Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел



Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел
Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел

 


Владельцы патента RU 2619118:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") (RU)

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров оксикарбоновых кислот (гликолевой, винной, молочной, лимонной) и моноэтаноламидов жирных кислот растительных масел формулы (I), где R1 - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового масел); R2 - H, СН2СООН; R3 - H, CH3, СН(ОН)СООН, СН2СООН, которые проявляют свойства загустителей, и могут найти применение в композициях косметических и моющих средств. Способ осуществляют взаимодействием смеси моноэтаноламидов жирных кислот растительных масел формулы RCONH(CH2)2OH, где R - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, и оксикислоты, выбранной из гликолевой, молочной, винной или лимонной, при мольном соотношении реагентов моноэтаноламиды жирных кислот : оксикислота = 1:1,1. Смесь моноэтаноламидов и оксикислоты выдерживают в уксусной кислоте при 120°C в течение 4 часов с последующим удалением растворителя при 95°C в течение 4 часов и промыванием продукта горячей водой. Технический результат – получение сложных эфиров оксикарбоновых кислот и моноэтаноламидов жирных кислот растительных масел простым и технологичным способом из смеси моноэтаноламидов жирных кислот растительных масел и оксикарбоновых кислот при использовании уксусной кислоты в качестве растворителя и без использования катализаторов. 1 табл., 11 пр.

 

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения сложных эфиров оксикислот (гликолевой, винной, молочной, лимонной) и моноэтаноламидов жирных кислот растительных масел (подсолнечного, пальмового, кокосового), которые проявляют свойства загустителей и могут найти применение в композициях косметических и моющих средств.

На основе оксикислот получают различные классы поверхностно-активных веществ, используемых во многих отраслях промышленности в качестве эффективных эмульгаторов, загустителей, пластификаторов и структурообразователей.

Эфиры оксикислот и жирных спиртов обладают антимикробными свойствами и находят применение в качестве эмульгаторов и пластификаторов [МХ2007010908 (2007 г.)]. Такие эфиры могут быть получены непосредственным взаимодействием спирта и кислоты в присутствии кислотных катализаторов [CN 101830803 (2010 г.), CN 102417453 (2012 г.), CN 102503824 (2014 г.)] или из амидов оксикислот [JP 2000169432 (2000 г.), RU 2533117 (2013 г.)].

Соли сложных эфиров жирных кислот и оксикислот используются как эмульгаторы в пищевой и косметической промышленности. Примером эффективного компонента кондиционеров для волос является натриевая соль лактата 2-гептилундекановой кислоты, полученная по реакции 2-гептилундекановой кислоты с молочной кислотой в присутствии гидроксида натрия [US 4846991 (1989 г.), EP 0278370 (1989 г.)].

Типичные способы получения солей сложных эфиров жирных кислот и оксикислот включают процесс прямой этерификации жирной кислоты оксикислотой при температуре от 100°C до 250°C в присутствии щелочного катализатора [US 2733252 (1956 г.)], взаимодействие оксикислоты с хлорангидридами жирных кислот [US 2789992 (1957 г.)].

Наиболее эффективный способ получения данного класса ПАВ включает реакцию метиловых или этиловых эфиров жирных кислот с солями щелочных или щелочноземельных металлов гидроксикарбоновых кислот в органическом растворителе в присутствии неионного или анионного поверхностно-активного вещества и щелочного катализатора [ЕР 0779266 (1997 г.)]. Найден упрощенный метод синтеза эфиров жирных кислот и гидроксикислот на основе реакции переэтерификации солей гидроксикислот с эфирами жирных кислот низкомолекулярных спиртов без использования органических растворителей и добавления анионных ПАВ [WO 2013189853 (2013 г.), US 20150141683 (2015 г.)].

Известно, что эфиры оксикислот, в частности лимонной кислоты, частично замещенных глицеридов жирных кислот находят применение в пищевой промышленности. Они используются как стабилизаторы в водно-эмульсионных и жиросодержащих продуктах, действуют как синергетические агенты антиоксидантов. Известны способы получения эфиров оксикислот и моноглицеридов [US 2938027 (1957 невзаимодействием винной или лимонной кислоты с моноглицеридами. К недостаткам данного метода можно отнести предварительное получение ангидридов оксикислот действием избытка уксусного ангидрида, проведение реакции в вакууме.

