Вибрационная измельчительная машина

Изобретение относится к вибрационной технике и может быть использовано для измельчения, помола кусковых и сыпучих материалов. Вибрационная измельчительная машина содержит рабочий орган, средствами для сообщения резонансных поступательных круговых колебаний которому является изотропная упругая подвеска в виде цилиндрических стержней, посредством которой он связан с неподвижным основанием, и роторно-маятниковый возбудитель, приводимый во вращение в вертикальной плоскости приводным валом. Резонансная настройка средств для сообщения резонансных поступательных круговых колебаний определяется из соотношения комбинационного параметрического резонанса ω=λ12, где ω - частота параметрического возбуждения (частота вращения роторно-маятникового возбудителя), λ1=νω - парциальная собственная частота качаний маятников, ν - безразмерный параметр, определяющий собственную частоту качаний маятников во вращающейся системе координат (0<ν<1), λ 2 = λ 2 x = λ 2 y = C / M 0 - парциальная собственная частота рабочего органа, соответствующая круговой форме колебаний, C=Cx=Cy - жесткость изотропной стержневой упругой подвески, M0 - масса рабочего органа машины. Использование изобретения позволит повысить качество измельчения сырья. 3 ил.

 

Изобретение относится к вибрационной технике и может быть использовано во всех отраслях промышленности для измельчения, помола кусковых и сыпучих материалов. Область применения предлагаемого изобретения весьма широка: производство строительных материалов, помол и активация низкомарочного цемента, производство тонкомолотых продуктов для стекольной и пищевой промышленности; производство шлифовальных порошков, получение тонкодисперсных, ультрадисперсных материалов и нанопорошков для обеспечения производства магнитореологических суспензий и т.п.

Общим названием вибрационная измельчительная машина (ВИМ) обозначает группу машин: вибрационные мельницы, вибрационные смесители, вибрационные измельчители и т.п.

В качестве привода ВИМ используют центробежные (дебалансные), кинематические, электромагнитные, электродинамические, гидравлические и пневматические вибровозбудители.

Современные ВИМ, как правило, работают в режиме вынужденных колебаний с далеко зарезонансной частотой. Такой режим сопровождается нерациональным энергопотреблением, что проводит к повышению уровня энергозатратности. Кроме этого, снижается надежность привода в результате действия больших инерционных сил. Настройка таких машин на резонансный (энергосберегающий) режим вынужденных колебаний не представляется возможной. Это объясняется крутизной амплитудно-частотной характеристики, малой величиной резонансной зоны, низкой стабильностью. Поэтому даже небольшие изменения технологической нагрузки выводят машину из резонансного режима.

Небольшое распространение в ВИМ получили электромагнитные вибровозбудители. Преимуществом таких приводов является простота настройки резонансного режима колебаний. Но ввиду малой возмущающей силы, развиваемой электромагнитными возбудителями, возникают сравнительно малые амплитуды колебаний, которые не способны осуществить технологический процесс измельчения [Вибрации в технике в 6 томах. Т.4. Вибрационные процессы. М.: Машиностроение, 1981. с. 258. Шишканов К.А., Дмитрак А.Ю. Анализ конструкций и основных характеристик вибрационных мельниц // Горный информационно-аналитический бюллетень (научно-технический журнал). 2011. №4, с. 324-328].

В настоящее время современные конструкции зарезонансных ВИМ имеют в своем составе дебалансные вибровозбудители, которые приводят в колебательное движение помольную камеру с технологической загрузкой [Лесин А.Д. Современное помольное оборудование. Вибрационные мельницы. Обзорная информация. Серия 7. Промышленность нерудных и неметаллорудных материалов. - М.: ВНИИЭСМ, 1989. с.43].

