Способ получения пироксилинового сферического пороха для 7,62 мм спортивного патрона

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия. При получении пороха в реактор заливают воду, загружают при перемешивании нитроцеллюлозу с содержанием оксида азота 212,7-214,0 мл NO/г, до 30 мас.% возвратно-технологических отходов после мокрой сортировки и от 3,0 до 5,0 мас.% технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают дифениламин и проводят перемешивание. Затем заливают растворитель-этилацетат и ведут приготовление порохового лака. После ввода защитного коллоида - клея мездрового ведут дробление порохового лака на сферические частицы. Вводят сернокислый натрий и ведут отгонку этилацетата из пороховых элементов. Способ позволяет эффективно использовать крупную и мелкую фракции пороха в технологическом процессе и исключить утилизацию их методом сжигания и при этом обеспечивает стабильные физико-химические и баллистические характеристики в 7,62 мм спортивно-винтовочном патроне. 1 табл., 5 пр.

 

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия.

В патентах США (№2843584, 3378745) предложены способы получения СФП для стрелкового оружия, заключающиеся в измельчении мелкозерненых пироксилиновых порохов в водной среде с последующим растворением их в растворителе, диспергировании порохового лака на сферические частицы и отгонке растворителя из них.

Недостатком этих способов является невозможность получения СФП для 7,62 мм патрона.

Наиболее близким техническим решением является способ получения пироксилинового пороха для 7,62 мм спортивного патрона (патент №2527781 С1), прототип, по которому в реактор заливают 4,5-6,5 мас.ч. воды, по отношению к нитроцеллюлозе, загружают 1 мас.ч. нитроцеллюлозы с содержанием оксида азота 212,7-214,0 мл NO/г и до 30 мас. % возвратно-технологических отходов от предшествующих операций. При перемешивании заливают 3,8-5,2 мас.ч. растворителя - этилацетата, загружают к массе нитроцеллюлозы 0,5-0,8 мас. % дифениламина. Ведут приготовление порохового лака при температуре 55-68°С в течение 60-80 минут, а затем после ввода защитного коллоида - клея мездрового в количестве 0,8-1,2 мас. % и 0,4-0,8 мас. % декстрина, по отношению к воде, ведут дробление порохового лака на сферические частицы в течение 70-90 минут при температуре в реакторе 55-68°С, вводят по отношению к воде 2,2-2,5 мас. % сернокислого натрия и ведут перемешивание в течение 30-40 минут при температуре в реакторе 60-68°С, отгонку растворителя из пороховых элементов ведут при температуре теплоносителя, подаваемого в рубашку реактора, при этом в течение 10-15 минут температуру теплоносителя поднимают до 82-86°С и ведут выдержку, отгоняют 70-75 мас. % растворителя, после чего в течение 10-15 минут температуру теплоносителя поднимают до 94-96°С и ведут выдержку до достижения температуры смеси в реакторе 94-96°С.

Недостатком известного способа получения пироксилинового сферического пороха для 7,62 мм спортивного патрона является то, что в качестве энергетической и структурирующей основы используют пироксилин и возвратно-технологические отходы (ВТО). После сухой сортировки крупная и мелкая фракция в количестве 3,0-5,0 мас. % от массы пороха, как правило, уничтожается методом сжигания.

Целью изобретения является использование на фазе формирования крупной и мелкой фракции пороха после сухой сортировки.

Поставленная цель достигается тем, что в реактор заливают 3,5-4,6 мас. ч. воды, по отношению к нитроцеллюлозе, загружают при перемешивании 1 мас. ч. нитроцеллюлозы с содержанием оксида азота 212,7-214,0 мл NO/г, до 30 мас. % возвратно-технологических отходов после мокрой сортировки и от 3,0 до 5,0 мас. % технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают к массе нитроцеллюлозы 0,5-0,8 мас. % дифениламина и проводят перемешивание в течение 10-15 минут, заливают 3,5-4,2 мас. ч. растворителя-этилацетата, ведут приготовление порохового лака при температуре 55-68°С в течение 40-60 минут, а затем после ввода защитного коллоида - клея мездрового в количестве 0,8-1,2 мас. %, по отношению к воде, ведут дробление порохового лака на сферические частицы в течение 40-60 минут при температуре в реакторе 60-68°С, вводят по отношению к воде 2,2-2,5 мас. % сернокислого натрия для обезвоживания и ведут отгонку этилацетата из пороховых элементов при температуре теплоносителя, подаваемого в рубашку реактора, при этом в течение 10-15 минут температуру теплоносителя поднимают до 84-86°С и ведут выдержку, отгоняют 70-75 мас. % этилацетата, после чего в течение 10-15 минут температуру теплоносителя поднимают до 96-98°С и ведут выдержку до достижения температуры смеси в реакторе 96-98°С.