Способ получения эфиров оксикислот и моно- и диглицеридов по международной заявке [WO 2014167069 (2014 г.)] основан на взаимодействии триглицеридов натуральных масел с солью гидроксикарбоновой кислоты без органических растворителей при температуре от 150 до 220°С в присутствии щелочного катализатора. К недостаткам данного метода можно отнести получение смеси продуктов, в том числе моно- и диглицеридов, глицерина, эфиров оксикислот, проведение реакции при высоких температурах и в присутствии катализатора.

Также известен наиболее близкий по решаемой задаче способ получения эфиров лимонной кислоты и глицеридов жирных кислот, обладающих эмульгирующими свойствами [US 4071544 (1978 г.)], взаимодействием лимонной кислоты и смеси моноглицеридов стеариновой и пальмитиновой кислот, который выбран в качестве прототипа. Способ основан на нагревании моноглицеридов и лимонной кислоты в различных соотношениях в уксусной кислоте при пониженном давлении. К недостаткам данного метода можно отнести проведение реакции при пониженном давлении, необходимость постоянного контроля за удалением уксусной кислоты.

Задачей настоящего изобретения является разработка способа получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел формулы I, позволяющего осуществить синтез целевых продуктов из смеси моноэтаноламидов жирных кислот природного происхождения (в том числе жирных кислот подсолнечного, пальмового и кокосового масел) и оксикислот (гликолевой, молочной, винной или лимонной).

где R1 - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового масел);

R2 - H, СН2СООН;

R3 - Н, СН3, СН(ОН)СООН, CH2COOH

Технический результат заключается в получении сложных эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел простым и технологичным способом из смеси моноэтаноламидов жирных кислот растительных масел и оксикарбоновых кислот при нагревании в уксусной кислоте при нормальном давлении без использования катализаторов.

Технический результат достигается взаимодействием смеси моноэтаноламидов жирных кислот растительных масел формулы RCONH(CH2)2OH, где R - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, и оксикислоты, выбранной из гликолевой, молочной, винной или лимонной, при мольном соотношении реагентов моноэтаноламиды жирных кислот : оксикислота = 1:1,1, с выдерживанием смеси моноэтаноламидов и оксикислоты в уксусной кислоте при 120°C в течение 4 часов, последующим удалением растворителя при 95°С в течение 4 часов и промыванием продукта горячей водой.

Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел осуществляют следующим образом.

Синтез моноэтаноламидов жирных кислот растительного (подсолнечного, пальмового и кокосового) масла осуществляют путем взаимодействия смеси метиловых эфиров жирных кислот с эквимолярным количеством моноэтаноламина при температуре 80°С, вакууме 20 мбар в течение 1-2-х часов с использованием щелочного катализа.

Синтез эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел осуществляют кипячением гидроксикарбоновой кислоты и моноэтаноламидов при мольном соотношении моноэтаноламид : оксикислота = 1:1,1 в уксусной кислоте в течение 4 часов, последующим удалением растворителя при 95°С в течение 4 часов и промыванием продукта горячей водой. Процесс проводят по следующей схеме:

Ниже представлены конкретные примеры осуществления предлагаемого изобретения.

ПРИМЕР 1.

Синтез эфиров гликолевой кислоты и моноэтаноламидов жирных кислот подсолнечного масла:

Смесь 0,1 моль (32,1 г) моноэтаноламидов жирных кислот подсолнечного масла и 0,11 моль (8,36 г) гликолевой кислоты в 30 мл уксусной кислоты нагревают при перемешивании (200 об/мин) до 120°С и выдерживают в течение 4-х часов. Растворитель удаляют на роторном испарителе при температуре 95°С в течение 4 часов. Продукт дважды промывают нагретой до 90°С водой (50 мл).

ПРИМЕР 2.

