Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации



Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации
Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации
Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации

 


Владельцы патента RU 2591052:

Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации. Достигаемым техническим результатом является повышение вероятности правильного обнаружения навигационного сигнала, рассеянного воздушной целью. Сущность изобретения заключается в том, что при приеме слабого рассеянного навигационного сигнала осуществляется компенсация мощного навигационного сигнала прямого распространения, играющего в этом случае роль структурно-детерминированной помехи. Для этого при приеме входной реализации в виде смеси мощного прямого навигационного сигнала, слабого навигационного сигнала, рассеянного воздушной целью, и собственного шума приемника осуществляется сначала стандартная процедура обнаружения мощного прямого сигнала и определение его точных параметров, при этом входная реализация записывается в память. Далее формируется точная копия прямого сигнала и вычитается из записанной входной реализации. Полученный результат содержит только собственные шумы приемника и слабый рассеянный сигнал, обнаружение которого осуществляется традиционным способом. Исключение влияния основного лепестка корреляционной функции не полностью скомпенсированного навигационного сигнала прямого распространения осуществляется путем ограничения области возможных значений задержки при поиске слабого рассеянного сигнала, поскольку, исходя из геометрии распространения прямого и рассеянного сигналов, задержка рассеянного сигнала будет всегда больше задержки прямого сигнала. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ обнаружения сигнала космической системы навигации, рассеянного воздушной целью, основанный на приеме навигационного сигнала, двухканальном корреляционном обнаружении и оценке его параметров, при этом в первом канале осуществляют поиск, обнаружение и определение параметров наиболее мощного сигнала прямого распространения, а во втором канале на основе оценок параметров, полученных в первом канале, исключают влияние мощного сигнала прямого распространения путем временной режекции основного лепестка его корреляционной функции, осуществляют поиск, обнаружение и определение параметров менее мощного рассеянного сигнала [см., например, Д.А. Черепанов, В.В. Кирюшкин, В.В. Неровный, Е.А. Ященко Устройство обнаружения воздушных целей с использованием сигналов спутниковых радионавигационных систем / Авиационное радиоэлектронное оборудование (выпуск 2 часть 10). Сборник статей по материалам докладов XXI межвузовской научно-практической конференции «ПЕРСПЕКТИВА-2011». Воронеж: Военный авиационный инженерный университет, 2011 г., с.276-279].

Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, состоящее из двух каналов: канала прямого сигнала и канала рассеянного сигнала, каждый из которых состоит из квадратурного корреляционного приемника, первый вход которого соединен с выходом радиочастотного блока, а второй вход соединен с первым выходом опорного генератора; выход квадратурного корреляционного приемника соединен со входом порогового устройства, а выход порогового устройства соединен с первым входом опорного генератора; второй выход опорного генератора первого канала соединен со вторым входом опорного генератора второго канала, на втором выходе которого формируются оценки параметров рассеянного сигнала [см., например, Д.А. Черепанов, В.В. Кирюшкин, В.В. Неровный, Е.А. Ященко Устройство обнаружения воздушных целей с использованием сигналов спутниковых радионавигационных систем / Авиационное радиоэлектронное оборудование (выпуск 2 часть 10). Сборник статей по материалам докладов XXI межвузовской научно-практической конференции «ПЕРСПЕКТИВА-2011». Воронеж: Военный авиационный инженерный университет, 2011 г., с.276-279].

Основным недостатком способа-прототипа и устройства-прототипа является низкая вероятность правильного обнаружения навигационного сигнала, рассеянного воздушной целью. Одной из причин этого является прием рассеянного сигнала во втором канале на фоне структурно детерминированной помехи - боковых лепестков корреляционной функции сигнала прямого распространения, уровень которых значительно (на 13-15 дБ) превышает уровень собственных шумов приемника.

Техническим результатом изобретения является повышение вероятности правильного обнаружения навигационного сигнала, рассеянного воздушной целью, за счет снижения уровня структурно детерминированной помехи - боковых лепестков корреляционной функции сигнала прямого распространения.