По известному способу после сухого рассева получают от 3,0 до 5,0 мас. % крупной и мелкой фракции сферического пороха, в последующем некондиционная фракция пороха подвергается утилизации методом сжигания. Проведенными авторами исследованиями было установлено, что использование до 5,0 мас. % некондиционных отходов крупной и мелкой фракций при формировании СФП не изменяют баллистические характеристики. Следовательно, при незначительной корректировке технологических режимов возможно использование ВТО после мокрой сортировки, а также крупной и мелкой фракции после сухого рассева.

По разработанному авторами способу получения пироксилинового сферического пороха для 7,62 мм патрона в реактор заливают 3,5-4,6 мас.ч. воды, по отношению к нитроцеллюлозе, загружают при перемешивании 1 мас.ч. нитроцеллюлозы с содержанием оксида азота 212,7-214,0 мл NO/г, до 30 мас. % ВТО после мокрой сортировки и от 3,0 до 5,0 мас. % технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают к массе нитроцеллюлозы 0,5-0,8 мас. % дифениламина и проводят перемешивание в течение 10-15 минут. При заливке воды в реактор менее 3,5 мас.ч. происходит уменьшение толщины горящего свода пороховых элементов, что приводит к повышению давления пороховых газов в канале ствола оружия, а увеличение воды в реакторе более 4,6 мас.ч. приводит к получению пороховых элементов сферической формы, что увеличивает массу порохового заряда и снижает скорость полета пули. Снижение оксида азота в нитроцеллюлозе менее 212,7 мл NO/г приводит к увеличению массы порохового заряда и снижению скорости полета пули, а увеличение оксида азота более 214,0 мл NO/г связано с дополнительными трудозатратами.

Количество ВТО после мокрой сортировки связано с выходом целевой фракции пороха, которая обычно составляет 70-90 мас. %. Количество крупноты и мелочи после сухой сортировки обычно составляет от 3,0 до 5,0 мас. % и ввод их в реактор определяется количеством отходов, полученных с фазы сухой сортировки. Уменьшение времени перемешивания всех компонентов менее 10 минут приводит к неровному распределению всех компонентов реакторе, что в дальнейшем приводит к неоднородному получению порохового лака, а увеличение времени перемешивания более 15 минут связано с увеличением длительности получения СФП. Приготовление порохового лака ведут путем заливки этилацетата в количестве 3,5-4,2 мас.ч. по отношению к нитроцеллюлозе, ведут приготовление порохового лака при температуре 55-68°С в течение 40-60 минут. Уменьшение количества этилацетата менее 3,5 мас.ч. приводит к получению СФП с крупной фракцией пороховых элементов, а увеличение количества этилацетата более 4,2 мас.ч. приводит к получению СФП с мелкой фракцией. Снижение температуры приготовления порохового лака менее 55°C и времени перемешивания менее 40 минут связано с увеличением длительности технологического цикла и неравномерному получению порохового лака, а увеличение температуры в реакторе более 68°C связано с преждевременным началом отгонки растворителя. Увеличение времени приготовления порохового лака более 60 минут связано с увеличением длительности технологического процесса. Уменьшение дифениламина в составе пороха менее 0,5 мас. % приводит к снижению химической стойкости пороха, а увеличение дифениламина более 0,8 мас. % приводит к снижению энергетических характеристик.