Синтез эфиров гликолевой кислоты и моноэтаноламидов жирных кислот пальмового масла проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С8-С18) пальмового масла.

ПРИМЕР 3.

Синтез эфиров гликолевой кислоты и моноэтаноламидов жирных кислот кокосового масла проводят согласно способу, описанному в примере 1, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 4.

Синтез эфиров молочной кислоты и моноэтаноламидов жирных кислот подсолнечного масла.

Смесь 0,1 моль (32,1 г) моноэтаноламидов жирных кислот подсолнечного масла и 0,11 моль (9,9 г) молочной кислоты в 30 мл уксусной кислоты нагревают при перемешивании (200 об/мин) до 120°С и выдерживают в течение 4-х часов. Растворитель удаляют на роторном испарителе при температуре 95°С в течение 4 часов. Продукт дважды промывают нагретой до 90°С водой (50 мл).

ПРИМЕР 5.

Синтез эфиров молочной кислоты и моноэтаноламидов жирных кислот пальмового масла, проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С8-С18) пальмового масла.

ПРИМЕР 6.

Синтез эфиров молочной кислоты и моноэтаноламидов жирных кислот кокосового масла, проводят согласно способу, описанному в примере 4, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 7.

Синтез эфиров винной кислоты и моноэтаноламидов жирных кислот подсолнечного масла:

Смесь 0,1 моль (32,1 г) моноэтаноламидов жирных кислот подсолнечного масла, и 0,11 моль (16,5 г) винной кислоты в 30 мл уксусной кислоты, нагревают при перемешивании (200 об/мин) до 120°С и выдерживают в течение 4-х часов. Растворитель удаляют на роторном испарителе при температуре 95°С в течение 4 часов. Продукт дважды промывают нагретой до 90°С водой (50 мл).

ПРИМЕР 8.

Синтез эфиров винной кислоты и моноэтаноламидов жирных кислот пальмового масла проводят согласно способу, описанному в примере 7, где R1 - углеводородные фрагменты жирных кислот (С8-С18) пальмового масла.

ПРИМЕР 9.

Синтез эфиров винной кислоты и моноэтаноламидов жирных кислот кокосового масла проводят согласно способу, описанному в примере 7, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

ПРИМЕР 10.

Синтез эфиров лимонной кислоты и моноэтаноламидов жирных кислот подсолнечного масла.

Смесь 0,1 моль (32,1 г) моноэтаноламидов жирных кислот подсолнечного масла и 0,11 моль (21,1 г) лимонной кислоты в 30 мл уксусной кислоты нагревают при перемешивании (200 об/мин) до 120°С и выдерживают в течение 4-х часов. Растворитель удаляют на роторном испарителе при температуре 95°С в течение 4 часов. Продукт дважды промывают нагретой до 90°С водой (50 мл).

ПРИМЕР 11.

Синтез эфиров лимонной кислоты и моноэтаноламидов жирных кислот кокосового масла проводят согласно способу, описанному в примере 10, где R1 - углеводородные фрагменты жирных кислот (С6-С18) кокосового масла.

Результаты анализа физико-химических свойств эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел, полученных в примерах 1-11, приведены в таблице.

Способ получения эфиров оксикислот и моноэтаноламидов жирных кислот растительных масел формулы

где R1 - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового масел);

R2 - H, СН2СООН;

R3 - H, CH3, СН(ОН)СООН, СН2СООН,

характеризующийся тем, что осуществляют взаимодействием смеси моноэтаноламидов жирных кислот растительных масел формулы RCONH(CH2)2OH, где R - остатки жирных кислот растительных масел (подсолнечного, пальмового и кокосового), содержащие от 6 до 22 атомов углерода и до 3 двойных связей, и оксикислоты, выбранной из гликолевой, молочной, винной или лимонной, при мольном соотношении реагентов моноэтаноламиды жирных кислот : оксикислота = 1:1,1, с выдерживанием смеси моноэтаноламидов и оксикислоты в уксусной кислоте при 120°C в течение 4 часов, последующим удалением растворителя при 95°C в течение 4 часов и промыванием продукта горячей водой.



