Светодиодный светильник



Светодиодный светильник
Светодиодный светильник
Светодиодный светильник
Светодиодный светильник
Светодиодный светильник

 

H01L33/64 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2630439:

Дроздов Денис Геннадьевич (RU)

Светодиодный светильник может быть использован для внутреннего и наружного основного и декоративного освещения. Светильник имеет корпус-радиатор, состоящий из двух пластин, контактирующих горизонтальными участками 6 с теплоотводящим основанием 3 с двух разных сторон. В центре ближайшей к светодиоду 4 пластины имеется отверстие 5 для размещения светодиода на теплоотводящем основании. Пластины изогнуты, путем гибки с образованием радиальных гофр от границы 7 горизонтального участка до внешнего края 8 пластины так, что грани гофр расположены под углом к горизонтали. Вдоль верхних ребер 9 гофр у границы 7 горизонтального участка пластины имеется продольное отверстие 12. Горизонтальный участок 6 пластины и теплоотводящее основание 3 могут иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника. Исходная заготовка пластины радиатора может иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника. Техническим результатом изобретения является увеличение эффективности теплоотвода пластин и радиатора в целом, а также создание светильника, сочетающего простоту конструкции с высокой степенью унификации для различных вариантов исполнения и мощности светильника. 2 з.п. ф-лы, 7 ил.

 

Изобретение относится к осветительным устройствам со светодиодными источниками света и может быть использовано для внутреннего и наружного освещения.

Известен светодиодный светильник, содержащий корпус-радиатор, выполненный в виде металлической пластины с отогнутыми, под определенным углом к направлению излучаемого света, внешними краями либо лепестками пластин (http://setilumen.ru/, 28.09.2015).

Недостатком данного устройства являются большие габариты корпуса-радиатора при мощности светильника свыше 50 Вт.

Наиболее близким по технической сущности является светодиодный светильник, содержащий радиатор отвода тепла светодиодного источника излучения, включающий набор пластин, концы которых выполнены загнутыми и посадочные поверхности которых контактируют друг с другом (RU 2511564 17.09.2012).

Недостатками известного устройства являются:

малая средняя площадь теплоотдачи пластин радиатора, которая при - или -образной форме пластин может составлять лишь 40-60% от общей площади пластин, вследствие того, что горизонтальная часть каждой пластины радиатора имеет достаточно большую площадь поверхности, но она практически не участвует в процессе теплоотдачи в окружающую среду, а преимущественно передает тепло между пластинами;

большое число пластин в наборе радиатора и, как результат, снижение эффективности теплоотвода каждой последующей от источника теплового излучения пластины вследствие большого числа переходных контактов между пластинами.

Техническая сущность известного устройства состоит в том, что радиатор отвода тепла выполнен из набора пластин, контактирующих одна с другой горизонтальной частью, а весь радиатор одной из пластин набора контактирует с теплоотводящим основанием, а также в том, что две ближайшие к источнику светодиодного излучения пластины имеют между собой наибольшую площадь контакта, при этом площадь контакта каждой последующей пластины с предыдущей уменьшается. Из этого следует, что в наборе пластин их число составляет три и более, а также, что величина теплоотдачи каждой последующей пластины меньше, чем у предыдущей, то есть эффективность теплоотвода каждой последующей от источника теплового излучения пластины уменьшается.

Вследствие того, что тепловое сопротивление между источником теплового излучения и каждой последующей пластиной возрастает на величину суммы тепловых сопротивлений пластины и переходного контакта между поверхностями пластин, а тепловое сопротивление переходного слоя между контактными поверхностями пластин в 15-25 раз превышает тепловое сопротивление материала самой пластины и все эти тепловые сопротивления в цепи теплопередачи включены последовательно, то суммарное тепловое сопротивление радиатора с количеством пластин 3 и более достигает значительной величины.

Технической задачей, на решение которой направлено предлагаемое изобретение, является уменьшение числа пластин радиатора и снижение трудоемкости изготовления светодиодного светильника в целом.

Техническим результатом решения поставленной задачи является увеличение эффективности теплоотвода пластин и радиатора в целом, а также создание осветительного устройства, сочетающего простоту конструкции с высокой степенью унификации для различных вариантов исполнения и мощности светильника.

