Способ обзора пространства

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов. Согласно способу, в каждом азимутальном положении диаграммы направленности в режиме передачи цифровая антенная решетка формирует веерную передающую диаграмму направленности в угломестной плоскости, в режиме приема принимаемые отраженные сигналы с выходов антенных элементов представляются в виде цифровых отсчетов, из которых путем взвешенного суммирования формируется приемная многолучевая в угломестной плоскости диаграмма направленности с лучами игольчатой формы, при этом соседние лучи перекрываются по уровню половинной мощности, при обнаружении объектов, измерении их дальности и угломестной координаты используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей, при этом азимутальной координатой обнаруженных объектов является текущее азимутальное положение диаграммы направленности. При вращении антенной системы поддерживают постоянство азимутального положения передающей и приемной диаграмм направленности путем их электронного сканирования в направлении, противоположном ходу вращения антенной системы, до тех пор, пока угловой сдвиг антенной не достигнет величины Δθобз., после чего осуществляют скачкообразное перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в следующее азимутальное положение, отличающееся от предыдущего на угол Δθобз. по ходу вращения антенной системы. 4 ил.

 

Изобретение относится к радиолокационной технике, а именно к способам обзора пространства, и предназначено для использования в радиолокационных системах (РЛС) с цифровыми антенными решетками (ЦАР).

Известен способ обзора пространства [1 - с. 39. - Обработка сигналов в многоканальных РЛС / Под ред. А.П. Лукошкина, М., Радио и связь, 1983 - 328 с.] путем параллельного обзора по всем измеряемым координатам с помощью многолучевой РЛС, при этом формируются перекрывающиеся лучи диаграммы направленности (ДН), охватывающие всю зону обзора.

Недостатками известного способа являются избыточные ресурсы, которые требуются для формирования параллельных лучей по всем измеряемым координатам.

Известен способ обзора пространства [2 - с. 233. - Белоцерковский Г.Б. Основы радиолокации и радиолокационные устройства, М., Сов. радио, 1975 - 336 с.], в котором формируется многолучевая ДН в угломестной плоскости за счет облучения зеркальной антенны несколькими излучателями (рупорами), при этом линейка излучателей расположена в угломестной плоскости и зафиксирована относительно оси зеркала, каждый излучатель соединен со своим приемопередатчиком отдельным фидером и формирует парциальный луч на своей несущей частоте. Прием отраженных сигналов каждым излучателем также осуществляется на своей частоте. Сканирование по азимуту осуществляется механическим вращением антенны.

Недостатками известного способа обзора пространства являются:

- низкий КПД передающей части устройства за счет больших потерь излучаемого и принимаемого сигнала в фидерах, соединяющих излучатели (рупоры) и приемо-передающие каналы, поскольку они значительно разнесены в пространстве;

- недостаточно высокая надежность, поскольку при выходе из строя одного приемо-передатчика обзор пространства становится невозможен в том секторе угломестного обзора, который обеспечивал этот приемопередатчик.

Наиболее близким по технической сущности к изобретению является способ обзора пространства [3 - Способ обзора пространства и сопровождения объектов поверхности при маловысотном полете. Патент РФ 2211459, опубл. 27.08.2003], взятый за прототип, заключающийся в том, что обнаружение объектов включает последовательную обработку данных в дискретном времени с привязкой к каждому текущему такту обработки, полученных при обзоре пространства с использованием веерной диаграммы направленности и занимающей М положений по азимуту и диаграммы направленности с игольчатой формой, зондирующей отдельные выбранные участки зоны обзора с малым периодом обзора, при этом обе диаграммы направленности формируются одной антенной системой с электронным управлением лучом.

К недостаткам прототипа следует отнести:

- большое время обзора, так как измерение координат объекта выполняется в два этапа: вначале используется веерная ДН в режиме приема и передачи, при этом производится грубое измерение координат объекта, а для уточнения координат дополнительно используется ДН с игольчатой формой, что значительно удлиняет время обзора при увеличении числа объектов;

- недостаточную точность измерения координат объекта, поскольку для уточнения координат используется одна ДН с игольчатой формой, и метод максимума [2 - с. 87];

- при осуществлении кругового обзора пространства с помощью механического вращения антенны, принимаемые отраженные сигналы будут иметь амплитудную модуляцию вследствие движения ДН антенны [4 - с. 77. Бакулев П.А. Радиолокационные системы, М., Радиотехника, 2004. 320 с.]. Период модуляции равен

где Tвращ - период вращения;

Δθ - ширина ДН антенны в азимутальной плоскости.