Недостатком такой конструкции является зарезонансная настройка высокой частоты и низкой амплитуды. Это приводит к высоким непроизводительным энергозатратам, низкой эффективности измельчения, снижению надежности привода. Для повышения эффективности измельчения необходимо увеличивать амплитуду колебаний и снижать их частоту для получения интенсивных разрушающих воздействий. Вопрос снижения энергозатратности решается на основе разработки резонансных машин. Повышение эффективности помола, надежности привода при одновременном снижении энергозатратности можно достичь путем использования параметрических вибровозбудителей, в которых реализуется комбинационный параметрический резонанс [Антипов В.И. Вибровозбудитель: Патент №2072661 РФ, МКИ В06В 1/16 // Бюл. №3, 1997. Антипов В.И., Денцов Н.Н., Кошелев А.В. Энергетические соотношения в вибрационной машине на многократном комбинационном параметрическом резонансе // Вестник Нижегородского государственного университета им. Н.И. Лобачевского. 2013. - №5. - С. 188-194] в совокупности с изотропной упругой подвеской [Антипов В.И., Денцов Н.Н., Кошелев А.В. Динамика параметрически возбуждаемой вибрационной машины с изотропной упругой системой // Фундаментальные исследования. 2014. - №8, часть 5. - С. 1037-1042].

В качестве прототипа принята вибромельница, содержащая пару цилиндрических помольных камеры с мелющими телами в корпусе, установленном на упругих опорах. Возбудителем колебаний зарезонансной частоты является дебалансный вибровозбудитель, установленный между помольными камерами [Патент №2302904 В02С 19/00, Бюл №20, 2007 г.].

Недостатками данного устройства являются:

• Зарезонансный режим работы сопровождается малой амплитудой колебаний, что не позволяет получить большие разрушающие воздействия. Вследствие этого повышается время технологического процесса и снижается производительность.

• Для достижения зарезонансной области необходимо иметь мощность двигателя, которая в 5 раз выше мощности, необходимой для поддержания зарезонансных колебаний.

• Возникающие большие центробежные силы, вследствие вращения дебалансов нагружают подшипники, что приводит к снижению их долговечности и повышению энергозатратности.

• Необходимость принимать во внимание перегрузки электродвигателя в пусковом режиме. Это вынуждает применять электродвигатели центробежных вибраторов, мощность которых в 1,5-2 раза выше необходимой в установившимся режиме.

• Наличие паразитных колебаний дестабилизирует рабочий режим и вызывает дополнительную диссипацию энергии.

Задачей изобретения является решение этих недостатков при одновременном повышении качественных и эксплуатационных показателей машины.

Техническим результатом изобретения является тонкое измельчение материалов повышенной производительности, уменьшение центробежных сил, уменьшение паразитных колебаний.

Технический результат заявляемой ВИМ достигается тем, что в вибрационной измельчительной машине, содержащей рабочий орган, средствами для сообщения резонансных поступательных круговых колебаний которого являются изотропная упругая подвеска в виде цилиндрических стержней, которой он связан с неподвижным основанием, и роторно-маятниковый возбудитель, приводимый во вращение в вертикальной плоскости приводным валом, а резонансная настройка средств для сообщения резонансных поступательных круговых колебаний определяется из соотношения комбинационного параметрического резонанса ω=λ12, где ω - частота параметрического возбуждения (частота вращения роторно-маятникового возбудителя), λ1=νω - парциальная собственная частота качаний маятников, ν - безразмерный параметр, определяющий собственную частоту качаний маятников во вращающейся системе координат (0<ν<1), λ 2 = λ 2 x = λ 2 y = C / M 0 - парциальная собственная частота рабочего органа, соответствующая круговой форме колебаний, C=Cx=Cy - жесткость изотропной стержневой упругой подвески, M0 - масса рабочего органа машины.

Схема вибрационной измельчительной машины изображена на фиг. 1, 2. Рабочий орган 1 опирается на неподвижное основание 2 посредством изотропной стержневой упругой системы 3 жесткостью C (фиг. 1). На рабочем органе закреплена пара цилиндрических помольных камер 4 с мелющими телами 5 сферической формы (шарами), между которыми установлен параметрический привод 6 (параметрический мотор-вибратор) для возбуждения и поддержания резонансных поступательных круговых колебаний. Он представляет собой электродвигатель, на валу которого установлен роторно-маятниковый возбудитель, плоскость вращения которого расположена в вертикальной плоскости.