Указанный результат достигается тем, что в отличие от известного светодиодного светильника, содержащего как минимум один светодиод, теплоотводящее основание, радиатор отвода тепла, выполненный из набора пластин, в предлагаемом изобретении предусмотрены следующие отличия:

- радиатор состоит из набора двух пластин;

- пластины контактируют горизонтальными участками с теплоотводящим основанием с двух разных его сторон;

- в центре пластины, ближайшей к светодиоду, имеется отверстие для размещения светодиода на теплоотводящем основании;

- горизонтальные участки пластин и теплоотводящее основание имеют форму круга;

- пластины изогнуты путем гибки с образованием радиальных гофр от границы горизонтального участка до внешнего края пластины так, что грани гофр расположены под углом к горизонтали;

- в верхней части как минимум нескольких гофр у границы горизонтального участка пластины имеется как минимум одно продольное отверстие.

Между совокупностью существенных признаков предлагаемого устройства и достигаемым техническим результатом существует причинно-следственная связь, а именно:

- Вследствие того, что горизонтальные участки пластин имеют форму круга, то их площадь поверхности будет небольшая по величине и поэтому площадь поверхности всех граней гофр пластины, эффективно отдающих тепло, составит 85-95% общей площади пластины.

Например, при диаметре исходной заготовки пластины, равной 40,0 см, площадь поверхности пластины равна 1256,0 см2, горизонтальный участок диаметром 15,0 см пластины имеет площадь, равную 177,0 см2. Таким образом, в этом случае площадь всех граней гофр пластины будет равна 1256 - 177 = 1079 см2, что составляет 85,9% общей площади поверхности пластины.

- Кроме того, крепление двух пластин радиатора к основанию с двух разных его сторон обеспечивает параллельное включение тепловых сопротивлений переходных контактов пластин с основанием, что снижает суммарное тепловое сопротивление радиатора и обеспечивает примерно равную эффективность теплоотвода обеих пластин радиатора.

- Наличие у пластины радиатора гофр, грани которых расположены под углом к горизонтали, в сочетании с продольными отверстиями в верхней части гофр по крайней мере одной пластины, повышает скорость и турбулентность воздушного потока, омывающего пластины радиатора, что приводит к увеличению теплоотдачи пластин в окружающую среду.

- Все перечисленные существенные признаки в совокупности позволяют снизить число пластин радиатора до двух, а также уменьшить число переходных контактов и увеличить эффективность теплоотвода радиатора в целом.

В качестве развивающих признаков, дополняющих вышеприведенную совокупность, приводим следующее:

- исходная заготовка пластины радиатора может иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника;

- горизонтальный участок пластины радиатора и теплоотводящее основание может иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника;

- верхняя и нижняя пластины корпуса-радиатора выполнены с различными углами раскрытия нижних ребер гофр;

- число гофр нижней и верхней пластин может быть различным;

- к нижним ребрам гофр нижней пластины корпуса-радиатора может крепиться отражатель;

- поперечное сечение гофр пластин может быть выполнено по различным вариантам, например треугольным, трапецеидальным, синусоидальным или комбинированным.

Сущность изобретения поясняется следующими графическими материалами, представленными на фиг. 1-7:

фиг. 1. Схема светодиодного светильника по варианту 1.

фиг. 2. Схема светодиодного светильника по варианту 1, вид снизу.

фиг. 3. Пластина радиатора в изометрии.

фиг. 4. Схема светодиодного светильника по варианту 2.

фиг. 5. Схема светодиодного светильника по варианту 3.

фиг. 6. Схема светодиодного светильника по варианту 1 с отражателем.

фиг. 7. Схема движения охлаждающего воздушного потока в поперечном сечении гофр треугольного сечения двух пластин радиатора.

Предлагаемое устройство содержит корпус-радиатор, образованный нижней пластиной 1 и верхней пластиной 2, прикрепленными с двух сторон к основанию 3. К основанию 3 крепится светодиодный источник 4, для чего, в центре горизонтального участка 6 пластины, ближайшей к светодиоду, имеется соответствующее отверстие 5. С противоположной светодиоду стороны светильника размещен источник питания.

Нижняя и верхняя пластины 1, 2 корпуса-радиатора изогнуты путем гибки, с образованием радиальных гофр от границы 7 горизонтального участка до внешнего края 8 пластины. Каждая гофра имеет верхнее ребро 9 и нижнее ребро 10, между которыми находятся грани 11 гофр, расположенные под углом «β» к горизонтали. В верхних ребрах 9 имеется одно или несколько продольных отверстий 12.

Нижняя пластина 1 и верхняя пластина 2 могут быть выполнены соответственно с разными по величине углами α1 и α2 раскрытия нижних ребер 10 гофр.