Диспергирование порохового лака проводится путем ввода защитного коллоида - клея мездрового в количестве 0,8-1,2 мас. %, по отношению к воде, ведут дробление порохового лака на сферические частицы в течение 40-60 минут при температуре в реакторе 60-68°С, вводят по отношению к воде 2,2-2,5 мас. % сернокислого натрия и ведут отгонку этилацетата из пороховых элементов. Уменьшение клея мездрового менее 0,8 мас. % приводит к коалесценции пороховых элементов и повторному их дроблению, что способствует получению пороха с высокой пористостью, а увеличение клея мездрового более 1,2 мас. % дальнейшего эффекта не дает.

Уменьшение времени дробления порохового лака на сферические частицы менее 40 минут не обеспечивает полного процесса диспергирования, а увеличение времени диспергирования более 60 минут связано с увеличением длительности технологического процесса.

Уменьшение температуры при диспергировании менее 60°C приводит к увеличению длительности технологического процесса, а увеличение температуры более 68°C приводит к преждевременной отгонке растворителя из пороховых элементов.

Уменьшения ввода сернокислого натрия менее 2,2 мас. % приводит к получению сферического пороха с низкой насыпной плотностью и высокой пористостью, а увеличение сернокислого натрия более 2,5 мас. % дальнейшего эффекта не дает.

Отгонку растворителя из пороховых элементов ведут при температуре теплоносителя, подаваемого в рубашку реактора, при этом в течение 10-15 минут температуру теплоносителя поднимают до 84-86°C и ведут выдержку, отгоняют 70-75 мас. % этилацетата, после чего в течение 10-15 минут температуру теплоносителя поднимают до 96-98°C и ведут выдержку до достижения температуры смеси в реакторе 96-98°C. Снижение температуры теплоносителя при первой выдержке менее 84°C и количества отогнанного растворителя менее 70 мас. % приводит к получению СФП с высокой пористостью и низкой насыпной плотностью, а увеличение температуры более 86°C и количества отогнанного растворителя более 75 мас% связано с переходом пузырькового режима кипения в пленочный, что обычно сопровождается выбросом массы из реактора, при этом проведенная операция получения СФП бракуется. Уменьшение температуры теплоносителя при второй выдержке менее 96°C приводит к удлинению технологического процесса и увеличению остаточного растворителя в порохе, а увеличение температуры в реакторе более 98°C связано с увеличением длительности технологического процесса.

Технологические режимы, физико-химические и баллистические характеристики изготовленных образцов по разработанному авторами способу в пределах граничных условий (примеры 1-3) и за пределами граничных условий (примеры 4-5) приведены в таблице.

Таблица Технологические режимы, физико-химические и баллистические характеристики изготовленных образцов СФП

Из приведенных значений таблицы видно, что по разработанному авторами способу (примеры 1-3) получены СФП с использованием до 5,0 мас. % некондиционной крупной и мелкой фракции после сухой сортировки и использовании их при формировании СФП в реакторе. При этом СФП, с учетом корректировки технологических режимов, обеспечивает стабильные физико-химические и баллистические характеристики в 7,62 мм спортивно-винтовочном патроне. Кроме того, разработанный способ позволил эффективно использовать крупную и мелкую фракции пороха в технологическом процессе и исключить утилизацию их методом сжигания. За пределами граничных условий (примеры 4-5) изготовление СФП проводилось без использования сухих отходов, при этом также получены положительные результаты по физико-химическим и баллистическим характеристикам.

Способ получения пироксилинового сферического пороха для 7,62 мм спортивного патрона, включающий приготовление порохового лака при перемешивании в водной среде смеси нитроцеллюлозы с возвратно-технологическими отходами совместно с дифениламином и растворителем - этилацетатом, диспергирование порохового лака на сферические частицы, обезвоживание пороховых элементов и удаление растворителя из них, отличающийся тем, что в реактор заливают 3,5-4,6 мас.ч. воды, по отношению к нитроцеллюлозе, загружают при перемешивании 1 мас.ч. нитроцеллюлозы с содержанием оксида азота 212,7-214,0 мл NO/г, до 30 мас.% возвратно-технологических отходов после мокрой сортировки и от 3,0 до 5,0 мас.% технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают к массе нитроцеллюлозы 0,5-0,8 мас.% дифениламина и проводят перемешивание в течение 10-15 минут, заливают 3,5-4,2 мас. ч. растворителя-этилацетата, ведут приготовление порохового лака при температуре 55-68°С в течение 40-60 минут, а затем после ввода защитного коллоида - клея мездрового в количестве 0,8-1,2 мас. %, по отношению к воде, ведут дробление порохового лака на сферические частицы в течение 40-60 минут при температуре в реакторе 60-68°С, вводят по отношению к воде 2,2-2,5 мас.% сернокислого натрия для обезвоживания и ведут отгонку этилацетата из пороховых элементов при температуре теплоносителя, подаваемого в рубашку реактора, при этом в течение 10-15 минут температуру теплоносителя поднимают до 84-86°С и ведут выдержку, отгоняют 70-75 мас.% этилацетата, после чего в течение 10-15 минут температуру теплоносителя поднимают до 96-98°С и ведут выдержку до достижения температуры смеси в реакторе 96-98°С.