Это вызывает снижение мощности принимаемых сигналов из-за отклонения максимума ДН от направления на объект при вращении антенны, а в случае, если направление на цель соответствует краю ширины ДН, то мощность принимаемых сигналов снижается в два раза.

Задачей, на решение которой направлено предлагаемое изобретение, является уменьшение времени обзора и повышение точности измерения координат объектов.

Для решения указанной задачи предлагается способ обзора пространства, при котором последовательно обрабатывают данные в дискретном времени с привязкой к каждому азимутальному положению диаграммы направленности, при этом обзор пространства осуществляют веерной диаграммой направленности, последовательно занимающей М положений по азимуту, и диаграммой направленности игольчатой формы, при этом обе диаграммы направленности формируют одной антенной системой с электронным управлением лучом.

Согласно изобретению, для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при вращении антенной системы в пределах угла ΔθОБЗ, меньшего или равного ширине диаграммы направленности по азимуту Δθ, поддерживают постоянство азимутального положения передающей и приемной диаграмм направленности путем их электронного сканирования в направлении, противоположном ходу вращения антенной системы, после того, как угловой сдвиг антенной системы достигает величины ΔθОБЗ, осуществляют скачкообразное перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в следующее азимутальное положение, отличающееся от предыдущего на угол ΔθОБЗ по ходу вращения антенной системы, в каждом азимутальном положении диаграммы направленности в режиме передачи при формировании веерной передающей диаграммы направленности в угломестной плоскости зондирующий сигнал усиливают в твердотельном усилителе мощности, встроенном в каждый приемопередающий канал цифровой антенной решетки, и передают его по соединительной цепи минимальной длины на подключенный к этому каналу антенный элемент, в режиме приема отраженные сигналы, принимаемые с выхода каждого антенного элемента, представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, при этом соседние лучи перекрываются по уровню половинной мощности, а ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей.

Техническим результатом предлагаемого способа является уменьшение времени обзора и повышение точности измерения координат объектов.

Проведенный сравнительный анализ заявленного способа и прототипа показывает, что их отличие заключается в следующем:

- в прототипе обзор пространства осуществляется в два этапа - грубое определение с помощью веерной ДН и уточнение с помощью сканирования единственной ДН игольчатой формы. Эти действия необходимо выполнять последовательно в реальном времени. При этом для уточнения координат нескольких объектов необходимо последовательно сканировать игольчатой ДН в нескольких областях пространства, что занимает тем больше времени, чем больше объектов. В предлагаемом способе обзор пространства осуществляется в один этап, за счет формирования многолучевой ДН, каждый луч которой имеет игольчатую форму, соседние лучи перекрываются по уровню половинной мощности, измерение координат всех объектов обеспечивается сразу для всех объектов, за счет чего уменьшается время обзора;

- в прототипе уточнение координат объекта осуществляется с помощью сканирования ДН игольчатой формы с применением метода максимума. В предлагаемом способе используется моноимпульсная обработка сигналов каждой из соседних пар приемных лучей сформированной многолучевой ДН, что обеспечивает значительное снижение ошибки измерения [2 - с. 91] по сравнению с методом максимума, применяемым в прототипе;

- в прототипе при осуществлении кругового обзора пространства с помощью механического вращения антенной системы, принимаемые отраженные сигналы будут иметь амплитудную модуляцию вследствие движения диаграммы направленности (ДН) антенны. Это вызывает снижение мощности принимаемых сигналов при отклонении максимума ДН от направления на цель, а в случае, если направление на цель соответствует краю ширины ДН, то мощность принимаемых сигналов снижается в два раза. В предлагаемом способе величина снижения мощности принимаемого сигнала значительно меньше за счет удержания азимутального направления ДН путем электронного сканирования.

Сочетание отличительных признаков и свойства предлагаемого способа обзора пространства из литературы не известно, поэтому он соответствует критериям новизны и изобретательского уровня.

На фиг. 1 приведена структурная схема устройства, обеспечивающего реализацию предложенного способа.

На фиг. 2 приведена структурная схема системы управления и цифрового диаграммообразования.

На фиг. 3 приведена структурная схема преобразователя частоты.

На фиг. 4 приведена структурная схема модуля управления и цифровой обработки сигналов.