 

Похожие патенты:

Изобретение относится к соединению формулы I, где R1 обозначает -OR7; R2a выбран из -СН2ОН, -СН2ОР(O)(ОН)2 и -СН2ОС(О)СН(R37)NH2; или R2a вместе с R7 образует -CH2O-CR18R19-; R2b выбран из Н и -СН3; Z обозначает -СН-; X выбран из пиразола, имидазола, триазола, бензотриазола, оксазола, изоксазола, пиримидина, пиридазина, бензимидазола, пирана и триазоло[4,5-b]пиридина; R3 отсутствует или выбран из Н; галогена; -С0-5алкилен-ОН; -C1-6алкила; -C(O)R20; -С0-1алкилен-COOR21; -С(О)NR22R23; =O; фенила, в случае необходимости замещенного одной или двумя группами, независимо выбранными из галогена; и пиридинила; R4 отсутствует или выбран из Н; -ОН; галогена; -C1-6алкила; -CH2OC(O)CH(R36)NH2; -СН[СН(СН3)2]-NHC(О)O-C1-6алкила; и фенила или бензила; а=0; b=0 или целое число от 1 до 3; каждый R6 независимо выбран из галогена; R7 выбран из Н, -С1-8алкила, -C1-3алкилен-С6-10арила, [(СН2)2О]1-3СН3, -C1-6алкилен-ОС(О)R10, -С1-6алкилен-NR12R13, -C1-6алкилен-С(О)R31, -С0-6алкиленморфолинила, -С1-6алкилен-SO2-С1-6алкила; структурных формул (а1), (а2), (а3) и (а4); R10 выбран из -C1-6алкила, -O-C1-6алкила, -С3-7циклоалкила, -О-С3-7циклоалкила и -СН[СН(СН3)2]-NH2; и R12 и R13 независимо выбраны из Н, -C1-6алкила и бензила, или R12 и R13 вместе образуют -(CH2)5- или -(СН2)2О(СН2)2-; R31 выбран из -О-бензила и -NR12R13; и R32 обозначает -C1-6алкил; R18 и R19 независимо выбраны из Н и -C1-6алкила; R20 выбран из Н и -C1-6алкила; R21 обозначает H; R22 и R23 независимо выбраны из Н, -C1-6алкила, -(СН2)2ОСН3 и -С0-1алкилен-С3-7циклоалкила; или R22 и R23 вместе образуют насыщенный -С3-5гетероцикл, выбранный из азетидина или пирролидина; и в случае необходимости содержащий атом кислорода в кольце; R36 выбран из Н, -СН(СН3)2, фенила и бензила; и R37 выбран из Н и -СН(СН3)2; и; где метиленовый линкер на бифениле может быть замещен одной или двумя -C1-6алкильными группами; или его фармацевтически приемлемой соли.

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения поверхностно-активных веществ на основе соевого изолята и метиловых эфиров жирных кислот растительных масел, которые проявляют свойства пенообразователей, и могут найти применение в композициях косметических и моющих средств.

Изобретение относится к новым соединениям общей формулы (1), которые обладают сродством к µ-опиоидному рецептору и ORL1-рецептору. Изобретение также относится к применению этих соединений для получения лекарственных средств, которые могут быть использованы при лечении страха, стресса и связанных со стрессом синдромов, депрессий, эпилепсии, болезни Альцгеймера, старческого слабоумия, общих познавательных дисфункций, нарушений обучения и памяти (как ноотроп), синдромов отмены, злоупотребления алкоголем и/или наркотиками и/или злоупотребления медикаментами и/или алкогольной, наркотической, медикаментозной зависимости и др.

Изобретение относится к новым соединениям общей формулы (1), которые обладают сродством к µ-опиоидному рецептору и ORL1-рецептору, к лекарственным средствам, содержащим эти соединения, и к применению этих соединений для получения лекарственных средств, пригодных для лечения боли, страха, стресса и других заболеваний или состояний.

