечения серебра из технологических азотнокислых растворов с использованием восстановителя извлечение проводят путем выделения серебра в виде твердой фазы на твердофазном платиновом катализаторе в динамическом режиме в термостатируемом аппарате колонного типа непрерывного действия с нижней подачей раствора при температуре 40-50°С.

В частном случае в качестве твердофазного катализатора используют платиновый катализатор, нанесенный на анионообменную смолу ВП-1АП, с массовым содержанием платины до 2%.

В частном случае в качестве твердофазного катализатора используют платиновый катализатор, нанесенный на силикагель АСКГ, с массовым содержанием платины до 2%.

В частном случае в качестве восстановителя используют гидразин-нитрат, поскольку он обладает достаточными для каталитической активации восстановительными свойствами и, кроме того, не является солеобразующим агентом, полностью может быть разрушен на твердофазном катализаторе с образованием простых продуктов, не загрязняющих растворы.

В частном случае при извлечении и регенерации серебра отношение диаметра насыпного слоя катализатора к высоте насыпного слоя в каталитической колонне составляет 1:5, что позволяет добиться максимальной эффективности работы катализатора.

Возможность осуществления заявляемого способа подтверждена исследованиями на изготовленной лабораторной каталитической колонне. Колонна представляет собой вертикальный термостатируемый аппарат с нижней подачей раствора, имеющий зону ламинарного движения потока, зону катализа, зону газоотделения. Зона катализа отсекается сетчатыми перегородками. Приготовленный катализатор засыпается через верхний загрузочный люк и уплотняется верхней сетчатой перегородкой. Объем порового пространства зернистого слоя катализатора при этом составляет 5,1-12,5% насыпного объема. Зона катализа представляет собой вертикальный цилиндрический столб, заполненный катализатором в отношении «диаметр/высота» 1:5 (возможно до 1:15). Катализатор представляет собой однородный по гранулометрическому составу пористый носитель (анионообменную смолу с размером зерна 0,1-0,7 мм или силикагель - 0,3-0,5 мм), имеющий площадь активной поверхности 2,0-35,0 м2/г для ВП-1АП и 200-250 м2/г для силикагеля, с нанесенным ультрадисперсным однородным слоем платины, являющимся катализатором количественного восстановления серебра на поверхности катализатора.

Предлагаемый способ реализуют в следующей последовательности: готовят катализатор путем пропитки смолы ВП-1АП (или силикагеля АСКГ) щелочным раствором гидроксида платины, помещают приготовленный катализатор в колонну, термостатируют колонну. Посредством дозирующего насоса подают исходный азотнокислый раствор, содержащий серебро и гидразин-нитрат, на каталитическую колонну, проводят процесс извлечения серебра. Раствор после каталитической колонны собирают порциями и анализируют на содержание серебра, азотной кислоты, гидразин-нитрата.

Полное удаление серебра (~100%) проводят при регенерации катализатора в режиме активации колонны путем пропускания 3-4М раствора азотной кислоты через зернистый слой при температуре 78°С и расходе 5-7 к.о./ч.

Пример 1.

Готовили платиновый катализатор, нанесенный на силикагель АСКГ с массовым содержанием платины до 2%. Исходный раствор подавали на каталитическую колонну (см. таблицу 1). Мольное соотношение гидразин-нитрата и серебра в растворе может составлять 4-7 к 1.

Время контакта исходного раствора с катализатором - 50-70 с. Температура процесса - 40°С. Расход исходного раствора - 7 колон. об./ч. Эксперимент проводили в указанной выше последовательности.

Степень извлечения серебра составила 99,99%. Результаты экспериментов представлены в таблице 1.

Предлагаемый способ имеет следующие преимущества перед прототипом: непрерывность и высокая производительность процесса; высокая степень извлечения серебра из раствора - более 99,9%, а также возможность извлечения серебра из высокосолевого раствора; возможность регенерации катализатора.

Технический результат изобретения, а именно степень извлечения серебра из азотнокислых растворов до 99,99% позволяет судить о возможности внедрения изобретения (способа) как для доизвлечения из растворов микроколичеств серебра после отделения известными способами, так и для прямого извлечения серебра из технологических азотнокислых растворов.

1. Способ извлечения серебра из технологических азотнокислых растворов с использованием восстановителя, отличающийся тем, что извлечение проводят путем выделения серебра в виде твердой фазы на твердофазном платиновом катализаторе в динамическом режиме в термостатируемом аппарате колонного типа непрерывного действия с нижней подачей раствора при температуре 40-50°С.

2. Способ по п. 1, отличающийся тем, что в качестве твердофазного катализатора используют платиновый катализатор, нанесенный на анионообменную смолу ВП-1АП с массовым содержанием платины до 2%.

3. Способ по п. 1, отличающийся тем, что в качестве твердофазного катализатора используют платиновый катализатор, нанесенный на силикагель АСКГ с массовым содержанием платины до 2%.

4. Способ по п. 1, отличающийся тем, что в качестве восстановителя используют гидразин-нитрат.

5. Способ по п. 1, отличающийся тем, что отношение диаметра слоя катализатора к высоте насыпного слоя составляет 1:5.