При реализации предложенного способа выполняется следующая последовательность действий:

- для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, в каждом азимутальном положении диаграммы направленности в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости, при этом зондирующий сигнал усиливают в твердотельном усилителе мощности, встроенном в каждый приемопередающий канал цифровой антенной решетки, и его передают по соединительной цепи минимальной длины на подключенный к этому каналу антенный элемент - 1;

- в режиме приема отраженные сигналы, принимаемые с выхода каждого антенного элемента, представляют в виде цифровых отсчетов - 2;

- из полученных цифровых отсчетов формируют приемную многолучевую в угломестной плоскости диаграмму направленности путем взвешенного суммирования, каждый луч которой имеет игольчатую форму, при этом соседние лучи перекрываются по уровню половинной мощности, а ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости - 3;

- выполняют обнаружение объектов, измерение их дальности и угломестной координаты с использованием моноимпульсного метода обработки сигналов каждой из соседних пар приемных лучей - 4;

- при вращении антенной системы в пределах углового сектора ΔθОБЗ, меньшего или равного ширине диаграммы направленности по азимуту Δθ, поддерживают постоянство азимутального положения передающей и приемной диаграмм направленности путем их электронного сканирования в направлении, противоположном ходу вращения антенной системы - 5;

- после того, как угловой сдвиг антенной системы достигает границы углового сектора ΔθОБЗ, осуществляют скачкообразное перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в следующее азимутальное положение, отличающееся от предыдущего на угол ΔθОБЗ по ходу вращения антенной системы, и выполняют перечисленные операции для этого положения - 6.

Предложенный способ предназначен для цифровой антенной решетки (ЦАР), обеспечивающей круговое сканирование пространства ДН по азимуту за счет механического перемещения (вращения) ЦАР.

Реализация предложенного способа обзора пространства возможна, например, с помощью устройства, включающего в себя (фиг. 1) ЦАР 1, блок управления БУ 2, первый управляющий выход которого подключен к управляющему входу ЦАР 1, второй управляющий выход - ко входу управления опорно-поворотного устройства ОПУ 3, третий управляющий выход - к управляющему входу блока обнаружения и измерения координат объектов БОИКО 4, а вход - к выходу БОИКО 4.

ЦАР 1 включает в себя N приемопередающих модулей ППМ 5, систему формирования и распределения сигналов СФРС 6 и систему управления и цифрового диаграммообразования СУЦДО 7.

СФРС 6 имеет N выходов зондирующего сигнала (ЗС), соединенных со входами ЗС ППМ 5, N выходов дискретизации Fд, соединенных со входами дискретизации ППМ 5, N выходов гетеродина Fгет, соединенных с гетеродинными входами ППМ 5.

ППМ 5 содержат последовательно соединенные фазовращатель ФВ 8, твердотельный усилитель мощности (УМ) 9, циркулятор 10 и антенный элемент АЭ 11. К выходу циркулятора 10 подключены последовательно соединенные малошумящий усилитель МШУ 12, преобразователь частоты ПРЧ 13, гетеродинный вход которого является гетеродинным входом ППМ 5, и модуль управления и цифровой обработки сигналов МУЦОС 14, вход дискретизации которого является входом дискретизации ППМ 5.

Выход данных МУЦОС 14 является выходом данных ППМ 5 и соединен с одним из N входов данных СУЦДО 7, управляющий вход МУЦОС 14 является управляющим входом ППМ 5 и соединен с одним из N управляющих выходов СУЦДО 7. Первый, второй и третий управляющие выходы МУЦОС 14 соединены соответственно с управляющими входами ПРЧ 13, твердотельным УМ 9 и фазовращателя 8. Выход данных СУЦДО 7 соединен со входом данных БОИКО 4, а его N+1-й управляющий выход соединен с управляющим входом СФРС 6.

СУЦДО 7 (фиг. 2) имеет К формирователей 15 по числу формируемых лучей, каждый из которых содержит N каналов, при этом входы i-тых каналов в формирователях 15 объединены. Каждый канал формирователя 15 содержит перемножитель 16, первый вход которого является входом канала, ко второму входу подключен выход постоянного запоминающего устройства ПЗУ 17, а выход перемножителя 16 является выходом канала и подключен к одному из N входов цифрового сумматора 18, выход которого подключен к одному из К входов интерфейса И 19. Выход интерфейса 19 является выходом СУЦДО 7. Устройство управления (УУ) 20, вход которого является управляющим входом СУЦДО 7, имеет N+1 управляющих выходов, которые являются управляющими выходами СУЦДО 7. Все блоки СУЦДО 7 могут быть выполнены, в зависимости от числа ППМ 5 и числа лучей К, в виде одной или нескольких программируемых логических интегральных схем (ПЛИС).

ПРЧ 13 (фиг. 3) представляет собой последовательно соединенные смеситель СМ 21, вход которого является входом ПРЧ 13, а гетеродинный вход - гетеродинным входом ПРЧ 13, и усилитель промежуточной частоты УПЧ 22, выход которого является выходом промежуточной частоты (ПЧ) ПРЧ 13, а управляющий вход - управляющим входом ПРЧ 13.