 

Похожие патенты:

Изобретение относится к твердым ракетным топливам, используемым в изделиях для активного воздействия на облака при борьбе с градом и грозами, стимулирования и интенсификации осадков, рассеивания облаков и туманов.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. При получении пороха высушенный графитованный сферический порох пневмотранспортом через циклон-осадитель подают на наклон для сухого рассева, представляющий собой набор сменных латунных сеток под заданную марку пороха, установленных на подрамнике под углом 20-30° относительно горизонтальной плоскости.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Способ включает загрузку пороховой массы в дисперсионную среду - воду, находящуюся в реакторе, заливку растворителя - этилацетата, приготовление порохового лака, диспергирование его на сферические элементы, обезвоживание их сернокислым натрием и отгонку растворителя из пороховых элементов путем конденсации паров этилацетата в холодильнике в трубном пространстве путем охлаждения их водопроводной водой, подаваемой в межтрубное пространство.

Изобретение относится к пороховым зарядам, преимущественно легкогазовым. Бинарный пороховой заряд содержит окислитель и горючее, расположенные отдельно в цилиндрической или конической шашке с продольным каналом, и выполнен продольными или спиральными объемными секторами, или плоскими слоями, или поперечными или коническими слоями.

Изобретение относится к области производства гранулированных материалов по водно-дисперсионной технологии, в частности сферических порохов (СФП). Способ получения сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата (ЭА) из сферического пороха с последующей промывкой, сортировкой и сушкой.

Изобретение относится к заряду для легкогазового оружия. Заряд представляет собой смесь азотосодержащих веществ: динитрамид аммония, нитрат аммония, нитрат бора или бериллия, пятиокись азота или шестиокись азота и тетраборана или боргидрида и гидрида металлов - бериллия, лития, алюминия, лития-алюминия или кремния.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения одноосновного сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание, отгонку этилацетата из пороховых элементов, последующую промывку, сортировку и сушку, при этом проводят трехкратную горячую промывку 1 мас.

Изобретение относится к азотсодержащим порохам, выделяющим газы с малым средним молекулярным весом, преимущественно водород и воду. Порох содержит связанный азот и мелкодисперсный бор или мелкодисперсные горючие соединения бора при определенном соотношении компонентов.
Изобретение относится к технологии изготовления мелко- и среднезерненых пироксилиновых порохов, а именно к вытеснению легколетучего (спиртоэфирного) растворителя из пороховых элементов.

Изобретение относится к области производства одно- и двухосновных сферических порохов, а также порохов пластинчатой формы, в частности изготовления пластинчатых порохов из некондиционной части производимых сферических порохов, которые могут быть использованы для снаряжения патронов к стрелковому вооружению.

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия, а именно к способу графитовки пороха. После сушки партию неграфитованного пороха загружают в герметичный полировальный барабан, представляющий собой медный вращающийся цилиндр.

Изобретение относится к производству материалов для жестких сгорающих картузов. Материал повышенной термостойкости жесткого сгорающего картуза содержит в качестве связующего поливинилацетат, в качестве армирующего компонента - волокна непластифицированной целлюлозы со степенью размола 42-48°ШР, взрывчатое вещество, такое как октоген, гексоген или тетрил, а также алюминий при соответствующем соотношении компонентов.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. При получении пороха высушенный графитованный сферический порох пневмотранспортом через циклон-осадитель подают на наклон для сухого рассева, представляющий собой набор сменных латунных сеток под заданную марку пороха, установленных на подрамнике под углом 20-30° относительно горизонтальной плоскости.