 

Похожие патенты:

Заявляемый способ относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов (РЗЭ) из растворов, и может быть использован в технологии получения концентратов редкоземельных элементов.

Изобретение относится к способу извлечения урана из маточного раствора. Способ включает получение функционализированной аминофосфоновой смолы и маточного раствора, содержащего хлорид и уран.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов (РЗЭ), и может быть использован в технологии хроматографического разделения лютеция и иттербия.

Изобретение относится к области химической технологии утилизации высокорадиоактивных растворов, получаемых при переработке облученного ядерного топлива, а именно к составам экстракционно-хроматографических материалов импрегнированного типа для селективного выделения и очистки прометия-147 от сопутствующих РЗЭ из азотнокислых растворов, которые состоят из двух компонентов при следующем содержании: 1-50 мас.% фосфорилподанда - производного 1,5-бис[2-(оксиалкоксифосфорил)-4-(этил)]фенокси-3-оксапентана формулы , где R представляет собой алкил C3-C12, и 99-50 мас.% макропористого сферически гранулированного сополимера стирола с дивинилбензолом с размером гранул 40-400 мкм.

Изобретение относится к аффинажному производству металлов платиновой группы (МПГ). Способ заключается в сорбции катионов родия (III) и рутения (III) на катионите КУ-2 из хлоридных растворов при контролируемых значениях pH растворов и содержаниях хлорид-иона.
Изобретение относится к области гидрометаллургии редких металлов, в частности к способу извлечения рения из молибденсодержащих растворов. Способ включает сорбцию рения из молибденсодержащих растворов анионитами гелевой структуры.

Способ извлечения металлов включает выщелачивание руды путем непрерывного многостадийного противоточного кучного выщелачивания. На каждой промежуточной стадии подают выщелачивающий раствор, приготовленный из маточного раствора, полученного на следующей стадии выщелачивания предыдущей кучи.
Изобретение относится к способу очистки скандия от тория. Способ включает сорбцию тория из растворов ионитом.

Изобретение относится к способу извлечения золота, в частности сорбции золота из водных цианидных растворов. Способ извлечения золота из щелочных цианидных растворов включает контактирование водного раствора цианида золота с анионитом, имеющим в своем составе аминогруппы.

Изобретение относится к способу извлечения платины и/или палладия из отработанных катализаторов на носителях из оксида алюминия. Данный способ включает выщелачивание полученного огарка солянокислым раствором, содержащим окислитель или смесь окислителей, с извлечением платины и/или палладия из раствора выщелачивания.
Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения.

Изобретение относится извлечению металлического кобальта, рутения и алюминия из отработанного катализатора Co-Ru/Al2O3 для синтеза Фишера-Тропша. Катализатор подвергают воздействию прокаливанием и восстановительной обработке.

Изобретение относится к гидрометаллургической переработке золотосодержащих упорных руд и техногенного минерального сырья и предназначено для извлечения золота из них.
Изобретение относится к способу извлечения редкоземельных и благородных металлов из золошлаков. Способ включает смешение их с выщелачивающими растворами, накопление биомассы микроорганизмов рода Acidithiobacillales, бактериальное выщелачивание редкоземельных и благородных металлов.
Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов.

Группа изобретений относится к извлечению благородного металла/ов из материала, содержащего благородный металл, в водную суспензию или раствор для выщелачивания.

Изобретение относится к аффинажному производству металлов платиновой группы (МПГ). Способ заключается в сорбции катионов родия (III) и рутения (III) на катионите КУ-2 из хлоридных растворов при контролируемых значениях pH растворов и содержаниях хлорид-иона.
Изобретение относится к гидрометаллургическим способам переработки сульфидных концентратов, содержащих цветные металлы, железо и драгоценные металлы. Сущность изобретения заключается в том, что пентландит-пирротиновый концентрат, измельченный до частиц 6-25 мкм, выщелачивают при 90-105°C и давлении кислорода до 1,0 МПа в присутствии серной кислоты и сульфата натрия.

Изобретение относится к переработке радиоэлектронного лома, в частности электронных плат. Исходное сырье измельчают, обогащают методами электрической и магнитной сепарации, из полученных концентратов извлекают благородные металлы, хвосты обогащения распульповывают в воде при отношении Ж:Т не менее 7 в присутствии лигносульфоната с расходом последнего 1-3 кг/т твердого.

Изобретение относится к кучному криовыщелачиванию золотосодержащего сырья. Дробленую крепкую руду крупностью менее 20 мм перед формированием штабеля кучного выщелачивания золота подвергают криодезинтеграции путем замораживания при температуре ниже -10°С с последующим ее оттаиванием до температуры более +5°С.
Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом сорбенте [пергидро(1,3,5-дитиазин)-5-ил]-гексане общей формулы C9H19S2N. При этом сорбцию ведут с использованием сорбента в виде эмульсии частиц наноразмеров, полученной облучением сорбента ультразвуком в водной среде. Техническим результатом является применение сорбента в максимально измельченном состоянии (коллоидном), позволяющем достичь равномерного и стабильного распределения сорбента в водном растворе. 6 пр.
Наверх