МУЦОС 14 (фиг. 4) представляет собой последовательно соединенные аналого-цифровой преобразователь АЦП 23, вход которого является входом ПЧ МУЦОС 14, а тактовый вход является входом дискретизации МУЦОС 14, и блок управления и обработки БУО 24. Первый, второй и третий управляющие выходы БУО 24 являются соответственно первым, вторым и третьим управляющими выходами МУЦОС 14. Выход данных и управляющий вход БУО 24 являются соответственно выходом данных и управляющим входом МУЦОС 14.

СФРС 6 представляет собой три синтезатора частоты, обеспечивающих формирование зондирующего сигнала ЗС, сигнала тактовой частоты дискретизации Fд, и сигнала гетеродина Fгет. При этом могут быть использованы, например, синтезаторы из [5 - стр. 142-143. Mini-Circuits. RF & Microwave components guide. 2010]. Сформированные в синтезаторах сигналы разветвляются на N выходов с помощью делителей мощности [5 - стр. 136-140].

БОИКО 4 представляет собой ЭВМ, обеспечивающую обработку отсчетов сигнала по заданному алгоритму.

БУ 2 представляет собой ЭВМ, обеспечивающую управление работой устройств ЦАР 1, ОПУ 3 и БОИКО 4, а также отображение координат обнаруженных объектов.

ОПУ 3 обеспечивает вращение ЦАР 1 в азимутальной плоскости и может быть выполнено на основе опорно-поворотного круга с подшипником и червячного вала с электромотором.

Устройство работает при сканировании по азимуту за счет механического вращения ЦАР 1 с помощью ОПУ 3. Сектор сканирования по азимуту равен 360°.

В каждом азимутальном положении ДН в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости с помощью ЦАР 1. Формирование передающей ДН производится путем установки в ППМ 5 из состава ЦАР 1 требуемых фазовых и амплитудных соотношений регулировкой сдвига фазы зондирующего сигнала ЗС в фазовращателях 8 и коэффициента усиления твердотельных усилителей мощности УМ 9.

Для случая плоской прямоугольной ЦАР 1, апертура которой содержит Nx АЭ 11, установленных вдоль координаты X на расстоянии dx, и Ny АЭ 11, установленных вдоль координаты Y, на расстоянии dy, диаграмма направленности F(ϕ,θ) определяется как [6 - с. 27-28, Кузьмин С.З. Цифровая радиолокация, Введение в теорию, - КВИЦ, 2000]:

где ,

,

где Axi, Ayi - весовые коэффициенты амплитудного распределения в твердотельных УМ 9, соединенных с АЭ 11, которые расположены вдоль координат X и Y соответственно;

ψxi, ψyi - весовые коэффициенты фазового распределения, представленные в виде фазовых сдвигов в фазовращателях 8, соединенных через твердотельный УМ 9 и циркулятор 10 с АЭ 11, которые расположены вдоль координат X и Y соответственно.

Для обзорных РЛС веерная ДН может иметь косекансную форму [4 - рис. 5.1]. Такая форма ДН формируется путем установки соответствующих амплитудных и фазовых коэффициентов в твердотельных усилителях мощности УМ 9 и фазовращателях 8, например, как описано в [7 - Лопатенко Э.В., Марусич А.А. Диаграмма направленности антенны cosec с низким уровнем боковых лепестков. // Радиотехника, 2006, №12, с. 49-53].

После усиления зондирующего сигнала ЗС в твердотельных УМ 9 он поступает на подключенный к этому каналу антенный элемент (АЭ) 11 по соединительной цепи минимальной длины.

После излучения зондирующего сигнала ЗС ЦАР 1 переходит в режим приема.

В режиме приема принимаемые отраженные сигналы с выхода каждого АЭ 11 в каждом ППМ 5 проходят через циркулятор 10, усиливаются в МШУ 12, преобразуются по частоте в ПРЧ 13 и представляются в виде цифровых отсчетов Smn(t) с помощью АЦП 23.

Из полученных цифровых отсчетов формируют приемную многолучевую в угломестной плоскости ДН с лучами игольчатой формы путем взвешенного суммирования в СУЦДО 7. Отсчеты i-го луча с направлением максимума ϕi, θi вычисляются путем умножения цифрового потока с каждого АЦП 23 в перемножителях 16 на весовой коэффициент Wmnii) из ПЗУ 17 и суммирования в цифровом сумматоре 18. Диаграмма направленности для i-го приемного луча имеет вид

где .

