Способ получения нанокапсул иодида калия

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул иодида калия. В качестве оболочки нанокапсул используют конжаковую камедь. Согласно способу по изобретению иодид калия добавляют в суспензию конжаковой камеди в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества, при массовом соотношении ядро : оболочка 1:1, или 1:2, или 1:3 соответственно. Затем перемешивают и добавляют этилацетат. Полученную суспензию нанокапсул отфильтровывают, промывают и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 1 ил., 4 пр.

 

Изобретение относится к фармацевтике.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубл. 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубл. 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении (2-4):1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул иодида калия, отличающимся тем, что в качестве оболочки нанокапсул используется конжаковая камедь при получении нанокапсул иодида калия.

Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием петролейного эфира и этилцетата, а также использование конжаковой камеди в качестве оболочки частиц.

Результатом предлагаемого метода являются получение нанокапсул иодида калия.

ПРИМЕР 1. Получение нанокапсул иодида калия, соотношение ядро : оболочка 1:3

100 мг иодида калия диспергируют в суспензию 300 мг конжаковой камедив петролейном эфире, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре (см. фиг.1).

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул иодида калия, соотношение ядро : оболочка 1:1

100 мг иодида калия диспергируют в суспензию 100 мг конжаковой камеди в петролейном эфире, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул иодида калия, соотношение ядро : оболочка 1:2

100 мг иодида калия диспергируют в суспензию 200 мг конжаковой камеди в петролейном эфире, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,3 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size:Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.

Получены нанокапсулы солей с достаточно высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.

Способ получения нанокапсул иодида калия, характеризующийся в том, что в качестве оболочки нанокапсул используется конжаковая камедь, при этом иодид калия добавляют в суспензию конжаковой камеди в петролейном эфире в присутствии препарата Е472с, при массовом соотношении ядро : оболочка 1:1, или 1:2, или 1:3 соответственно, при перемешивании 1200 об/мин, затем добавляют этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в производстве керамики.

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): , где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу -(СН2)n-, Ar, или -S-, n представляет собой число от 1 до 12, Y представляет собой алифатическую С1-С12 углеродную цепь, Ar представляет собой фенил, бифенил или нафтил и X представляет собой Н, Cl или независимую от Y С1-С12 углеродную цепь.

Вкладыш трения выполнен Н-образной формы и размещается между внутренней поверхностью трения корпуса поглощающего аппарата и его фрикционными элементами в выполненных на цилиндрической поверхности каждого подвижного фрикционного элемента пазах.

Изобретения могут быть использованы в химической и металлургической промышленности. Сначала исходные нанотрубки или нановолокна обрабатывают кислотой при 20-100°C, промывают и сушат.

Изобретение относится к области получения кремнийсодержащих материалов. Способ получения моносилана осуществляют диспропорционированием трихлорсилана.

Изобретение относится к области нанотехнологий, а именно к способу создания упорядоченной ступенчатой поверхности Si(111)7×7, покрытой эпитаксиальным слоем силицида меди Cu2Si, и может быть использовано при создании твердотельных электронных приборов, например сенсоров газов или молекул.

Изобретение относится к микро- и наноструктурированным покрытиям, применяемым, в частности, в области оптически прозрачных проводящих покрытий. Технический результат - эффективное формирование проводящей структуры сетчатой формы, обеспечивающей функцию прозрачных проводящих покрытий, на поверхности обрабатываемой подложки на этапе формирования отсоединяемого проводящего слоя, а также посредством перенесения указанного проводящего слоя на обрабатываемую подложку, являющуюся итоговым носителем сетчатой проводящей структуры.

Использование: для изготовления многоуровневой системы межсоединений кремниевой интегральной схемы. Сущность изобретения заключается в том, что формируют в изолирующем слое кремниевой структуры, в которой выполнены полупроводниковые приборы, углубления под будущие проводники-межсоединения, формируют частицы нанометрового размера, выращивают наноматериал на указанных частицах нанометрового размера, заполняют оставшееся пространства углублений проводящим материалом, формируют композитный материал из наноматериала и проводящего материала, планаризируют поверхности кремниевой структуры, сохраняя нанесенные материалы в углублениях, перед формированием частиц нанометрового размера производится нанесение на дно и стенки углублений слоя сплава, который содержит компонент для формирования частиц нанометрового размера, представляющий собой элемент или комбинацию элементов из I и/или VIII группы, и компонент для формирования диффузионно-барьерного слоя, представляющий собой переходный металл или комбинацию переходных металлов из IV-VI групп Периодической таблицы элементов, и термическое воздействие на него.