Резонансные колебания на частоте λ2 принимаются за рабочие, соответствующие поступательным круговым колебаниям рабочего органа машины в двух взаимно перпендикулярных направлениях по осям Ox, Oy. Согласно постулату Видлера здесь предполагается, что форма стационарных резонансных колебаний совпадает с формой свободных колебаний.

На фиг. 2 показана схема роторно-маятникового возбудителя параметрического привода [Антипов В.И. Вибровозбудитель: Патент №2072661 РФ, МКИ В 06 В 1/16 // Бюл. №3, 1997]. Ротор параметрического привода может состоять из одного роторно-маятникового возбудителя, как это показано, или набора таких устройств. Кроме этого может использоваться более эффективная конструкция роторно-маятникового возбудителя [Антипов В.И. Вибровозбудитель: Патент №2072660 РФ, МКИ В 06 В 1/16 // Бюл. №3, 1997].

Уравновешенный диск 7 (фиг. 2) роторно-маятникового возбудителя имеет три периодически чередующиеся замкнутые беговые дорожки 8 круглого профиля, центры которых смещены от оси вращения диска на одинаковые расстояния AB=l. На беговых дорожках размещены одинаковые уравновешенные тела качения (маятники) 9 массой m каждый с возможностью обкатки. Роторно-маятниковый возбудитель содержит N=3 тел качений. Диск массой m0 в собранном виде жестко закрепляется на вал электродвигателя, который устанавливается на рабочем органе 1 массой M0, который имеет две степени свободы: поступательное движение x, y по круговой траектории в плоскости вращения ротора в направлении координатных осей Ox, Oy. Предпочтительнее считается конструкция измельчительной машины с вынесенным из колебательной системы электромотором.

Система координат A x y z с началом в центре масс роторно-маятникового возбудителя движется поступательно по круговой траектории относительно неподвижной системы O x y z . При этом плоскость A x y расположена в плоскости вращения ротора. В положении статического равновесия оси этих координатных систем совпадают. Ось z параллельна оси вращения диска.

Рассматриваются круговые колебания рабочего органа машины в направлении осей Ox, Oy. Такая форма траектории обеспечивается образованием изотропного упругого поля путем введения упругих элементов, имеющих одинаковую жесткость как минимум в двух взаимно перпендикулярных направлениях. Такая упругая система может быть выполнена в виде цилиндрических стержней из пружинно-рессорной стали, например штанг стабилизатора поперечной устойчивости подвески автомобиля.

Положение беговых дорожек определяется углами ψ k = ω t + 2 π k / N , (k=1,2,3; N=3 - число маятников), а положение маятников определяется углами φk=Akcos(ω1t+2πk/N) (k=1,2,3). Качания маятников на углы φk (k=1,2,3), а так же перемещения x, y рабочего органа составляют степени свободы рассматриваемой колебательной системы машины. Эти величины принимаются за обобщенные координаты системы. Таким образом, представленная механическая система машины имеет пять степеней свободы, которую можно рассматривать как систему, состоящую из двух подсистем.

Первая подсистема представляет собой рабочий орган, связанный с неподвижным основанием изотропной упругой подвеской. Вторая подсистема состоит из трех одинаковых маятников, находящихся в поле центробежных сил инерции, имеющие одинаковые парциальные собственные частоты λ1=νω во вращающейся системе координат Aξηζ. Здесь ν = m ρ c l / J B , с - статический момент маятников, J B = ( J C k + m r 2 ) i 2 момент инерции тела качения относительно оси обкатки, JCk - момент инерции тела качения относительно оси, проходящей через его центр масс, r - радиус цапфы тела качения, i = r / ρ c - передаточное отношение обкатки тела качения к беговой дорожке, l = АВ, ρc=BCk.

