Способ получения нанокапсул смеси биопага-д с бриллиантовой зеленью



Способ получения нанокапсул смеси биопага-д с бриллиантовой зеленью
Способ получения нанокапсул смеси биопага-д с бриллиантовой зеленью

 


Владельцы патента RU 2626836:

Кролевец Александр Александрович (RU)

Изобретение относится в области нанотехнологии, медицины и ветеринарии. Предложен способ получения нанокапсул смеси биопага-Д с бриллиантовой зеленью. Способ состоит в том, что к 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени, полученную смесь добавляют в суспензию 2,5 г или 7,5 г яблочного или цитрусового пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества, полученную смесь ставят на магнитную мешалку и включают перемешивание, выпавшую суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием. Технический результат: упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование в качестве оболочки нанокапсул яблочного или цитрусового пектинов. 2 ил., 9 пр.

 

Изобретение относится к области нанотехнологии, медицины и ветеринарии.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК А61K 047/02, А61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК А61K 9/52, А61K 9/16, А61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением в инертной атмосфере при температуре от -15 до -50°С и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2091071, МПК А61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы, что может приводить к разрушению части микрокапсул и в итоге к уменьшению выхода конечного продукта.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержащая микрокапсулы размером 100-800 мкм в диаметре и состоящая из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046, МПК А61K 9/50, А61K 49/00, А61K 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. После вымораживания смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостаками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя, получение микрокапсул химическим методом полимеризации, технологическая сложность.

В пат. 2173140, МПК А61K 009/50, А61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В пат. 2359662, МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. 20110223314, МПК B05D 7/00, 20060101, B05D 007/00, В05С 3/02, 20060101, В05С 003/02; В05С 11/00, 20060101, В05С 011/00; B05D 1/18, 20060101, B05D 001/18; B05D 3/02, 20060101, B05D 003/02; B05D 3/06, 20060101, B05D 003/06 от 10.03.2011, US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатками данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138, US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011, описан способ получения твердых микрокапсул, растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030, US, МПК А61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов являются сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

Наиболее близким методом является способ, предложенный в пат. 2134967. МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул смеси биопага-Д с бриллиантовой зеленью в натрийкарбоксиметилцеллюлозе, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул смеси биопага-Д с бриллиантовой зеленью, отличающимся тем, что в качестве оболочки нанокапсул используется яблочные или цитрусовые высоко- или низкоэтерифицированные пектины при получении нанокапсул.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул пектинов.

Результатом предлагаемого метода являются получение нанокапсул ветеринарных препаратов на примере смеси биопага-Д с бриллиантовой зеленью в яблочном или цитрусовом пектине при 25°С в течение 15 минут. Выход микрокапсул составляет 100%.

ПРИМЕР 1. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в яблочном высокоэтерифицированном пектине, соотношение ядро:оболочка 1:1

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 2,5 яблочного высокоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 5,0 г зеленого порошка. Выход 100%.

ПРИМЕР 2. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в яблочном низкоэтерифицированном пектине, соотношение ядро:оболочка 1:1

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 2,5 яблочного низкоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 5,0 г зеленого порошка. Выход 100%.

ПРИМЕР 3. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в цитрусовом высокоэтерифицированном пектине, соотношение ядро:оболочка 1:1

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 2,5 цитрусового высокоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 5,0 г зеленого порошка. Выход 100%.

ПРИМЕР 4. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в цитрусовом низкоэтерифицированном пектине, соотношение ядро:оболочка 1:1

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 2,5 цитрусового низкоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 5,0 г зеленого порошка. Выход 100%.

ПРИМЕР 5. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в яблочном высокоэтерифицированном пектине, соотношение ядро:оболочка 1:3

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 7,5 яблочного высокоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 10,0 г зеленого порошка. Выход 100%.

ПРИМЕР 6. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в яблочном низкоэтерифицированном пектине, соотношение ядро:оболочка 1:3

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 7,5 яблочного высокоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 10,0 г зеленого порошка. Выход 100%.

ПРИМЕР 7. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в цитрусовом высокоэтерифицированном пектине, соотношение ядро:оболочка 1:3

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 7,5 цитрусового высокоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 10,0 г зеленого порошка. Выход 100%.

ПРИМЕР 8. Получение нанокапсул смеси биопага-Д с бриллиантовой зеленью в цитрусовом низкоэтерифицированном пектине, соотношение ядро:оболочка 1:3

К 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени. Полученную смесь добавляют в суспензию 7,5 цитрусового низкоэтерифицированного пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.

Получено 10,0 г зеленого порошка. Выход 100%.

ПРИМЕР 9. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы ветеринарного препарата на примере смеси биопага-Д с бриллиантовой зеленью в яблочном или цитрусовом пектине. Процесс прост в исполнении и длится в течение 15 минут.

Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул смеси биопага-Д с бриллиантовой зеленью.

Способ получения нанокапсул смеси биопага-Д с бриллиантовой зеленью, характеризующийся тем, что к 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени, полученную смесь добавляют в суспензию 2,5 г или 7,5 г яблочного или цитрусового пектина в петролейном эфире и 0,05 г препарата Е472с в качестве поверхностно-активного вещества, полученную смесь ставят на магнитную мешалку и включают перемешивание, выпавшую суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают петролейным эфиром, сушат в эксикаторе над хлористым кальцием.



 

Похожие патенты:

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический фуллерен С60 термообрабатывают при 160-170°C в потоке инертного газа для перевода оксидной примеси С60O в диоксидную примесь C120O.

Изобретение относится к области молочной промышленности и нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую сульфат цинка в каррагинане или в конжаковой камеди.