Указанный результат достигается тем, что в известном способе обнаружения сигнала космической системы навигации, рассеянного воздушной целью, запоминают принятую входную реализацию, поступающую в первый канал, после обнаружения сигнала в первом канале осуществляют слежение за прямым сигналом с формированием точных оценок всех его параметров, на основании которых восстанавливают сигнал прямого распространения, а во втором канале поиск, обнаружение и оценку параметров рассеянного сигнала осуществляют в результате корреляционной обработки разности запомненной входной реализации и восстановленного сигнала прямого распространения, при этом область возможных значений задержки при поиске рассеянного сигнала ограничивается слева значением предварительной оценки задержки прямого сигнала, смещенным вправо на длительность одного элемента дальномерного кода навигационного сигнала.

Указанный результат достигается тем, что в известном устройстве обнаружения сигнала космической системы навигации, рассеянного воздушной целью, в первом канале параллельно квадратурному корреляционному приемнику и пороговому устройству включают устройство слежения за параметрами, первый вход которого соединен с выходом радиочастотного блока, второй вход - с выходом порогового устройства, третий вход - со вторым выходом опорного генератора первого канала, а выход устройства слежения за параметрами соединен со входом устройства восстановления сигнала; во втором канале между выходом радиочастотного блока и входом квадратурного корреляционного приемника включают последовательно соединенные запоминающее устройство и вычитающее устройство, а второй вход вычитающего устройства соединен с выходом устройства восстановления сигнала первого канала.

Сущность изобретения заключается в том, что при приеме слабого рассеянного навигационного сигнала осуществляется компенсация мощного навигационного сигнала прямого распространения, играющего в этом случае роль структурно детерминированной помехи. Для этого при приеме входной реализации в виде смеси мощного прямого навигационного сигнала, слабого навигационного сигнала, рассеянного воздушной целью, и собственного шума приемника осуществляется сначала стандартная процедура обнаружения мощного прямого сигнала и определение его точных параметров, при этом входная реализация записывается в память. Далее формируется точная копия прямого сигнала и вычитается из записанной входной реализации. Полученный результат содержит только собственные шумы приемника и слабый рассеянный сигнал, обнаружение которого осуществляется традиционным способом. Исключение влияния основного лепестка корреляционной функции не полностью скомпенсированного навигационного сигнала прямого распространения осуществляется путем ограничения области возможных значений задержки при поиске слабого рассеянного сигнала, поскольку, исходя из геометрии распространения прямого и рассеянного сигналов, задержка рассеянного сигнала будет всегда больше задержки прямого сигнала.

Данный способ включает в себя следующие этапы.

1. До обнаружения навигационного сигнала прямого распространения: прием в наземном приемнике на фоне собственных шумов приемника фазокодоманипулированных навигационных сигналов, распространяющихся от спутника по двум траекториям: прямолинейно и за счет рассеивания воздушной целью, находящейся в зоне действия бистатического звена «навигационный спутник-наземный приемник», и формирование входной реализации

где S(t) - сигнал прямого распространения, τ, fd, φ0, A, GHC - задержка, доплеровская частота, начальная фаза, амплитуда, бит навигационного сообщения навигационного сигнала прямого распространения, SЦ(t) - сигнал, рассеянный воздушной целью, τц, f - задержка и доплеровская частота рассеянного сигнала, n(t) - собственные шумы приемника;

- запись принимаемой входной реализации y(t) в оперативную память;

- в первом канале поиск навигационного сигнала по задержке и частоте путем квадратурной корреляционной обработки входной реализации с формированием сигнала достаточной статистики - огибающей сигнала на выходе коррелятора

где - синфазная составляющая, - квадратурная составляющая, GDK - функция модуляции дальномерным кодом, τ и fd - оцениваемые радионавигационные параметры сигнала (задержка и доплеровское приращение частоты), fO - промежуточная частота, на которой осуществляется корреляционная обработка, Т - время накопления, равное периоду дальномерного кода; при этом область возможных значений задержки при поиске сигнала составляет τ∈[0, T];

- в первом канале обнаружение навигационного сигнала прямого распространения при первом превышении выходного сигнала коррелятора над порогом h, величина которого устанавливается на основании интенсивности шумов, в соответствии с решающим правилом