Устройство работает следующим образом. Энергия к колебательной системе вибрационной измельчительной машины подводится за счет равномерного вращения диска 7 роторно-маятникового возбудителя параметрического привода 1 с угловой скоростью ω. При настройке ν=0,25 и выполнении порогового условия ε > 4 n ˜ 0 n ˜ ν / ( 1 ν ) самовозбуждается многократный комбинационный параметрический резонанс, удовлетворяющий соотношению ω=ω12. Здесь ω1=νω≈λ1 - частота генерации осцилляторов роторно-маятникового возбудителя, которая близка к их собственной частоте качаний, ε = ν2Nμ /2 - коэффициент, пропорциональный отношению общей массы осцилляторов качения к массе всей системы, μ 0 = m ρ c / M 0 l , n ˜ 0 = n 0 / λ 2 , n ˜ = n / λ 2 относительные коэффициенты линейного демпфирования соответственно осцилляторов качения и массы M0.

Самосинхронизация колебаний маятников 9 (эффект Гюйгенса) приводит к образованию неуравновешенности («невидимого дебаланса»), вращающейся с частотой ω2≈λ2, которая близка к собственной частоте λ 2 = C / M 0 колебаний рабочего органа 2 и меньше частоты вращения диска на 25%. Поскольку ω2≈λ2, то центробежная сила инерции «невидимого дебаланса» возбуждает резонансные колебания корпуса измельчительной машины по круговой траектории, а колебания корпуса, в свою очередь, возбуждают ударные и пульсирующие движения мелющих тел 3 по внутренней поверхности помольной камеры 4. В результате этого происходит вовлечение тел системы в коллективное резонансное взаимодействие. Разрушение материала происходит в кольцевом зазоре между помольной камерой и указанными пульсирующими телами внутри помольной камеры. В результате достигается самоуправляемое, самоорганизованное и самоподдерживаемое собственное движение машины.

В настоящее время тенденциями развития ВИМ является снижение частоты колебаний при одновременном увеличении их амплитуды. Это объясняется наиболее эффективным способом измельчения, позволяющим реализовывать однократные, но мощные разрушающие воздействия на обрабатываемый материал. В предлагаемой машине такая проблема автоматически решается за счет оригинальной конструкции роторно-маятникового возбудителя, позволяющего снижать частоту рабочего органа машины на 25% при настройке ν=0,25 и на 50% при настройке ν=0,5 при одновременном увеличении его амплитуды за счет резонансного режима.

Существенным преимуществом использования роторно-маятникового возбудителя в вибрационных измельчительных машинах с круговым движением рабочего органа является порог возбуждения параметрических резонансных колебаний ε > 4 n ˜ 0 n ˜ ν / ( 1 ν ) . Его величина снижается в два раза по сравнению с использованием такого же возбудителя, но в вибрационных транспортирующих машинах, где необходимы однонаправленные колебания [Антипов В.И., Антипова Р.И., Кошелев А.В., Денцов Н.Н. Вибрационная транспортирующая машина. Патент №2532235 РФ, В06В, Бюл. №30, 2014 г.]. Такое обстоятельство позволяет снизить массу маятников ВИМ тоже в два раза, причем эффективность и интенсивность колебаний рабочего органа при этом не снизится. Это подтверждает целесообразное применение роторно-маятникового возбудителя в качестве вибрационного привода измельчительных машин с круговым движением рабочего органа.

Простота и надежность предлагаемой конструкции, малые габариты и вес, высокий КПД привода по сравнению с доминирующими на сегодняшний день виброприводами позволяют использовать предложенную вибрационную измельчительную машину в качестве лабораторной, стационарной или мобильной промышленной установки.

Данное изобретение разработано и создано по выше высказанным соображениям (фиг. 3). Его испытания, а также проводимые на нем эксперименты подтвердили надежную и стабильную работу.

Предложенная резонансная ВИМ обладает важными преимуществами и достоинствами.

1. Коэффициент полезного действия роторно-маятникового возбудителя выше аналогов на 25%. Чем выше КПД, тем ниже энергозатраты. Требуемая амплитуда колебаний достигается при минимальном статическом моменте, что создает минимальные нагрузки на подшипниковые узлы приводного вала. В результате этого повышается долговечность подшипников, их надежность и снижается расход энергии на преодоление трения. Кроме этого, рабочий резонансный режим работы ВИМ характеризуется высокой стабильностью, что недостижимо при использовании обычных центробежных вибровозбудителей.