Способ получения ферромагнитной жидкости включает растворение в воде двойной соли железа - соли Мора, с последующим парциальным окислением раствора перекисью водорода до соотношения Fe3+:Fe2+=1,7-2:1 из расчета 2,7-3 моль Fe2+/моль H2O2, контроль ведут при помощи окислительно-восстановительного электрода Fe2+/Fe3+.

Изобретение относится к медицинской технике. Устройство для исследования биохимических систем, содержащих магнитные наночастицы, при воздействии низкочастотного негреющего магнитного поля, включающее источник питания, соединенный с генератором, питающим обмотки электромагнита.

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): , где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу -(СН2)n-, Ar, или -S-, n представляет собой число от 1 до 12, Y представляет собой алифатическую С1-С12 углеродную цепь, Ar представляет собой фенил, бифенил или нафтил и X представляет собой Н, Cl или независимую от Y С1-С12 углеродную цепь.

Использование: для тепловой изоляции детекторов теплового излучения. Сущность изобретения заключается в том, что прибор для теплового детектирования инфракрасного излучения включает в себя пиксель на полупроводниковой подложке, пиксель включает в себя первую секцию и вторую секцию, первая секция находится на поверхности полупроводниковой положки и включает в себя электрические цепи, вторая секция отделена от первой секции и находится непосредственно над ней, вторая секция является планарной и включает в себя ножки, микро-мембрану и расположенный на ней температурный детектор, вторая секция поддерживается колоннами, одна из ножек имеет один конец интегрально соединенный с микро-мембраной и другой конец интегрально соединенный с одной из колонн, другая из ножек имеет один конец, интегрально соединенный с микро-мембраной, и другой конец, интегрально соединенный с другой из колонн, ножки обеспечивают электрическое соединение температурного детектора с электрическими цепями через соответствующие колонны и термоизоляцию температурного детектора и микро-мембраны от полупроводниковой подложки, одна из ножек включает в себя первую часть первого диэлектрического слоя, первую часть второго диэлектрического слоя, часть электропроводящего слоя, данная часть электропроводящего слоя обеспечивает вышеупомянутое электрическое соединение, первая часть первого диэлектрического слоя граничит с первой поверхностью электропроводящего слоя и первая часть второго диэлектрического слоя граничит со второй поверхностью электропроводящего слоя, первая и вторая поверхности электропроводящего слоя являются противолежащим поверхностями части электропроводящего слоя, часть электропроводящего слоя является источником механических напряжений, вызывающим напряжения растяжения в первой части первого диэлектрического слоя и напряжения растяжения в первой части второго диэлектрического слоя.

Изобретения могут быть использованы в химической и металлургической промышленности. Сначала исходные нанотрубки или нановолокна обрабатывают кислотой при 20-100°C, промывают и сушат.

Изобретение относится к микро- и наноструктурированным покрытиям, применяемым, в частности, в области оптически прозрачных проводящих покрытий. Технический результат - эффективное формирование проводящей структуры сетчатой формы, обеспечивающей функцию прозрачных проводящих покрытий, на поверхности обрабатываемой подложки на этапе формирования отсоединяемого проводящего слоя, а также посредством перенесения указанного проводящего слоя на обрабатываемую подложку, являющуюся итоговым носителем сетчатой проводящей структуры.

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, и может быть использовано при создании различных электронных приборов и устройств, рабочие параметры которых определяются величиной диэлектрической проницаемости межэлектродного пространства емкостных элементов, в том числе при производстве микроконденсаторов и емкостных датчиков давления и перемещения.
Изобретение относится к технологии обработки высокомолекулярных полимерных материалов органическими соединениями для нанесения покрытий на основе углеродных соединений.

Изобретение относится к области химической технологии волокнистых материалов и может быть использовано в качестве краски для маркировки текстильных материалов (ТМ).

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы.
Изобретение относится к модифицированию смазочных материалов, в частности к получению добавок к моторным маслам, и может быть использовано для повышения износостойкости трущихся деталей.

Изобретение относится к использованию магнитных наночастиц для избирательного удаления биопрепаратов, молекул или ионов из жидкостей. Химический состав включает магнитные наночастицы, поверхности которых функционализированы амином и дополнительно веществом, выбранным из веществ, реверсивно вступающих в реакцию и реверсивно соединяющихся с предопределенной мишенью в жидкости на водной основе.

Изобретение относится к способу получения нанокапсул серы. Указанный способ характеризуется тем, что серу диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, затем приливают этилацетат, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:полимер в нанокапсулах составляет 1:3 или 3:1 или 1:1.
Наверх