В нижней и верхней пластинах 1,2 и основании 3 имеются совпадающие друг с другом сквозные отверстия 13, через которые нагретый воздух выходит в окружающую среду.

К нижним ребрам 10 гофр нижней пластины 1 может крепиться отражатель 14.

В варианте светильника, показанном на фиг. 1, направления углов α1 и α2 раскрытия ребер гофр пластин 1 и 2 совпадают с направлением светового потока светодиода.

Во втором варианте светильника, показанном на фиг. 4, углы α1 и α2 раскрытия ребер гофр пластин 1 и 2 направлены в противоположные стороны.

В третьем варианте светильника, показанном на фиг. 5, направления углов α1 и α2 раскрытия ребер гофр пластин 1 и 2 совпадают между собой, но противоположны направлению светового потока светодиода.

Светодиодные светильники по вариантам 2 и 3 могут быть выполнены с отражателем, аналогично светильнику на фиг. 6.

Величину угла «β» наклона граней 11 гофр к горизонтали, величину и направление углов α1 и α2 раскрытия нижних ребер 10 гофр, а также форму и размеры исходных заготовок для пластин 1, 2 радиатора и варианты выполнения светодиодного светильника выбирают с учетом назначения светильника, его мощности и получения наибольшей эффективности теплоотдачи радиатора.

Устройство работает следующим образом.

При подключении светодиодного светильника к питающей сети через источник питания к светодиодам подается постоянный электрический ток, обеспечивая их свечение. Во время работы светильника тепловая энергия, выделяемая светодиодным источником 4, путем теплопроводности передается основанию 3 и, затем, горизонтальным и гофрированным участкам нижней пластины 1 и верхней пластины 2 радиатора. Далее, от гофр обеих пластин осуществляется теплоотдача в окружающую среду.

В установившемся тепловом режиме светильника температура гофр пластин у границы 7 горизонтального участка нижней и верхней пластин будет превышать температуру гофр у внешнего края 8 пластин. На фиг. 7 показано как воздух, нагреваемый нижней поверхностью граней 11 гофр нижней пластины 1 под действием сил гравитации, образует восходящий воздушный поток, перемещающийся вдоль поверхности грани от нижнего ребра 10 к ее верхнему ребру 9 и, далее, вдоль верхнего ребра 9, через продольные отверстия 12 движется к верхнему ребру 9 гофры верхней пластины 2, где соединяется с аналогичным воздушным потоком верхней пластины.

Кроме того, воздух, нагретый верхней поверхностью граней 11 гофр нижней пластины 1, перемещается вертикально вверх, и, двигаясь вдоль нижней поверхности граней 11 верхней пластины 2, создает воздушный поток, который через продольные отверстия 12 в верхних ребрах 9 верхней пластины 2 выходит в окружающую среду. Взаимодействие этих трех воздушных потоков создает вдоль верхних ребер 9 верхней пластины 2 дополнительную турбулентность воздушного потока, что также способствует повышению интенсивности теплоотвода от пластин радиатора в окружающую среду.

Определенная часть выделяемого тепла отдается в окружающую среду верхней поверхностью граней 11 верхней пластины 2, однако в этом случае воздушный поток не течет вдоль поверхности граней гофр, а отрывается от них вертикально вверх.

1. Светодиодный светильник, содержащий корпус-радиатор, выполненный из набора пластин, теплоотводящее основание и закрепленный на нем, как минимум один светодиод, источник питания, отличающийся тем, что радиатор состоит из набора двух пластин, контактирующих горизонтальными участками с теплоотводящим основанием с двух разных его сторон, горизонтальные участки пластин и теплоотводящее основание имеют форму круга и обе пластины изогнуты путем гибки, с образованием радиальных гофр от границы горизонтального участка до внешнего края пластины так, что грани гофр расположены под углом к горизонтали, в верхних ребрах как минимум нескольких гофр у границы горизонтального участка пластины имеется как минимум одно продольное отверстие, а в центре пластины, ближайшей к светодиоду, имеется отверстие для размещения светодиода на теплоотводящем основании.

2. Светодиодный светильник по п. 1, отличающийся тем, что исходная плоская заготовка пластины радиатора может иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника.

3. Светодиодный светильник по п. 1, 2, отличающийся тем, что горизонтальный участок пластины радиатора и теплоотводящее основание могут иметь форму круга, квадрата, прямоугольника, эллипса, шестиугольника, восьмиугольника.