- в первом канале предварительная оценка задержки и доплеровской частоты навигационного сигнала прямого распространения качестве предварительных оценок принимаются такие значения τ ^ , f ^ d , при которых выполняется условие (3);

2. После обнаружения навигационного сигнала прямого распространения:

- в первом канале, используя предварительные оценки τ ^ , f ^ d , в качестве начальных значений, осуществляется слежение за параметрами навигационного сигнала прямого распространения с формированием точных оценок всех его параметров: τ* - оценки задержки, f d * - оценки доплеровской частоты, ϕ 0 * - оценки начальной фазы, A* - оценки амплитуды и G H C * - оценки соответствующего бита передаваемого навигационного сообщения;

- в первом канале формирование сигнала компенсации в виде точной копии сигнала прямого распространения на основании точных оценок всех его параметров;

- во втором канале вычитание сигнала компенсации из запомненной входной реализации и формирование скомпенсированной входной реализации:

где ΔS(t) - нескомпенсированный остаток сигнала прямого распространения; оценка эффективности компенсации основного и боковых лепестков корреляционной функции фазокодоманипулированного сигнала была проведена применительно к радиолокационной задаче компенсации сигнала мощных мешающих отражений [см., например, В.Е. Гантмахер, Н.Е. Быстров, Д.В. Чеботарев Шумоподобные сигналы. Анализ, синтез, обработка. - СПб.: Наука и Техника, 2005. с.308.] и составила - 50 дБ; тогда, можно утверждать, что отношение мощности некомпенсированного навигационного сигнала прямого распространения по боковым лепесткам корреляционной функции к уровню собственных шумов приемника составит 15 дБ-50 дБ=-35 дБ, следовательно, этой помехой можно пренебречь;

- во втором канале поиск рассеянного сигнала по задержке и частоте путем квадратурной корреляционной обработки скомпенсированной входной реализации ξ(t) с формированием сигнала достаточной статистики - огибающей сигнала на выходе коррелятора

где синфазная составляющая, - квадратурная составляющая; при этом область возможных значений задержки при поиске рассеянного сигнала ограничивается слева значением предварительной оценки задержки прямого сигнала τ ^ , смещенным вправо на длительность одного элемента дальномерного кода навигационного сигнала Δτ и составляет τ ц [ τ ^ + Δ τ , T ] , чем обеспечивается временная режекция основного лепестка корреляционной функции некомпенсированного сигнала прямого распространения;

- во втором канале обнаружение навигационного сигнала, рассеянного воздушной целью, при первом превышении выходного сигнала коррелятора над порогом h1, величина которого устанавливается на основании интенсивности шумов, в соответствии с решающим правилом:

- во втором канале оценка задержки и доплеровской частоты навигационного сигнала, рассеянного воздушной целью; в качестве оценок принимаются такие значения τ ^ ц , f ^ d ц , при которых выполняется условие (6).

Структурная схема устройства обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, реализующего данный способ, приведена на фиг.1, где обозначено: 1 - канал прямого сигнала (КПС), 2 - канал рассеянного сигнала (КРС), 3 - устройство восстановления сигнала (УВС), 4 - устройство слежения за параметрами (УСП), 5 - квадратурный корреляционный приемник (ККП), 6 - пороговое устройство (ПУ), 7 - опорный генератор (ОГ), 8 - запоминающее устройство (ЗУ), 9 - вычитающее устройство (ВУ).

КПС 1 предназначен для поиска, обнаружения и оценки параметров сигнала прямого распространения и формирования сигнала компенсации в виде его точной копии;

КРС 2 предназначен для компенсации сигнала прямого распространения, поиска, обнаружения и оценки параметров рассеянного сигнала;

УВС 3 предназначено для восстановления сигнала прямого распространения на основании точных оценок всех его параметров;

УСП 4 предназначено для слежения за прямым сигналом с формированием точных оценок всех его параметров;

ККП 5 предназначен для квадратурной корреляционной обработки входной реализации с формированием сигнала достаточной статистики в соответствии с (2) в канале КПС и в соответствии с (5) в канале КРС;

ПУ 6 предназначено для обнаружения сигнала в соответствии с решающим правилом (3) в канале КПС и в соответствии с решающим правилом (6) в канале КРС;

ОГ 7 предназначен для формирования опорного сигнала для работы ККП;

ЗУ 8 предназначено для запоминания входной реализации;

ВУ 9 предназначено для формирования разности запомненной входной реализации и восстановленного сигнала прямого распространения.