2. Двигатель параметрического привода измельчительной машины, в отличие от кинематического или центробежного, в момент пуска преодолевает только момент сил трения в подшипниках, разгоняясь практически в режиме холостого хода, поэтому нет необходимости учитывать пусковые моменты двигателя, заботится о возможных перегрузках двигателя. Такое обстоятельство позволяет снизить установочную мощность двигателя параметрического вибропривода ВИМ более чем в два раза по сравнению с преобладающими на сегодняшний день центробежными (дебалансными) виброприводами.

3. Высокая интенсивность процесса измельчения материалов. Возможность возбуждения больших амплитуд колебаний при низких частотах позволяет получить большие разрушающие воздействия на обрабатываемый материал. Вследствие этого сокращается его время нахождения в помольной камере, что способствует повышению чистоты готового продукта и повышению производительности машины.

4. Наличие стержневой изотропной упругой подвески позволяет исключить влияние паразитных колебаний и получить необходимую форму колебаний рабочего органа машины. Это способствует повышению уровня энергосбережения и эффективности тонкого измельчения благодаря реализации совмещенных режимов - удара и истирания.

5. Удобство эксплуатации и обслуживания. Колебания рабочего органа возбуждаются только в резонансной области, вблизи его собственной частоты. Для того чтобы прекратить процесс измельчения, достаточно вывести машину из области параметрического резонанса увеличив или уменьшив скорость вращения диска роторно-маятникового возбудителя, а не выключать двигатель. В нерезонансной зоне параметрический привод не совершает колебаний, в то время как двигатель привода работает.

6. Отсутствие автоматических средств контроля резонансной частоты колебаний, средств редукторизации частоты колебаний рабочего органа, а также средств остановки двигателя. Это положительно сказывается на надежности, эффективности и стоимости машины.

Анализ показывает, что предлагаемое изобретение удовлетворяет предъявляемым к нему трем основным критериям - «новизна», «промышленная применимость» и «изобретательский уровень».

Вибрационная измельчительная машина, содержащая рабочий орган, в котором установлена пара цилиндрических помольных камер с мелющими телами сферической формы, отличающаяся тем, что устройством для возбуждения и поддержания устойчивых рабочих резонансных режимов колебаний рабочего органа по круговой траектории является параметрический резонансный роторно-маятниковый возбудитель, а изотропная упругая подвеска рабочего органа выполнена из цилиндрических стержней пружинно-рессорной стали, при этом необходимая форма колебаний рабочего органа достигается изотропной упругой подвеской, резонансная настройка которой определяется из соотношения комбинационного параметрического резонанса ω=λ12, где ω - частота параметрического возбуждения (частота вращения роторно-маятникового возбудителя), λ1=νω - парциальная собственная частота качаний маятников, ν - безразмерный параметр, определяющий собственную частоту качаний маятников во вращающейся системе координат (0<ν<1), λ 2 = λ 2 x = λ 2 y = C / M 0 - парциальная собственная частота рабочего органа, соответствующая круговой форме колебаний, C=Cx=Cy - жесткость изотропной стержневой упругой подвески, M0 - масса рабочего органа машины.



 

Похожие патенты:

Изобретение к устройствам для измельчения, в частности для тонкого измельчения порошкообразных твердых материалов, и может быть использовано в лакокрасочной, керамической, пищевой, химической, горнодобывающей и других отраслях промышленности.

Изобретение предназначено для переработки нерудного сырья при обогащении нерудных материалов, в гидрометаллургии, в нефтяной, горнодобывающей промышленности и других отраслях промышленности.

Группа изобретений относится к устройствам для измельчения зерна и способам измельчения на таких устройствах. Устройство и способ измельчения могут быть использованы в пищевой промышленности и кормоприготовительных цехах.