 

Похожие патенты:

Изобретение относится к силоксановым соединениям и способам их получения. Предложено силоксановое соединение, содержащее множество силоксановых повторяющихся звеньев, причем 10 мол.% или более силоксановых повторяющихся звеньев представляют собой циклотрисилоксановые повторяющиеся звенья, а также соединение содержит дополнительно сегменты, соответствующие определенной структуре.

Изобретения могут быть использованы при изготовлении светодиодов. Фосфор, люминесцентный материал и люминесцентная смесь для прямо возбуждаемых переменным током светодиодных чипов включают люминесцентный материал А с синим послесвечением и желтый люминесцентный материал В в массовом отношении (10-70):(30-90).

Изобретение относится к осветительной технике, в частности к источникам света, в которых в качестве элементов, генерирующих свет, используются мощные светодиоды, а для формирования светового потока применяют рефлекторы с сочетанием различной кривизны, которые могут быть использованы для проектирования экономичных осветителей различного назначения.

Изобретение относится к области технической светотехники и может быть использовано при изготовлении осветительных приборов. Фотолюминофор нейтрально-белого свечения со структурой граната на основе оксидов редкоземельных элементов и элементов IIIa подгруппы имеет следующую химическую формулу: (ΣLn,Bi)3[(ΣMl)2][AlO4-x(F,N)x]3, где Ln - лантаноиды Y, Се, Lu, Tb; Ml - В, Al, Ga; [х]≤0,2 атомных долей.

Изобретение относится к устройствам с выходным оптическим излучением, в частности с использованием дискретных источников оптического излучения, связанных со структурой с прозрачной подложкой.

Светоизлучающее устройство содержит твердотельный источник (101) света, выполненный с возможностью излучения первичного света (L1); преобразующий длину волны элемент (102), включающий множество преобразующих длину волны областей (102a, 102b, 102c и т.д.) для преобразования первичного света во вторичный свет (L2), при этом каждая преобразующая длину волны область посредством этого обеспечивает поддиапазон полного спектра светового выхода, причем по меньшей мере некоторые из упомянутых преобразующих длину волны областей расположены в виде массива и содержат квантовые точки, при этом разные преобразующие длину волны области содержат квантовые точки, имеющие разные диапазоны излучения вторичного света, обеспечивающие разные поддиапазоны полного спектра светового выхода, и при этом поддиапазон, обеспечиваемый каждой преобразующей длину волны областью перекрывается или является смежным с по меньшей мере одним другим поддиапазоном, обеспечиваемым другой преобразующей длину волны областью, при этом упомянутые преобразующие длину волны области вместе обеспечивают вторичный свет, включающий в себя все длины волн диапазона от 400 нм до 800 нм.

Настоящее раскрытие относится к устройствам отображения, использующим полупроводниковые светоизлучающие устройства. Устройство отображения, использующее полупроводниковое светоизлучающее устройство, согласно изобретению может включать в себя первую подложку, содержащую электродную часть, проводящий адгезионный слой, расположенный на первой подложке, и множество полупроводниковых светоизлучающих устройств, по меньшей мере часть из которых утоплены в верхней области проводящего адгезионного слоя, чтобы составить отдельные пиксели с электрическим соединением с электродной частью, причем проводящий адгезионный слой содержит непрозрачную смолу, чтобы блокировать свет между полупроводниковыми светоизлучающими устройствами.

Согласно изобретению предложен способ изготовления модульного кристалла светоизлучающего диода (LED), содержащий этапы, на которых формируют множество LED-кристаллов, каждый LED-кристалл содержит множество полупроводниковых слоев и по меньшей мере один металлический электрод, сформированный на нижней поверхности каждого из LED-кристаллов для электрического контакта с по меньшей мере одним из полупроводниковых слоев, при этом каждый из LED-кристаллов имеет верхнюю поверхность и боковые поверхности; при этом по меньшей мере один металлический электрод имеет верхнюю поверхность и нижнюю поверхность, противоположную верхней поверхности; верхняя поверхность по меньшей мере одного металлического электрода сформирована на нижней поверхности LED-кристалла, устанавливают множество LED-кристаллов на временную поддерживающую структуру; отливают цельный материал поверх LED-кристаллов, который инкапсулирует по меньшей мере верхнюю поверхность и боковые поверхности LED-кристаллов и формирует линзу поверх верхней поверхности каждого из LED-кристаллов, цельный материал не покрывает нижнюю поверхность по меньшей мере одного металлического электрода и имеет основание, которое проходит вниз к временной поддерживающей структуре и к нижней поверхности LED-кристаллов, выполняют отверждение цельного материала, для соединения LED-кристаллов вместе, удаляют LED-кристаллы и цельный материал с поддерживающей структуры и разделяют цельный материал так, что по меньшей мере один металлический электрод остается открытым для присоединения с другим электродом после формирования линзы.

