Светодиодная матрица


 

H01L33/56 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2612736:

Иванов Александр Владленович (RU)
Щербаковский Григорий Зиновьевич (RU)
Гвичия Гиа Маргович (RU)
Цискаришвили Давид Элизбарович (RU)

Светодиодная матрица относится к области информационной техники и может быть использована при построении крупногабаритных матричных экранов и иных средств отображения визуальной информации. Cветодиодная матрица содержит светоизлучающие кристаллы различных цветов, установленные непосредственно на проводники печатной платы таким образом, чтобы сформировать равномерно расположенные группы кристаллов различного цвета - пикселы, при этом по всей площади печатной платы сформировано защитное покрытие, однородное по всей площади, из эластичного светопрозрачного эпоксидного компаунда, полностью закрывающее все светоизлучающие кристаллы. Изобретение обеспечивает устранение искажений отображаемой визуальной информации и необходимую контрастность, а также высокоэффективный теплоотвод энергии от кристалла, что существенно продлевает срок эксплуатации светодиодной матрицы. 1 ил.

 

Изобретение относится к области информационной техники и может быть использовано при построении крупногабаритных матричных экранов и иных средств отображения визуальной информации.

Одним из требований к светодиодным матрицам является их надежность в эксплуатации, защищенность от механических повреждений при сохранении требуемых характеристик.

Известен светодиодный модуль (RU 67340), содержащий полупроводниковый светоизлучающий кристалл, помещенный в расположенном в металлокерамическом корпусе-отражателе, имеющем наклонные стенки, при этом полость отражателя заполнена оптически прозрачным компаундом.

Однако это покрытие для защиты кристалла от механических повреждений не обеспечивает требуемых оптических характеристик за счет невозможности получения равномерного светового излучения.

Известен светодиодный модуль (RU 2069418). Он содержит несущий элемент-подложку, имеющую верхнее и нижнее основания и боковую поверхность. На верхнем основании подложки помещен, по меньшей мере, один полупроводниковый светоизлучающий элемент, поверх которого нанесено покрытие, выполненное из оптически прозрачного эпоксидного полимерного компаунда.

Это покрытие защищает светоизлучающий элемент от механических повреждений. Однако в конкретном данном случае покрытие обладает хрупкостью и недостаточной устойчивостью к воздействию тепла и света, что снижает надежность конструкции.

Известен светодиодный модуль (RU 2402110). Он содержит несущий элемент, выполненный в виде объемного тела, имеющего верхнее и нижнее основания и боковую поверхность. На верхнем основании несущего элемента расположен, по меньшей мере, один полупроводниковый светоизлучающий элемент. Поверх полупроводникового светоизлучающего элемента расположено покрытие, выполненное из оптически прозрачного силиконового компаунда. Покрытие имеет куполообразную форму, при этом основание покрытия вписано в площадь верхнего основания несущего элемента. Угол между боковой поверхностью несущего элемента и его верхним основанием составляет величину не более 120°. Покрытие сформировано путем нанесения поверх полупроводникового светоизлучающего элемента капли указанного компаунда, который имеет вязкость от 2000 до 20000 сП, с последующим отверждением нанесенного компаунда.

Известно изобретение по патенту «Светодиодная матрица» (CN 203746366 U от 19.02.2014), который содержит печатную плату, ряд светоизлучающих чипов, установленных на плату с шагом менее 0,7 мм.

Недостатками изобретения являются недостаточная надежность и механическая прочность при эксплуатации.

Задачей заявляемого изобретения является создание светодиодной матрицы без ограничения на плотность установки светоизлучающих кристаллов при существенном улучшении качества отображения видеоинформации и повышение эффективности светоотдачи матрицы.

Технический результат при использовании изобретения состоит в устранении искажений отображаемой визуальной информации и обеспечении необходимой контрастности, а также обеспечении высокоэффективного теплоотвода энергии от кристалла, что существенно продлевает срок эксплуатации светодиодной матрицы.

Указанный технический результат достигается тем, что светодиодная матрица содержит светоизлучающие кристаллы различных цветов, установленные непосредственно на проводники печатной платы таким образом, чтобы сформировать равномерно расположенные группы кристаллов различного цвета - пикселы (элементы отображения информации), при этом по всей площади печатной платы сформировано защитное покрытие, однородное по всей площади, из эластичного светопрозрачного эпоксидного компаунда, полностью закрывающее все светоизлучающие кристаллы.