Число лучей К определяется требуемой зоной обзора в угломестной плоскости и шириной одного луча. Лучи приемной многолучевой ДН имеют игольчатую форму, расположены в угломестной плоскости, при этом направления их максимумов обеспечивает перекрытие соседних лучей по уровню половинной мощности. Ширина приемной диаграммы направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости.

Сформированные отсчеты К приемных лучей с выходов формирователей 15 поступают в интерфейс 19, где преобразуются в последовательную форму и в виде последовательных кодов передаются в БОИКО 4, где в каждой из соседних пар сформированных приемных лучей выполняется обнаружение объектов, например, движущихся, измерение их дальности и угломестных координат, соответствующих угломестному положению тех приемных лучей, в которых они были обнаружены [8, с. 185-189 - Справочник по радиолокации / Под ред. М.И. Сколника. М., Техносерв, 2014, т. 1].

Для снижения амплитудной модуляции принимаемых отраженных сигналов за счет вращения ЦАР 1, осуществляемого с помощью на ОПУ 3, используется удержание азимутального направления ДН в положении θi путем электронной перестройки ДН.

При этом при вращении ЦАР 1 в пределах углового сектора ΔθОБЗ, меньшего или равного ширине ДН по азимуту Δθ, удерживают постоянство азимутального положения передающей и приемной диаграмм направленности θi путем их электронной перестройки в направлении, противоположном ходу вращения антенны. Электронная перестройка осуществляется с шагом ΔθД, при этом шаг перестройки выбирается из условия заданной точности направления максимума ДН.

Электронная перестройка передающей ДН осуществляется в соответствии с формулой (1) загрузкой соответствующих весовых коэффициентов в фазовращатели 8, а перестройка приемной ДН осуществляется в соответствии с формулой (2) использованием в перемножителях 16 соответствующих весовых коэффициентов из ПЗУ 17.

После того, как при вращении антенны ее угловой сдвиг достигает границы углового сектора ΔθОБЗ, осуществляют скачкообразное перемещение передающей и приемной ДН путем их электронной перестройки в следующее азимутальное положение θi+1, отличающееся от предыдущего на угол ΔθОБЗ по ходу вращения антенны.

Многолучевая в угломестной плоскости ДН обеспечивает ускорение обзора пространства за счет одновременного обнаружения объектов и измерения их координат в широком угломестном секторе обзора. В то время как в прототипе измерение координат объекта выполняется в два этапа: вначале используется веерная ДН в режиме приема и передачи, при этом производится грубое измерение координат объекта, а для уточнения координат дополнительно используется одна ДН игольчатой формы. Двухэтапный поиск в прототипе занимает более длительное время, чем в предлагаемом способе за счет введения дополнительных команд по установке луча ЦАР 1, загрузки весовых коэффициентов формирования луча и т.д. Время обзора пространства в прототипе тем больше, чем больше объектов, координаты которых необходимо уточнить.

Применение в предлагаемом способе для измерения угломестных координат нескольких лучей дает возможность использовать равносигнальный метод пеленгации, который обеспечивает значительное снижение ошибки измерения [2 - стр. 91] по сравнению с методом максимума, применяемым в прототипе.

Применение ЦАР 1 с N приемопередающими модулями 5, содержащими твердотельные усилители мощности 9, расположенными в непосредственной близости от антенных элементов 11, обеспечивает снижение потерь передаваемого и принимаемого сигнала за счет уменьшения длины соединений с антенным элементом 11. Повышение надежности многоэлементной ЦАР 1 обеспечивается за счет медленного снижения характеристик ЦАР 1 при выходе из строя части приемопередающих модулей 5.

Работоспособность предлагаемого способа была проверена на макете устройства (фиг. 1). Испытания показали совпадение полученных характеристик с расчетными.

Способ обзора пространства, при котором последовательно обрабатывают данные в дискретном времени с привязкой к каждому азимутальному положению диаграммы направленности, при этом обзор пространства осуществляют веерной диаграммой направленности, последовательно занимающей М положений по азимуту, и диаграммой направленности игольчатой формы, при этом обе диаграммы направленности формируют одной антенной системой с электронным управлением лучом, отличающийся тем, что для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при вращении антенной системы в пределах угла ΔθОБЗ, меньшего или равного ширине диаграммы направленности по азимуту Δθ, поддерживают постоянство азимутального положения передающей и приемной диаграмм направленности путем их электронного сканирования в направлении, противоположном ходу вращения антенной системы, после того как угловой сдвиг антенной системы достигает величины ΔθОБЗ, осуществляют скачкообразное перемещение передающей и приемной диаграмм направленности путем их электронного сканирования в следующее азимутальное положение, отличающееся от предыдущего на угол ΔθОБЗ по ходу вращения антенной системы, в каждом азимутальном положении диаграммы направленности в режиме передачи при формировании веерной передающей диаграммы направленности в угломестной плоскости зондирующий сигнал усиливают в твердотельном усилителе мощности, встроенном в каждый приемопередающий канал цифровой антенной решетки, и передают его по соединительной цепи минимальной длины на подключенный к этому каналу антенный элемент, в режиме приема отраженные сигналы, принимаемые с выхода каждого антенного элемента, представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, при этом соседние лучи перекрываются по уровню половинной мощности, а ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта.