Предлагаемое устройство функционирует следующим образом.

Принятая входная реализация (1) поступает на первый вход ККП 51 канала КПС и одновременно на вход ЗУ 8, где осуществляется ее запись и хранение в течение времени T, равного периоду дальномерного кода.

В ККП 51 канала КПС осуществляется квадратурная корреляционная обработка входной реализации с формированием сигнала достаточной статистики (2), для чего на его второй вход подается опорный сигнал

(синфазная составляющая) и (квадратурная составляющая) с первого выхода ОГ 71. Для обеспечения поиска навигационного сигнала по задержке и частоте значения параметров τ и fd опорного сигнала последовательно изменяются в пределах области возможных значений τ∈[0; T] и ƒd∈[ƒd,min;ƒd,max].

Сформированная достаточная статистика (2) с выхода ККП 51 подается на первый вход ПУ 61, где осуществляется принятие решения об обнаружении более мощного навигационного сигнала прямого распространения с формированием сигнала θ в соответствии с решающим правилом (3) при первом превышении выходного сигнала коррелятора над порогом h, поступающим на второй вход ПУ 61. Сигнал θ с выхода ПУ 61 поступает на первый вход ОГ 71 и при θ=1 останавливает поиск навигационного сигнала, фиксируя значения параметров τ и fd опорного сигнала в ОГ 71 и формируя тем самым предварительные оценка задержки τ ^ доплеровской частоты f ^ d навигационного сигнала прямого распространения на втором выходе ОГ 71.

Сигнал θ с выхода ПУ 61 одновременно поступает и на второй вход УСП 4. При θ=1 УСП 4 начинает следить за параметрами обнаруженного сигнала прямого распространения, для чего на его первый вход подается входная реализация y(t), а на третий вход предварительные оценки τ ^ , f ^ d задержки и доплеровской частоты прямого сигнала. На выходе УСП 4 формируются точные оценки всех параметров сигнала прямого распространения: τ* - оценка задержки, f d * - оценка доплеровской частоты, ϕ 0 * - оценка начальной фазы, A* - оценка амплитуды и G H C * - оценка соответствующего бита передаваемого навигационного сообщения, которые поступают на вход УВС 3.

В УВС 3 осуществляется формирование сигнала компенсации в виде точной копии сигнала прямого распространения на основании точных оценок всех его параметров. Сформированная копия с выхода УВС 3 поступает на второй вход ВУ 9 канала КРС, на первый вход которого поступает запомненная входная реализация с выхода ЗУ 8. В ВУ 9 осуществляется вычитание сигнала компенсации из запомненной входной реализации и формирование скомпенсированной входной реализации (4), которая с выхода ВУ 9 подается на первый вход ККП 52 канала КРС.

В ККП 52 канала КРС осуществляется квадратурная корреляционная обработка скомпенсированной входной реализации (4) с формированием сигнала достаточной статистики (5), для чего на его второй вход подается опорный сигнал (синфазная составляющая) и (квадратурная составляющая) с первого выхода ОГ 72. Для обеспечения поиска навигационного сигнала по задержке и частоте значения параметров τц и fопорного сигнала последовательно изменяются в пределах области возможных значений. Для исключения влияния в канале КРС основного лепестка корреляционной функции нескомпенсированного сигнала прямого распространения область возможных значений задержки при поиске рассеянного сигнала ограничивается слева значением предварительной оценки задержки прямого сигнала τ ^ , смещенным вправо на длительность одного элемента дальномерного кода навигационного сигнала Δτ и составляет τ ц [ τ ^ + Δ τ , T ] , для чего на второй вход ОГ 72 поступают предварительные оценка задержки τ ^ и доплеровской частоты f ^ d навигационного сигнала прямого распространения со второго выхода ОГ 71.