Изобретение относится в области нанотехнологии и молочной промышленности. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую витамин Е в альгинате натрия, или в каррагинане, или в конжаковой камеди, или в геллановой камеди, или в натрий карбоксиметилцеллюлозе.
Изобретение относится к производству цветных стеклянных изделий. Технический результат – повышение адгезии цветного покрытия к поверхности стеклоизделий и прочности готовых изделий.
Изобретение может быть использовано в биомедицине для визуализации кровеносных сосудов, в электронике для ап-конверсионных преобразователей в ячейках кремниевых солнечных батарей.

Изобретение относится к технологии получения нанопорошков феррита кобальта в микромасштабном реакторе. Способ заключается в подаче исходных компонентов - смеси растворов солей кобальта и железа в соотношении компонентов, отвечающих стехиометрии CoFe2O4, и раствора щелочи в соотношении с растворами солей, обеспечивающем кислотность среды в диапазоне от 7 до 8, отвечающей условиям соосаждения компонентов, при этом растворы исходных компонентов подают в виде тонких струй диаметром от 50 до 1000 мкм со скоростью от 1,5 до 20 м/с, сталкивающихся в вертикальной плоскости под углом от 30° до 160°, при температуре в диапазоне от 20°С до 30°С, и давлении, близком к атмосферному, причем соотношение расходов исходных компонентов задают таким образом, что при столкновении струй образуется жидкостная пелена, в которой происходит смешивание и контакт растворов исходных компонентов.

Изобретение относится к нанотехнологии и может быть использовано при получении нанокомпозитов. В реактор подают подложку, на которую нанесено соединение никеля, и/или кобальта, и/или железа, полученное смешиванием и реакцией формиатов указанных металлов с азотсодержащим соединением, таким как монодентантный лиганд из ряда, включающего аммиак, и/или метиламин, и/или моноэтаноламин в количестве 18-42 г⋅экв на 1 г⋅экв формиата металла или бидентантный лиганд из ряда, включающего гидразин, и/или этилендиамин, и/или диэтаноламин в количестве 9-21 г⋅экв на 1 г⋅экв формиата металла.

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему из водорастворимого полимера и фазообразующей соли металла или соли аммония.

Изобретение относится к чувствительному к температуре медицинскому противоспаечному материалу, который содержит чувствительный к температуре полимер в количестве 10-50 масс.

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий, и может быть использовано, в частности, для получения покрытий на деталях.

Изобретение относится к фармацевтической промышленности, а именно к способу получения нанокапсул L-аргинина, при этом в качестве ядра используется L-аргинин, а в качестве оболочки нанокапсул используется геллановая камедь при массовом соотношении ядро:оболочка 1:1, 1:2, или 1:3 соответственно.

Изобретение относится к способу получения нанокапсул ресвератрола в каппа-каррагинане, характеризующемуся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - ресвератрол при массовом соотношении оболочка: ядро 3:1 и 1:5, при этом ресвератрол медленно добавляют в суспензию каппа-каррагинана в бутаноле в присутствии 0,01 г Е472 с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем добавляют бутилхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул сухого экстракта топинамбура характеризуется тем, что в качестве оболочки нанокапсул используется конжаковая камедь, в качестве ядра - сухой экстракт топинамбура, причем нанокапсулы получают путем перемешивания смеси конжаковой камеди в бутаноле с 0,01 г препарата Е472с в качестве поверхностно-активного вещества на магнитной мешалке, последующего добавления сухого экстракта топинамбура в смесь, осаждения 10 мл бутилхлоридом, затем полученную суспензию нанокапсул отфильтровывают, промывают бутилхлоридом и сушат, при этом соотношение ядро : оболочка составляет 1:3, 1:1 или 1:5 или 5:1.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул бетулина. Способ характеризуется тем, что бетулин добавляют в суспензию агар-агара в петролейном эфире в присутствии 0,01 г.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул хлоральгидрата. Способ характеризуется тем, что в суспензию альгината натрия в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок хлоральгидрата, затем добавляют метилэтилкетон, при этом соотношение количества хлоральгидрата и количества альгината натрия составляет 1:1 или 1:3, полученную суспензию отфильтровывают и сушат.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул гидрокарбоната натрия. Способ характеризуется тем, что гидрокарбонат натрия диспергируют в суспензию каррагинана в петролейном эфире в присутствии 0,01 г препарата E472c в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, затем приливают метиленхлорид, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:1, 1:2, 1:3 или 1:5, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в каррагинане. Указанный способ характеризуется тем, что АСД 2 фракция диспергируют в раствор каррагинана в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, далее приливают 10 мл серного эфира, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом используется массовое соотношение ядро:оболочка 1:1, 1:3 или 3:1.

Изобретение относится к способу получения нанокапсул сухого экстракта шиповника. Указанный способ характеризуется тем, что 1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащую 1 г или 3 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл ацетонитрила, выпавший осадок отфильтровывают и сушат при комнатной температуре.

Изобретение относится в области нанотехнологии и пищевой промышленности. Описан способ получения нанокапсул семян чиа (ядро) в оболочке из каррагинана.

Изобретение относится к способу получения нанокапсул семян чиа в конжаковой камеди. Указанный способ характеризуется тем, что порошок семян чиа медленно добавляют в суспензию конжаковой камеди в бензоле, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, далее приливают бутилхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1 или 1:3.

Изобретение относится к фармацевтической промышленности, а именно к способу получения нанокапсул L-аргинина, при этом в качестве ядра используется L-аргинин, а в качестве оболочки нанокапсул используется геллановая камедь при массовом соотношении ядро:оболочка 1:1, 1:2, или 1:3 соответственно.
Наверх