Изобретение относится к системе взимания платы за проезд. Технический результат изобретения заключается в повышении эффективности контроля проезжающих транспортных средств за счет размещения антенной системы вдоль продольного направления контролирующего транспортного средства.

Изобретение относится к радиолокации, в частности к радиолокационным измерениям, и может быть использовано при создании радиолокационных измерительных комплексов.

Изобретение относится к локационным способам и средствам измерения глубин морских акваторий с помощью эхолотов. Способ определения расстояния от объекта до источника электромагнитного поля путем излучения электромагнитного поля звукового диапазона в направлении дна, приема отраженного сигнала, измерения промежутка времени между моментом излучения до момента приема сигнала и вычисления по полученным результатам глубины посредством эхолота, в котором дополнительно измеряют скорость звука в диапазоне 1400-1600 м/с, с разрешением 0,001 м/с на горизонте установки излучателя и приемной антенны, а также на n-горизонтах по глубине в фиксированных точках, включая придонный горизонт, посредством профилографа скорости звука, установленного на автономном аппарате типа «SONOBOT», при этом также измеряют температуру воды, гидростатическое давление в диапазоне 10, 50, 100, 300 и 600 бар и электропроводность в тех же фиксированных точках, в которых измеряют скорость звука.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов.

Изобретение относится к области радиолокации и может быть использовано для повышения вероятности обнаружения целей. Достигаемый технический результат - снижение уровня боковых лепестков корреляционной функции для любых зондирующих сигналов при априорно неизвестных характеристиках приемо-передающего тракта.

Изобретение относится к области радиосвязи. Техническим результатом является повышение надежности классификации движущихся транспортных средств, а также обеспечение возможности одновременно классифицировать несколько транспортных средств.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к устройствам ближней радиолокации и предназначено главным образом для обнаружения низколетящей сосредоточенной цели или плавательных средств на фоне сигналов, отраженных от распределенной морской поверхности и образованных облучением этой поверхности радиосигналом радиолокатора.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС), в которых в качестве антенны используется активная фазированная антенная решетка. Достигаемый технический результат - одновременное осуществление приема и излучения зондирующего сигнала на разных угловых позициях путем раздельной перестройки диаграммы направленности антенны (ДНА) на прием и передачу. Указанный результат достигается за счет того, что формируют передающую и приемную диаграммы направленности антенны, излучают зондирующие сигналы в виде пачки импульсов, принимают отраженные от целей импульсы, при этом на время излучения зондирующих импульсов запирают приемные каналы приемо-передающих модулей активной фазированной антенной решетки, при этом приемную и передающую ДНА формируют независимо друг от друга активной фазированной антенной решеткой, а после излучения зондирующих импульсов перемещают передающую ДНА в следующую угловую позицию, а приемную ДНА оставляют на предыдущей угловой позиции до момента приема всех отраженных от цели импульсов излученной пачки, после чего перемещают приемную ДНА в следующую угловую позицию, повторяют описанную последовательность действий для необходимого количества угловых позиций. 1 ил.

Изобретение относится к способам обработки сверхширокополосных сигналов (СШС) с линейной частотной модуляцией (ЛЧМ) в радио и акустических системах локации, навигации и связи при наличии искажений этих сигналов за счет нелинейности фазочастотных характеристик приемопередающих трактов и канала распространения. Технический результат состоит в осуществлении компенсации фазовых искажений ЛЧМ. Для этого принятый входной сигнал сначала умножают на опорный сигнал, согласованный с сигналом передатчика, с образованием двух квадратурных каналов, затем в каждом квадратурном канале всех N дальностных каналов осуществляют обработку, согласованную с пачками из подымпульсов, формируя матрицу комплексных сигналов в виде двух квадратурных составляющих и далее, исходя из матрицы S, осуществляют оценку фазовых искажений Δψko в каждом подымпульсе и эти поправки вносят в соответствующие по номеру сигнала подымпульсов всех каналов, которые затем в каждом дальностном канале суммируют, формируя результирующие N комплексных выборок выходного сигнала. 6 з.п. ф-лы, 19 ил.