Изобретение относится к люминесцентному материалу на основе люминесцентных наночастиц и к осветительному устройству на их основе для преобразования света от источника света.

Способ изготовления эпитаксиальной структуры включает в себя обеспечение подложки и гетеропереходного пакета на первой стороне подложки и формирование пакета светоизлучающего диода на GaN на второй стороне подложки.

Изобретение относится к области световых устройств и может быть использовано в конструкциях световых устройств, имеющих теплоотвод для отвода тепла от опорного элемента электроники светового устройства.

Настоящее изобретение обеспечивает способ выполнения универсальной светодиодной лампочки (102), светодиодную лампочку (102) линзового типа со стопорным кольцом и лампу.

Изобретение относится к оптоэлектронике, в частности к системам охлаждения мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного мощного светодиода.

Изобретение относится к области светотехники. Техническим результатом является упрощение конструкции и повышение эффективности теплоотвода.

Изобретение относится к теплопередающему устройству (100, 400) для охлаждения по меньшей мере одного светоизлучающего диода (302), при этом теплопередающее устройство (100, 400) содержит центральный участок (102, 402), сконфигурированный для установки светоизлучающего диода (302) и выполненный с возможностью приема тепла, выделяемого из светоизлучающего диода (302) при излучении света, и множество удлиненных теплопередающих элементов (104), имеющих, каждый, первый концевой участок (106), соединенный с центральным участком (102, 402), и второй концевой участок (108), который, когда вставлен в корпус (200), сконфигурирован с возможностью примыкания к внутренней поверхности (202) корпуса (200), чтобы выделенное тепло передавалось путем теплообмена корпусу (200).

Изобретение относится к осветительному устройству с использованием СИД (светоизлучающего диода), более точно к осветительному устройству, объединенному с теплоотводом.

Изобретение относится к модулю светоизлучающего диода и, в частности, к модулю светоизлучающего диода, имеющему деформируемые области вблизи винтовых отверстий, предназначенных для приема винта для монтажа светодиодного модуля на радиатор.

Изобретение относится к устройству (206) теплового сопряжения, выполненному с возможностью обеспечения контактной поверхности теплового соединения между вырабатывающим тепло блоком (202) и отводящим тепло блоком (204), содержащему слой (210) подкладки, который имеет противоположные первую и вторую поверхности (218, 220), причем по меньшей мере первая поверхность является скользящей поверхностью, и который снабжен множеством отверстий (212); и слой (208) теплового соединения, который взаимодействует со слоем подкладки на его второй поверхности (220) и который является одним из упруго и неупруго деформируемого.

Предложен светодиодный светильник. Он содержит первый корпус и второй корпус, выполненные из теплопроводного материала в виде полых профилей с открытыми торцевыми частями, торцевой соединитель и две торцевые заглушки, выполненные из теплоизолирующего материала и имеющие сквозные вентиляционные отверстия, третий корпус, выполненный из теплопроводного материала, а также герметичный источник питания, по меньшей мере одно крепежное средство и по меньшей мере один оптический блок со светодиодами, который соединен с внешней поверхностью нижней части первого корпуса с образованием теплового контакта и выполнен герметичным.

Изобретение относится к области светотехники, а именно к светодиодным светильникам, применяемым для промышленного, уличного, бытового и архитектурно-дизайнерского освещения.

Изобретение относится к области светотехники. Техническим результатом является увеличение срока работы за счет улучшения теплоотвода. Осветительное устройство (1) содержит основание (2) и участок (3), расположенный напротив основания. В основании (2) размещены цоколь (4) и драйвер (7). Теплоотвод (14) размещен на участке (3) отдельно от драйвера. Источник (13) света установлен на нижней стороне (15) теплоотвода (14), обращенной к основанию (2). Провод (10) предназначен для электрического соединения источника (13) света с драйвером (7). Участок провода (10), проходящий от основания (2) к участку (3) осветительного устройства, не загорожен ни одним из компонентов осветительного устройства (1) и открыт свету от источника (13) света. Оболочка (12) окружает, по меньшей мере, источник (13) света и открытый участок провода (10), который размещен отдельно от оболочки (12). 11 з.п. ф-лы, 4 ил.
Наверх