Изобретение относится к области органической химии, а именно к способу получения новых амидов карбоновых или сульфоновых кислот общей формулы: R'-A-(W)a-X-(CH2)b-(Y)c-B-Z-COOR (I) где W -CH2-, -CH2CH2-, -CH=CH-, -(CH2)3 X группа -CONR2, -NR2CO- или -SO2NR2- Y группа CH2CH2O-, -OCH2-, -CH=CH-, -CH2-CH=CH-, -CH2-, -CH2COCH2-, -CH2CH2-, -CH(CH3)CH2-, CH2-CO-, -CH(CH3)CO-, -CH2CH(OH)-, -CH2CH(OCH3), -CH2CH(OCOCH3)-, -CH2CH/OCH2CH2N(CH3)2/, -CH(CH2OH)CH2 или -C(Q1Q2)-CH(SSCH3)- Z группа -OCH2-, -NR6CH2-, -CH2-, -CH=CH-, -CH2CH2-, -C(CH3)=CH или -CH(CH3)CH2 R водород или низший алкил; R1 амидино-группа; R2 водород, низший алкил, фенил-низший алкил, незамещенный или замещенный группой -СOOR, R3 водород, низший алкил, низшая алкокси-группа, галоген, низшая карбалкокси-группа; Q1 и Q2 водород или низший алкил; R4 водород, низший алкил, низшая карбалкокси-группа, низшая алкокси-группа, галоген, -СН=СНСН2СН2СOO (Н или бензил) или Z-COOR; R6 водород или бензил; "a" и "с" 0 или 1; "b" целое число от 0 до 2, причем "а" и "b" 0, если "с" 1 и "с" 0, если "а" и "b" отличны от 0 и их физиологически совместимые соли.

Изобретение относится к сокристаллу агомелатина, который характеризуется тем, что он состоит из агомелатина, или N-[2-(7-метокси-1-нафтил)этил]ацетамида формулы (I), и органической кислоты, которая находится в твердом состоянии при температуре окружающей среды, которая выбрана из пара-оксибензойной кислоты, лимонной кислоты, щавелевой кислоты, галловой кислоты, малеиновой кислоты, малоновой кислоты, глутаровой кислоты, гликолевой кислоты или кетоглутаровой кислоты.

Изобретение относится к эфиру докозагексаеновой кислоты с пантенолом, представленному формулой 1, или его энантиомеру, представленному формулой А. Эфир докозагексаеновой кислоты с пантенолом предназначен для применения в качестве лекарственного средства или в качестве фармацевтической композиции для профилактики и/или лечения сердечно-сосудистых заболеваний.

Изобретение относится к цинхонидиновой соли формулы (XXa), к способу ее получения, применению в качестве промежуточного соединения при получении соединения (VIII) и к способу получения соединения (VIII) из соединения формулы (XXa).

Изобретение относится к способу синтеза лакосамида, активного ингредиента, используемого для лечения нейфропатий. Способ осуществляют путем (а) гидроксиметилирования соединения формулы V с получением соединения формулы формулы VI; (b) гидролиза соединения формулы VI с получением соединения формулы VII; (c) реакции солеобразования соединения формулы VII с 2-(S)-хлорминдальной кислотой (HX*) в органическом растворителе с получением смеси диастереоизомеров VIII; (d) разделения смеси диастереоизомеров VIII с получением соли IX; и (е) превращения соли IX в лакосамид.

Изобретение относится к способам получения соединений формулы 1 и 1А. Способ получения соединений формулы 1 включает (А) взаимодействие соединения формулы 2 с N,N′-карбонилдиимидазолом (связующим реагентом) в полярном апротонном не смешивающемся с водой растворителе, затем добавляют соль формулы 3 в присутствии основания, полученного из связующего реагента, с получением соединения формулы 4; на стадии (В) проводят взаимодействие промежуточного соединения формулы 4 с водородом в присутствии катализатора гидрогенолиза с получением соединения формулы 1.
Изобретение относится к улучшенному способу получения литиевых солей карбоксилированных амидов гидроксибензойных кислот, применяющихся в производстве лекарственных средств и других органических продуктов.