Изобретение относится к области радиолокации и может быть использовано для обнаружения, сопровождения и получения координатной и некоординатной информации о ракетах-носителях и космических аппаратах в секторе электронного сканирования (СЭС), оценки помеховой обстановки в СЭС, а также обобщения информации о целевой и помеховой обстановке, полученной в активном и пассивном режимах функционирования. Достигаемый технический результат – обеспечение работы радиолокационной станции (РЛС) в непрерывном режиме, что позволяет максимально использовать ее временные и энергетические ресурсы, и возможность одновременного сопровождения и обнаружения объектов наблюдения в разных угловых направлениях за счет возможности приема и излучения сигналов в разных угловых направлениях, а также повышает надежность РЛС как в рабочем положении, так и при ее транспортировке. Указанный результат достигается за счет того, что мобильная радиолокационная станция включает в себя две раздельные антенные системы, приемную и передающую, представляющие собой цифровые активные фазированные решетки, расположенные на транспортных средствах, имеющих возможность размещения на удалении друг от друга, и систему управления, обработки и отображения информации, включающую в себя средства формирования диаграмм направленности и цифровой обработки и формирования сигналов на передачу и на прием, при этом каждая из антенных систем снабжена кожухом, состоящим из двух частей, каждая из которых выполнена с силовыми ребрами и опорами, имеющих возможность перемещения во взаимно противоположных направлениях до упора опор в поверхность, на которой расположено соответствующее транспортное средство. 2 з.п. ф-лы, 2 ил.

Изобретение относится к обзорным радиолокационным станциям (РЛС), конкретно к РЛС кругового обзора со стационарными антеннами, и может быть использовано в системах контроля и управления воздушным движением (УВД). Достигаемый технический результат - повышение производительности при одновременном увеличении дальности действия. Указанный результат достигается за счет того, что РЛС кругового обзора содержит секторную антенну кругового обзора, включающую четыре секторные антенны метрового диапазона электромагнитных волн, установленные по периметру правильного многоугольника, в центре которого установлены кабина управления и обработки радиолокационных сигналов, а также радиостанция цифровой связи и передачи данных и наземный радиозапросчик «свой-чужой». Средства, входящие в состав РЛС кругового обзора, определенным образом выполнены и взаимосвязаны между собой. 9 з.п. ф-лы, 11 ил.

Изобретение относится к радиолокации, в частности к способам определения эффективной площади рассеяния (ЭПР) объектов, и может быть использовано для расчета эффективной площади рассеяния летательных аппаратов в полете штатными средствами радиолокационных станций. Достигаемый технический результат – повышение точности определения ЭПР воздушных объектов (ВО). Указанный результат достигается за счет того, что облучают зондирующим сигналом ВО, принимают отраженный сигнал, измеряют мощность излучаемого сигнала, дальность до воздушного объекта, при определении значения ЭПР ВО для их классификации по критериям размерности «большая», «средняя», «малая» измеряют значение угла горизонтального ракурса ВО, измеряют амплитуду принятого сигнала, сравнивают амплитуду принятого сигнала с заранее заданным порогом, при превышении амплитудой принятого сигнала заранее заданного порога, записывают в запоминающее устройство измеренные значения мощности излучаемого сигнала, дальности до ВО, угла горизонтального ракурса ВО, амплитуды принятого сигнала, затем повторяют указанные выше операции до накопления в запоминающем устройстве массива, состоящего не менее чем из пяти измеренных значений мощности излученного сигнала, дальности до ВО, угла горизонтального ракурса ВО и амплитуды принятого сигнала, рассчитывают массив значений ЭПР ВО для каждого из запомненных измерений по определенной формуле, при этом, используя полученный массив значений ЭПР ВО и измеренный массив значений угла ракурса ВО, находят минимальное и максимальное значения углов ракурса ВО, определяют диапазон изменения угла горизонтального ракурса, затем определяют среднее значение ЭПР ВО в измеренном диапазоне углов горизонтального ракурса, после чего на основании полученного значения ЭПР проводят классификацию цели по заранее заданным критериям отнесения объекта к классам размерности «большая», «средняя», «малая». 1 ил.

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильных радиолокационных станций кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту. Достигаемый технический результат - уменьшение затрат временных и энергетических ресурсов на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области. Указанный результат достигается за счет того, что заданную зону обзора по азимуту делят на азимутальные сектора с постоянными границами, в каждом из которых независимо от других секторов осуществляют осмотр одной из двух частей зоны обзора, которые рассчитывают частично перекрывающимися в плоскости дальность - угол места, в каждом азимутальном секторе текущего периода обзора осуществляют выбор части зоны обзора для осмотра этого азимутального сектора на следующем периоде обзора в зависимости от положения сопровождаемых траекторий целей. 5 ил.