Изобретение относится к производству ракетной техники, а именно к изготовлению зарядов смесевого ракетного твердого топлива (СРТТ). Способ изготовления заряда смесевого ракетного твердого топлива включает последовательное механическое перемешивание окислителя и смеси горюче-связующего на основе полимера с пластификатором, металлическим горючим, технологическими добавками и порционный слив приготовленной топливной массы в корпус.

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия. Способ включает получение порохового лака, диспергирование его сферических частиц, обезвоживание и отгонку этилацетата из пороха с последующей промывкой, сортировкой водопроводной водой и сушкой.
Изобретение относится к технологии смесевых взрывчатых веществ (ВВ) и может быть использовано в детонирующих зарядах, воспламенителях, детонаторах и других взрывных устройствах.

Изобретение относится к производству водоустойчивых эмульсионных взрывчатых веществ. Технологическая линия производства эмульсии содержит последовательно сообщенные аппараты с весоизмерительным устройством, краны, эластичные компенсаторы, фильтры, насосы, проточные электронагреватели.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Способ включает загрузку пороховой массы в дисперсионную среду - воду, находящуюся в реакторе, заливку растворителя - этилацетата, приготовление порохового лака, диспергирование его на сферические элементы, обезвоживание их сернокислым натрием и отгонку растворителя из пороховых элементов путем конденсации паров этилацетата в холодильнике в трубном пространстве путем охлаждения их водопроводной водой, подаваемой в межтрубное пространство.

Изобретение относится к устройствам циклического измерения объемов сыпучего материала дозами, а более конкретно к автоматическим дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов сыпучего материала, независимо от способа его подачи из накопителя, и предназначен для автоматического объемного отмеривания доз пиротехнических составов для формирования пироэлементов.

Изобретение относится к способу получения зарядов взрывчатых веществ и может быть использовано для получения тонкослойных зарядов из ВВ для различных целей: систем передачи детонации, устройств взрывной логики и др.

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия, а именно к сушке пороха. Для сушки порох с влажностью 18-22 мас.% и графит через циклон-осадитель подают в непрерывно действующую стационарно установленную сушилку, в нижней части которой имеется короб, разделенный на три секции для подачи теплоносителя. Поверх короба во внутренней части сушилки устанавливают сетку для создания напора воздуха под сетками. По бокам короба устанавливают в вертикальной плоскости под углом стенки с вышибной поверхностью. В первой секции порох сушат при температуре воздуха 93±5°С, во второй секции при температуре 70±5°С, а в третьей - 50-60°С. Сушку проводят в режиме кипения. Высоту кипящего слоя пороха на сетке регулируют разделительными решетками. Кипящий слой на сетке двигают за счет разности подачи воздуха в секции короба. Общий цикл сушки 1,0-2,5 ч, производительность сушилки 200-300 кг/ч при влажности сухого пороха 0,3-0,9 мас.%. Способ обеспечивает безопасную и эффективную сушку пороха и получение пороха с заданными физико-химическими характеристиками с минимальными трудозатратами и энергозатратами. 1 ил., 1 табл., 5 пр.

Изобретение относится к получению сферических порохов для стрелкового оружия. При получении пороха в реактор заливают воду, загружают при перемешивании нитроцеллюлозу с содержанием оксида азота 212,7-214,0 мл NOг, до 30 мас. возвратно-технологических отходов после мокрой сортировки и от 3,0 до 5,0 мас. технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают дифениламин и проводят перемешивание. Затем заливают растворитель-этилацетат и ведут приготовление порохового лака. После ввода защитного коллоида - клея мездрового ведут дробление порохового лака на сферические частицы. Вводят сернокислый натрий и ведут отгонку этилацетата из пороховых элементов. Способ позволяет эффективно использовать крупную и мелкую фракции пороха в технологическом процессе и исключить утилизацию их методом сжигания и при этом обеспечивает стабильные физико-химические и баллистические характеристики в 7,62 мм спортивно-винтовочном патроне. 1 табл., 5 пр.

Наверх