Сформированная достаточная статистика (5) с выхода ККП 52 подается на первый вход ПУ 62, где осуществляется принятие решения об обнаружении менее мощного рассеянного навигационного сигнала с формированием сигнала θц в соответствии с решающим правилом (6) при первом превышении выходного сигнала коррелятора над порогом h1, поступающим на второй вход ПУ 62. Сигнал θц с выхода ПУ 62 поступает на первый вход ОГ 72 и при θц=1 останавливает поиск рассеянного навигационного сигнала, фиксируя значения параметров τц и f опорного сигнала в ОГ 72 и формируя тем самым оценку задержки τ ^ ц и доплеровской частоты f ^ d ц навигационного сигнала, рассеянного воздушной целью, на втором выходе ОГ 72.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений не известен способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации, основанные на совместном двухканальном корреляционном обнаружении и оценке параметров прямого навигационного сигнала и навигационного сигнала, рассеянного целью, с компенсацией более мощного сигнала прямого распространения в канале рассеянного сигнала.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что применение компенсации сигнала космической системы навигации прямого распространения в канале навигационного сигнала, рассеянного воздушной целью, при их совместном двухканальном корреляционном обнаружении и оценке параметров обеспечит повышение вероятности правильного обнаружения сигнала космической системы навигации, рассеянного воздушной целью.

Предлагаемые технические решения промышленно применимы, так как для их реализации могут быть использованы элементы, широко распространенные в области электронной и радиотехники.

1. Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, основанный на приеме навигационного сигнала, двухканальном корреляционном обнаружении и оценке его параметров, при этом в первом канале осуществляют поиск, обнаружение и определение параметров наиболее мощного сигнала прямого распространения, а во втором канале на основе оценок параметров, полученных в первом канале, исключают влияние мощного сигнала прямого распространения путем временной режекции основного лепестка его корреляционной функции, осуществляют поиск, обнаружение и определение параметров менее мощного рассеянного сигнала, отличающийся тем, что запоминают принятую входную реализацию, после обнаружения сигнала в первом канале осуществляют слежение за прямым сигналом, формируют точные оценки его параметров, на основании которых восстанавливают сигнал прямого распространения, а во втором канале поиск, обнаружение и оценку параметров рассеянного сигнала осуществляют в результате корреляционной обработки разности запомненной входной реализации и восстановленного сигнала прямого распространения, при этом область возможных значений задержки при поиске рассеянного сигнала ограничивается слева значением предварительной оценки задержки прямого сигнала, смещенным вправо на длительность одного элемента дальномерного кода навигационного сигнала.

2. Устройство обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, состоящее из радиочастотного блока и двух каналов - канала прямого сигнала и канала рассеянного сигнала, каждый из которых состоит из квадратурного корреляционного приемника, при этом первый вход квадратурного корреляционного приемника первого канала соединен с выходом радиочастотного блока, второй вход каждого из квадратурных корреляционных приемников соединен с первым выходом опорного генератора; выход квадратурного корреляционного приемника соединен со входом порогового устройства, а выход порогового устройства соединен с первым входом опорного генератора; второй выход опорного генератора первого канала соединен со вторым входом опорного генератора второго канала, на втором выходе которого формируются оценки параметров рассеянного сигнала, отличающееся тем, что в первом канале параллельно квадратурному корреляционному приемнику и пороговому устройству включают устройство слежения за параметрами, первый вход которого соединен с выходом радиочастотного блока, второй вход - с выходом порогового устройства, третий вход - со вторым выходом опорного генератора первого канала, а выход устройства слежения за параметрами соединен со входом устройства восстановления сигнала; во втором канале между выходом радиочастотного блока и входом квадратурного корреляционного приемника включают последовательно соединенные запоминающее устройство и вычитающее устройство, а второй вход вычитающего устройства соединен с выходом устройства восстановления сигнала первого канала.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ).

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР).

Изобретение относится к области радиотехники, а именно к беспроводным мобильным сетям или точкам доступа беспроводной локальной сети, и может быть использовано при определении местоположения пользователя.