Изобретение относится к радиолокации, а именно к способам формирования диаграммы направленности цифровыми антенными решетками при обзоре пространства и земной поверхности, и может быть использовано в радиолокационных станциях (РЛС). Технической проблемой, решаемой предлагаемым изобретением, является расширение функциональных возможностей антенны. А техническим результатом предлагаемого изобретения является повышение коэффициента усиления антенны на прием. Способ основан на том, что формируют подрешетками цифровой антенной решетки (ЦАР) передающую диаграмму направленности антенны (ДНА) вида cosec2 по углу места и игольчатую по азимуту и излучают зондирующий сигнал. Для достижения технического результата осуществляют прием отраженного сигнала каждой подрешеткой ЦАР, формируют приемную многолучевую ДНА по углу места и игольчатую по азимуту посредством цифрового диаграммообразования таким образом, что ее лучи по углу места перекрывают по ширине передающую ДНА cosec2, формируют массив комплексных амплитуд отраженных сигналов, принятых по каждому лучу ДНА. 3 ил.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов. Технический результат заключается в повышении качества сжатия сигналов, производится подавление боковых лепестков, возникающих в процессе сжатия, при котором обеспечивается увеличение числа многофазных кодов длины N, для всех значений временных сдвигов (отсчетов), исключая двух ±N, в которых относительный уровень боковых лепестков находится в диапазоне от -20 lgN -6 до -20 lgN -8 dB за счет использования симметрично усеченных кодов, образованных последовательным удалением равного числа первых и последних символов кодов большей длины. При этом ширина главного лепестка на уровне -6 dB равна 2τ, на уровне PSL лежит в диапазоне 3÷4τ, а потери сигнал/шум на выходе устройства составляют -1.7 dB. Устройство подавления боковых лепестков при импульсном сжатии симметрично усеченных многофазных кодов длины N содержит соединенные по входу первый цифровой фильтр с КИХ порядка N-1 и формирователь цифрового корректирующего сигнала, состоящий из последовательно соединенных преобразователя кода в комплексно сопряженный код и второго цифрового фильтра с конечной импульсной характеристикой порядка N+1, выход которого соединен с первым входом сумматора, а выход первого цифрового фильтра подключен к линии задержки на длительность одного кодового элемента и к первому входу вычитателя, второй вход которого соединен с выходом линии задержки, а выход подключен ко второму входу сумматора. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к океанологическим измерениям, и может быть использовано для контроля солености морской воды на разных акваториях Мирового океана. В предложенном способе заданный контролируемый участок морской поверхности облучают СВЧ радиоволнами заданной частоты вертикальной поляризации, регистрируют рассеянный назад сигнал на той же поляризации (вертикальной), изменяют поляризацию излучателя и приемника на ортогональную и на той же частоте зондируют тот же участок морской поверхности, регистрируют рассеянный назад сигнал, после чего по данным двух последовательных зондирований вычисляют поляризационное отношение, по которому рассчитывают соленость. Повышение точности измерения солености морской воды за счет исключения влияния на результат измерений изменчивости шероховатости морской поверхности, является техническим результатом изобретения.

Изобретение относится к ультразвуковым системам обнаружения препятствий, предназначенным для регистрации и обработки сигналов, получаемых с акустических датчиков, и может быть использовано в подвижных дистанционно-управляемых объектах военного или двойного назначения для определения расстояний до препятствий. Ультразвуковая система обнаружения препятствий движению подвижного объекта содержит излучающие и приемные приборы средств обнаружения объектов, выполненные в виде n приемопередающих преобразователей (ППП) 1, располагающихся по периметру подвижного объекта (ПО) 2, блок обработки данных состоит из независимых каналов оцифровки (НКО) 3 аналоговых сигналов ППП 1, содержащих предварительные широкополосные операционные усилители (ШОУ) 4, усилители (У) 5 для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи (АЦП) 6, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы (ПЛИС) 7, генератора тактовой частоты (ГТЧ) 8, импульсного преобразователя напряжения (ИПН) 9, преобразователя интерфейса USB 2.0 (ПИ) 10 для передачи результатов измерений, транзисторных ключей (К) 11, предназначенных для реализации цифрового управления ППП 1 по сигналам, поступающим с ПЛИС 7. Обеспечивается определение расстояния до препятствия с высокой точностью, работа в режиме локатора с возможностью измерения как очень малых, так и больших расстояний. 5 ил.
Наверх