Изобретение относится к соединению, представленному формулой (I), или его фармацевтически приемлемой соли, где R1 и R2 независимо выбраны из группы, состоящей из водорода, незамещенного (C1-C8)алкила, -COR5 и -CO2R6; R1 и R2 также могут циклизоваться с образованием замещенного или незамещенного 4-, 5- или 6-членного кольца, выбранного из морфолина, пиперидина, пирролидина, пиперазина, азетидина, 4-метилпиперазина; R3 представляет собой нитро или нитрозо; R4 выбран из группы, состоящей из этинила, пропинила или циано; R5 выбран из группы, состоящей из незамещенного (C1-C8)алкила или незамещенного арила; R6 представляет собой незамещенный (C1-C8)алкил.

Изобретение относится к способу получения производного ароматического амида карбоновой кислоты, представленного приведенной ниже формулой (2), и новому промежуточному соединению для применения в данном способе, представленному формулой (1).

Изобретение относится к способу получения высокофторированных карбоновых кислот и их солей, а также их веществ-предшественников, включающему воздействие на высокофторированный олефин, имеющий общую формулу (I): производной муравьиной кислоты в соответствии с общей формулой (II): в присутствии радикального инициатора для образования вещества-предшественника карбоновой кислоты в виде О-эфиров, S-эфиров либо амидного аддукта общей формулы (III): и, необязательно, в случае получения кислоты, гидролиз аддукта формулы (III) для того, чтобы образовать карбоновую кислоту или ее соли с общей формулой (IV):, где в формулах (II) и (III) R представляет собой остаток O-M+, S-M+, OR′ или SR′ или NR′R″, где R′ и R″ являются независимыми друг от друга линейными или разветвленными либо циклическими алифатическими остатками, которые содержат по крайней мере один атом углерода и которые не имеют альфа-Н-атом, где альфа-Н-атом представляет собой атом водорода, который связан с атомом углерода, связанным с О, S или N в группах OR′, SR′ или NR′R″, и где в формулах (I), (III) и (IV) Rf представляет собой Н либо перфторированный или фторированный линейный или разветвленный алкильный остаток, который может содержать один или несколько катенарных атомов кислорода, и n составляет 1 или 0, m представляет собой число от 0 до 6, а М+ представляет собой катион.

Изобретение относится к области органической химии, а именно, к способу получения функционально замещенных фуллеренов, которые могут найти применение в качестве высокоактивных исходных веществ в синтезе лекарственных препаратов нового поколения для лечения опасных заболеваний человека.

Изобретение относится к органической химии, а именно к способу получения N-(4-метил-3-хлорфенил)-2-ацетокси-3,5-дихлорбензамида, обладающего антигельминтной активностью.

Изобретение относится к органической химии, в частности к технологии получения амидов жирных кислот, являющихся промежуточными продуктами для синтеза целого ряда поверхностно-активных веществ, используемых в нефтедобыче, строительстве, бытовой химии, косметике.

Изобретение относится к способу получения соединения или его соли, представленного формулой (I), который включает реакцию соединения или его соли, представленного формулой (II), и производного анилина, представленного формулой (III), в воде или смешанном растворителе из воды и органического растворителя в присутствии 1-этил-3-(3-диметиламинопропил)карбодиимида и, главным образом, при отсутствии основания: . Технический результат: разработан новый улучшенный способ получения соединения или его соли, представленного формулой (I).

Изобретение относится к способам получения соединений формулы 1 и 1А. Способ получения соединений формулы 1 включает (А) взаимодействие соединения формулы 2 с N,N′-карбонилдиимидазолом (связующим реагентом) в полярном апротонном не смешивающемся с водой растворителе, затем добавляют соль формулы 3 в присутствии основания, полученного из связующего реагента, с получением соединения формулы 4; на стадии (В) проводят взаимодействие промежуточного соединения формулы 4 с водородом в присутствии катализатора гидрогенолиза с получением соединения формулы 1.

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения поверхностно-активных веществ на основе соевого изолята и метиловых эфиров жирных кислот растительных масел, которые проявляют свойства пенообразователей, и могут найти применение в композициях косметических и моющих средств.
Наверх