Такое выполнение светодиодной матрицы позволяет получить однородную по всей структуре поверхность, полностью скрывающую расположенные на ней светоизлучающие кристаллы, что обеспечивает существенное повышение надежности, а также необходимую контрастность отображения видеоинформации. Новая совокупность существенных признаков необходима и достаточна для достижения указанного технического результата.

Формирование диффузной поверхности светодиодной матрицы, образующей однородную поверхность со светоизлучающими кристаллами, препятствует образованию бликов от внешних источников света и повышает уровень контрастности, необходимый для правильного отображения видеоинформации.

Использование бескорпусных светоизлучающих кристаллов приводит к отсутствию искажений, появляющихся при перекрывании светового потока от диода корпусом соседнего диода, и повышению световой эффективности за счет отсутствия переотражения световых лучей на границе двух сред - компаунда корпуса светодиода и защитного компаунда матрицы и упрощает производственный процесс за счет отсутствия процесса пайки, что приводит к замедлению диффузных процессов в областях PN перехода светоизлучающего кристалла.

Сущность изобретения поясняется фиг. 1, где представлен общий вид матрицы с расположенными на ней светоизлучающими кристаллами.

Светодиодная матрица содержит светоизлучающие кристаллы 1 различных цветов, установленные непосредственно на проводники 2 печатной платы 3, защитное покрытие 4.

Устройство работает следующим образом.

Светодиодные матрицы собраны в видеоэкран, который подключают к цепи внешнего питания. Для получения видеоизображения покрытие выполнено из эластичного светопрозрачного эпоксидного компаунда. Защитное покрытие полностью закрывает все светоизлучающие кристаллы.

Использование изобретения позволит снять ограничение на плотность установки светоизлучающих кристаллов по сравнению с корпусированными светодиодами в связи со сравнительно меньшими размерами кристаллов (около 10 раз) получить повышение надежности от механических повреждений и повысить степень защиты от электростатических повреждений светоизлучающего кристалла. А также обеспечить теплоперенос и стабилизацию температуры кристаллов за счет прямого контакта компонента со светоизлучающим кристаллом, что увеличивает в 3-5 раз время эксплуатации видеоэкрана.

Светодиодная матрица, характеризующаяся тем, что она содержит светоизлучающие кристаллы различных цветов, установленные непосредственно на проводники печатной платы таким образом, чтобы сформировать равномерно расположенные группы кристаллов различного цвета - пикселы (элементы отображения информации), при этом по всей площади печатной платы сформировано защитное покрытие, однородное по всей площади, из эластичного светопрозрачного эпоксидного компаунда, полностью закрывающее все светоизлучающие кристаллы.



 

Похожие патенты:

Изобретение относится к люминофору, содержащему М2АХ6, легированному четырехвалентным марганцем. При этом М включает одновалентные катионы, по меньшей мере включая калий и рубидий, причем А включает четырехвалентный катион, по меньшей мере включая кремний, причем Х включает одновалентный анион, по меньшей мере включая фтор, и причем М2АХ6 имеет гексагональную фазу.

Изобретение относится к осветительному устройству, содержащему преобразователь цвета. Осветительное устройство содержит по меньшей мере один светодиод и по меньшей мере один преобразователь цвета.

Изобретение относится к области светотехники, в частности к изготовлению светодиодной полосы, включающей светодиодный чип, встроенный резистор, магнит, инкапсуляционную скобу полосы и источник питания.

Структура светоизлучающего устройства содержит опорную подложку, содержащую тело и множество сквозных отверстий, проходящих через всю толщину тела; и полупроводниковое светоизлучающее устройство, содержащее светоизлучающий слой, размещенный между областью n-типа и областью p-типа, причем полупроводниковое светоизлучающее устройство присоединено к опорной подложке посредством диэлектрического соединяющего слоя; при этом опорная подложка является не более широкой, чем полупроводниковое светоизлучающее устройство, и при этом соединяющий слой является первым соединяющим слоем, образованным на полупроводниковом светоизлучающем устройстве, при этом упомянутая структура дополнительно содержит второй соединяющий слой, образованный на опорной подложке.

В оптической подложке вогнуто-выпуклая структура включает в себя множество выпуклых участков и вогнутых участков, обеспечиваемых между выпуклыми участками. При этом средний интервал Pave между смежными выпуклыми участками в вогнуто-выпуклой структуре удовлетворяет условию 50 нм ≤ Pave ≤ 1500 нм и выпуклый участок, имеющий высоту hn выпуклой части, удовлетворяющую условию 0,6 h≥hn≥0 h для средней высоты Have выпуклого участка, присутствует с вероятностью Z, удовлетворяющей 1/10000≤Z≤1/5.