Изобретение относится к пищевому продукту из ядер кедровых орехов. Продукт содержит комплекс ненасыщенных жирных кислот, аминокислот, витаминов группы B1, B2 и представляет собой гомогенный пастообразный концентрат, полученный путем обработки ядер кедровых орехов в присутствии воды в соотношении ядра кедрового ореха : вода 1,0:0,5 в механоакустическом гомогенизаторе до достижения температуры продукта 60°C и дальнейшим охлаждением до минус 10°C либо минус 18°C.

Изобретение предназначено для тонкого измельчения твердых материалов в среде жидкого носителя, в частности в воде, фреоне или другой среде, в химической и других отраслях промышленности.

Изобретение относится к устройствам для тонкого измельчения материалов, предназначенным для использования в лабораторных условиях. Мельница содержит вертикально ориентированную помольную камеру в виде стакана 1 с конусной внутренней поверхностью.

Вихревой измельчитель относится к роторно-вихревым мельницам тонкого помола для каскадного измельчения твердых материалов. Измельчитель содержит вихревую помольную камеру (3) с глухим дном и диафрагмированной крышкой (10), раскручивающую камеру (2) и устройство для закрутки несущей среды и первоначального ускорения частиц.
Изобретение относится к способу дезинтеграции руд, горных пород и других твердых материалов в процессах подготовки минерального сырья к обогащению. Для дезинтеграции руды одновременно взрывают две и более части руды через воздушный промежуток.

Вихревая мельница предназначена для измельчения различных материалов в строительной, химической, горной и других отраслях промышленности. Мельница содержит ротор (9), статор (8) и мелющие элементы.

Изобретение относится к способу измельчения холодильных аппаратов. Холодильные аппараты (12) загружают в измельчительную камеру (16) через загрузочное отверстие (14) и непрерывно измельчают.

Изобретение относится к медицине. Описан способ обработки использованных абсорбирующих гигиенических изделий, содержащий этапы: создание цилиндрического роторного автоклава, имеющего внутреннюю поверхность и два конца, по меньшей мере, один из которых заканчивается люком, который может быть открыт для обеспечения доступа в упомянутый автоклав и герметично закрыт для обеспечения создания повышенного давления в упомянутом автоклаве; загрузка упомянутого автоклава абсорбирующими гигиеническими изделиями в закрытом виде; нагрев до температуры стерилизации и создание повышенного давления в автоклаве, приводя при этом автоклав во вращение вокруг его продольной оси; при этом упомянутый этап нагрева и создания повышенного давления в автоклаве предусматривает первый температурный режим для изделий, содержащихся в автоклаве, а также второй температурный режим, более высокий, чем первый температурный режим, для упомянутой внутренней поверхности. Способом достигается эффективная стерилизация и высушивание в процессе обработки в автоклаве. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к системе гидравлической дробилки с бесступенчатым авторегулированием хода для дробления коренных пород. Передатчик (100) снабжен датчиком (110) для обнаружения генерируемых во время работы долота вибраций. MCU (240) приемника (200) управляет дробилкой. Поршень (302) расположен в цилиндре (301) дробилки. Первая (302а) и вторая (302b) поверхности поршня направлены так, что приложенное давление действует в направлении обратного хода и рабочего хода соответственно. Кольцевая выемка (303) расположена между поверхностями поршня. В управляющем клапане (309) расположен управляющий плунжер (309а) с маленькой (309b) поверхностью для перемещения плунжера в положение обратного хода и большой (309с) поверхностью для перемещения плунжера в положение рабочего хода. Входная сторона клапана (319) хода через напорный трубопровод соединена с гидравлическим насосом (311) с помощью напорного трубопровода (321) управления ходом. Выходная сторона клапана хода соединена с переключающим трубопроводом (313) управляющего клапана через дополнительный трубопровод (322). Нижняя сторона клапана хода соединена с насосом через клапан (320) регулирования расхода. MCU управляет клапаном расхода. Пружина на верхней поверхности клапана хода обеспечивает возврат в исходное положение при изменении давления. По первому варианту напорный трубопровод (312) рабочего давления через первый выход соединен с цилиндром. Обратный трубопровод (317) пониженного давления через второй выход соединен с цилиндром. По второму варианту напорный трубопровод (312) рабочего давления через первый выход соединен с передней камерой (307) цилиндра. Трубопровод (318) переменного давления соединяет управляющий клапан (309) и через второй выход заднюю камеру (306) цилиндра. Переключающий трубопровод (313) соединяет большую поверхность плунжера и третий выход (313а) цилиндра. Третий выход расположен между первым и вторым выходами цилиндра. Обратный трубопровод (317) пониженного давления через четвертый выход соединен с цилиндром. Работу поршня на длинном ходу обеспечивает предоставление рабочего давления на большой поверхности плунжера через третий выход (313а) переключающего трубопровода (313), когда клапан (320) регулирования расхода закрыт, и клапан (319) хода отсоединяет напорный (321) управления ходом и дополнительный трубопроводы. Работу поршня на коротком ходу обеспечивает предоставление рабочего давления на большой поверхности плунжера через клапан (319) хода, когда клапан (320) регулирования расхода открыт, и клапан (319) хода соединяет напорный (321) управления ходом и дополнительный трубопроводы. Обеспечивается снижение энергии удара в случае холостого удара. 2 н. и 3 з.п. ф-лы, 7 ил.