Изобретение относится к области радиотехники, а именно к оценке положения космического аппарата (6), и может быть использовано, в частности, для оценки положения спутника, вращающегося вокруг Земли.

Изобретение относится к области радиочастотной идентификации. Достигаемый технический результат изобретения - повышение точности и дальности определения местоположения передатчика сигнала.

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля при решении задачи скрытного определения координат объектов-носителей источников радиоизлучения (ИРИ) с направленными антеннами.

Изобретение относится к области пассивной радиолокации и предназначено для проведения натурных испытаний опытных образцов пассивной разностно-дальномерной системы (РДС) при отсутствии одного из приемных постов.

Изобретение относится к способам и устройству для установления местоположения приемника при помощи радиосигналов GPS. .

Изобретение относится к радиотехнике и может быть использовано в системах связи для компенсации задержек принимаемых сигналов в радиоприемниках определения местоположения.

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования.

Изобретение относится к области радиотехники и может быть использовано в составе комплексов радиоэлектронных средств диапазона декаметровых волн и верхней части диапазона гектометровых волн (многоканальных узлов радиосвязи, систем загоризонтной радиолокации) для оперативного определения значений оптимальных рабочих частот в диапазоне 1,5…30,0 МГц ионосферных радиотрасс различных протяженностей.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС).

Изобретение относится к радиотехническим метеорологическим комплексам, а более конкретно оно касается доплеровских метеорологических радиолокационных станций.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС).

Изобретение относится к области радиотехники и может быть использовано в навигационных и метеорологических системах. Достигаемый технический результат - увеличение дальности определения молниевого разряда.

Изобретение относится к области радиолокационной метеорологии и может быть использовано для измерения размера градовых частиц в зоне их роста. Сущность: по данным аэрологического зондирования атмосферы строят график изменения температуры и скорости восходящих воздушных потоков по высоте облака.

Изобретение относится к геофизике и может использоваться в системе мониторинга окружающей среды, сейсмического и инфразвукового мониторинга, МЧС России, контроля околоземного космического пространства для диагностики положения эпицентральной зоны потенциальных источников протяженных перемещающихся ионосферных возмущений (ПИВ).

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами.

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности.

Изобретение относится к способам обработки сигналов в радиолокационных станциях. Достигаемый технический результат - однозначное измерение дальности до метеорологического объекта (МО). Способ заключается в излучении первой последовательности импульсов с частотой повторения Fи1, в которой период повторения Tи1 в несколько раз меньше базового периода Т0, выбираемого из условия однозначного измерения расстояний в пределах всего возможного диапазона дальностей до наблюдаемых МО, излучении в последующий интервал Т0 второй последовательности импульсов с частотой повторения Fи2, причем Fи1=z1F0 и Fи2=z2F0, где F0=1/Т0; величины z1 и z2 некратные друг другу и не имеют общего делителя, определении совокупности наблюдаемых задержек tдн1i, где ; I - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого k-го, ; K - количество излученных импульсов в первой пачке, излученного импульса в их первой пачке, вычислении величины средней наблюдаемой задержки t1 ср отраженных импульсов от МО относительно каждого излученного k-го импульса в их первой пачке, определении совокупности наблюдаемых задержек tдн2j, где ; J - общее количество наблюдаемых задержек отраженных от МО импульсов относительно каждого p-го, ; P - количество излученных импульсов во второй пачке, излученного импульса в их второй пачке, вычислении величины средней наблюдаемой задержки отраженных импульсов от МО t2 ср относительно каждого излученного p-го импульса в их второй пачке, сравнении временных задержек tдц1=mTи1+t1 cp и tдц2=nТи2+t2 ср, где m и n - количество целых периодов Ти1 и Ти2, попадающих в пределы интервала истинной задержки tдц, варьировании численных значений m и n до тех пор, пока не будет выполнено условие tдц1=tдц2 с фиксацией, при которых будет выполнено данное условие, и вычислении дальности до МО по формуле Дц=c(mфТи1+t1 ср)/2 или Дц=с(nфТи2+t2 ср)/2, где c - скорость света. 2 ил.
Наверх