Изобретение относится к светотехнике и может быть использовано для упрощения конструкций, повышения выхода излучения и улучшения спектра излучения источника света на основе светодиодов.

Изобретение относится к оптоэлектронной технике, а именно к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного (ИК) излучения при комнатной температуре.

Лазерный элемент поверхностного испускания включает в себя полупроводниковую подложку и множество лазеров поверхностного испускания, сконфигурированных с возможностью испускания света со взаимно различными длинами волн.

Способ изготовления светоизлучающих устройств содержит этапы, на которых обеспечивают выводную рамку, которая включает в себя по меньшей мере один несущий элемент, причем несущий элемент является токопроводящим и разделен для образования множества различимых токопроводящих областей, размещают по меньшей мере один кристалл СИД на несущем элементе, прикрепляют кристалл СИД к каждой из токопроводящих областей и отделяют несущий элемент от выводной рамки для обеспечения СИД устройства с каждой из токопроводящих областей, электрически изолированных друг от друга, причем токопроводящие области прикреплены к кристаллу СИД и не прикреплены друг к другу после отделения несущего элемента от выводной рамки.

Изобретение относится к способу обеспечения отражающего покрытия (114) для подложки (104) для светоизлучающего устройства (112), предусматривающему стадии: обеспечения (201) подложки (104), имеющей первую часть поверхности (116) с первым материалом поверхности и вторую часть поверхности (106, 108) со вторым материалом поверхности, отличающимся от первого материала поверхности; нанесения (202) отражающего соединения, выполненного с возможностью присоединения к указанному первому материалу поверхности с образованием связи с этой подложкой (104) в первой части поверхности (116), которая является более сильной, чем связь между отражающим покрытием и подложкой (104) во второй части поверхности (106, 108); отверждения указанного отражающего соединения с образованием отражающего покрытия (114), имеющего связь между отражающим покрытием (114) и подложкой (104) в первой части поверхности (116); и подвергания указанной подложки (104) механической обработке с такой интенсивностью, чтобы удалить указанное отражающее покрытие (114) из указанной второй части поверхности (106, 108), в то время как указанное отражающее покрытие (114) остается на указанной первой части поверхности (116).

Изобретение относится к красному люминесцентному материалу и содержащему его осветительному устройству. Осветительное устройство включает световой источник, выполненный с возможностью генерировать свет светового источника, и люминесцентный материал в форме частиц, выполненный с возможностью преобразовывать по меньшей мере часть света светового источника в свет люминесцентного материала. Световой источник содержит светоизлучающий диод (СИД). Люминесцентный материал в форме частиц содержит частицы, содержащие сердцевины. Указанные сердцевины содержат люминофор, содержащий M’xM2-2xAX6, легированный четырехвалентным марганцем, где M’ - щелочноземельный катион, M - щелочной катион, x - 0-1, A - четырехвалентный катион, по меньшей мере содержащий кремний, X - моновалентный анион, по меньшей мере содержащий фтор. Причем частицы дополнительно содержат покрытие на основе фосфата металла, где металл выбран из группы, состоящей из Ti, Si и Al. Описывается способ получения этого люминесцентного материала. Предложенный люминесцентный материал обеспечивает повышенную долговременную стабильность в воде и влажном воздухе при эффективном поглощении в синей области и преобразовании поглощенного света в красный цвет. 3 н. и 12 з. п. ф-лы, 7 ил., 1 табл., 1 пр.

Способ изготовления эпитаксиальной структуры включает в себя обеспечение подложки и гетеропереходного пакета на первой стороне подложки и формирование пакета светоизлучающего диода на GaN на второй стороне подложки. Гетеропереходный пакет включает в себя нелегированный слой нитрида галлия (GaN) и легированный слой нитрида алюминия-галлия (AlGaN) на нелегированном слое GaN. Пакет светоизлучающего диода на GaN включает в себя слой GaN n-типа поверх подложки, структуру на GaN/нитриде индия-галлия (InGaN) с множественными квантовыми ямами (МКЯ) поверх слоя GaN n-типа, слой AlGaN p-типа поверх структуры на GaN/InGaN n-типа с МКЯ и слой GaN p-типа поверх слоя AlGaN p-типа. Гетеропереходный пакет содержит один или более приборов, связанных с пакетом светоизлучающего диода, причем эти один или более приборов включают в себя один или более из полевого транзистора на гетеропереходе (HTEF) AlGaN/GaN и диода Шоттки на AlGaN/GaN, при этом по меньшей мере один из этих приборов соединен с пакетом светоизлучающего диода на GaN. 2 н. и 13 з.п. ф-лы, 7 ил.
Наверх