Изобретение относится к способу дробления руды. Техническим результатом является повышение эффективности перепускных работ, увеличение степени дробления руды. В способе дробления руды с применением плиты, работающей в устойчивом режиме, выполняют дробильное устройство в виде плиты, установленной перед бункером, состоящей из составных элементов, например стальных блоков (кубов или коротких стержней), вмонтированных в стальную основу из ячеек, а масса металлической конструкции соразмерна величине ударных нагрузок (высоте падения кусков руды и их крупности), и работающих в динамическом режиме, причем для стабилизации работы дробильного устройства его помещают в сосуд наподобие ящика из блоков, на днище которого насыпается материал типа песка, что обеспечивает деформации дробильного устройства в виде плиты, в вертикальной плоскости (по вертикали), а металлический ящик монтируют на железобетонную или скальную основу, выполненную с наклоном 5-6° в сторону массива для исключения смещения в сторону бункера, и связывают тяжами и анкерами с боковым массивом для устойчивости, при этом ящик не имеет свободы смещения в горизонтальной плоскости также из-за блинообразной формы конструкции, причем в процессе работы разборная конструкция позволяет производить замену выбывших из-за употребления стальных кубов или стержней, сбор измельченного материала производят в бункер, наклон которого от вертикали изменяется в зависимости от энергетических нагрузок и высоты падающих кусков и составляет 45-50° для глубоких рудоспусков. 8 ил.

Изобретение относится к способу переработки и утилизации твердых бытовых отходов, включая радиоактивные и химические вещества без вредных выбросов в атмосферу с использованием сжиженного воздуха. На сжиженный воздух воздействуют ультразвуковыми колебаниями, насыщают нейтральными электростатическими образованиями в виде электрона, спаренного с положительно заряженной частицей, закручивают в вихре, разгоняют в электрическом поле, создаваемом первым кольцевым электродом с потенциалом 3,73 кВ, ускоряют в электрическом поле второго кольцевого электрода с потенциалом не менее 60 кВ, до скорости более 340 м/с, вонзают в мелкораспыленном виде в твердые бытовые отходы с естественной температурой и влажностью, с последующим откачиванием разорвавшихся отходов всасывающей турбиной и последующую электрическую фильтрацию и окончательную магнитную и гравитационную сепарациию размолотых отходов. Устройство для переработки и утилизации твердых бытовых отходов, включая радиоактивные и химические отравляющие вещества, включает утилизационную камеру со шнековой подачей, с внутренней спиралью, вибрационный изолированный лоток, систему внедрения сжиженного, предварительно активированного в возбужденно- колебательном состоянии распыленного воздуха во внутрь ТБО, самовсасывающую турбину системы откачки пылевидных отходов, систему дополнительного охлаждения неразорвавшихся крупных фракций ТБО до хрупкого состояния и окончательного размалывания, систему электрической фильтрации засасываемого воздуха, систему предотвращения вспышки пылевидных отходов, систему сжижения воздуха, состоящую из последовательно подключенных детандеров с обратным параллельным потоком сжиженного воздуха, систему извлечения водорода и попутных газов из сжиженного воздуха в ратификационной колонне, систему выработки электрической энергии для автономной работы утилизационной установки на основе водородного топлива и плоских бифилярных катушек типа катушки Тесла. Использование данной группы изобретений позволяет осуществить низкотемпературную переработку твердых бытовых отходов в автономном режиме без вредных выбросов в атмосферу при минимальном использовании сжиженного воздуха. 2 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к центробежному устройству для смешивания и измельчения порошковых материалов. Устройство содержит корпус, привод с валом, крышку, открытую рабочую емкость с дном, установленную на валу и выполненную с возможностью вращения, колпак с вогнутой рабочей поверхностью, закрепленным на нем броневым листом и защитным кольцом, закрепленным на его торце. В колпаке выполнено три канала для подачи обрабатываемого материала, подачи сжатого газа и отвода пылегазовой смеси. В рабочей емкости расположено вогнутое днище с торцом с образованием полости между ним и дном рабочей емкости. В крышке установлена с возможностью вращения ось, в которой выполнены по меньшей мере три канала. Колпак закреплен на оси и расположен внутри рабочей емкости. Торец колпака и торец днища образуют кольцевой щелевой зазор. В результате снижается износ рабочих поверхностей центробежного устройства. 22 з.п. ф-лы, 17 ил.

Изобретение относится к устройствам смешивания сыпучих материалов. Устройство содержит корпус, вращающуюся ось, цилиндрическую рабочую емкость, установленную на подшипниках в корпусе, кронштейны с лопатками, установленные на оси, и диски. С одной стороны рабочей емкости установлено загрузочное устройство для загрузки сыпучих материалов, а с другой стороны – устройство для выгрузки сыпучих материалов. Диски закреплены внутри рабочей емкости и разделяют ее на камеры, в которых расположены упомянутые кронштейны с лопатками. Каждый диск выполнен с центральным сквозным отверстием и ободом и установлен с образованием кольцевого зазора между его ободом и внутренней поверхностью рабочей емкости. В результате обеспечивается возможность регулирования времени обработки на каждом этапе приготовления смеси и снижаются энергозатраты при смешивании. 18 з.п. ф-лы, 14 ил.
Изобретение относится к получению минерального наполнителя, применяемого в полимерных композициях, производстве бумаги, строительстве, косметике и других областях. Способ включает стадию сухого размола содержащего карбонат кальция материала с по меньшей мере одним агентом измельчения, выбранным из сополимеров стирола с малеиновым ангидридом и/или производных сополимеров стирола с малеиновым ангидридом. Заявленный способ позволяет получать минеральный наполнитель с высокой производительностью и высокой эффективностью размола. 4 н. и 11 з.п. ф-лы, 3 табл.

Изобретение относится к вибрационной технике и может быть использовано для измельчения, помола кусковых и сыпучих материалов. Вибрационная измельчительная машина содержит рабочий орган, средствами для сообщения резонансных поступательных круговых колебаний которому является изотропная упругая подвеска в виде цилиндрических стержней, посредством которой он связан с неподвижным основанием, и роторно-маятниковый возбудитель, приводимый во вращение в вертикальной плоскости приводным валом. Резонансная настройка средств для сообщения резонансных поступательных круговых колебаний определяется из соотношения комбинационного параметрического резонанса ωλ1+λ2, где ω - частота параметрического возбуждения, λ1νω - парциальная собственная частота качаний маятников, ν - безразмерный параметр, определяющий собственную частоту качаний маятников во вращающейся системе координат, λ2λ2xλ2yCM0 - парциальная собственная частота рабочего органа, соответствующая круговой форме колебаний, CCxCy - жесткость изотропной стержневой упругой подвески, M0 - масса рабочего органа машины. Использование изобретения позволит повысить качество измельчения сырья. 3 ил.

Наверх