Способ получения полиметилметакрилата для твердофазной экстракции

Изобретение относится к способу получения полиметилметакрилата для его использования в аналитическом приборостроении, в частности в способах экстракционных процессов с применением раздельных сред. Полимер может быть использован при разработке приборов контроля качества воды и воздушных сред, где используются экстракционные и оптические методы анализа. Способ получения полиметилметакрилата осуществляют радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила. Способ отличается тем, что в качестве второго компонента инициирующей системы используют метакрилат кальция, в качестве пластификатора используют полиэтиленгликоль (ПЭГ 400) при процентном соотношении пероксид бензоила : метакрилат кальция : полиэтиленгликоль (ПЭГ 400) - (0.03):(0.5):(4÷1), полимеризацию проводят при 60-90°С. Технический результат – получение полимерного материала для твердофазной экстракции с улучшенными характеристиками по экстракционной способности полимера. 6 табл., 6 пр.

 

Изобретение относится к аналитическому приборостроению, в частности к способам осуществления экстракционных процессов с применением раздельных сред. Изобретение может быть использовано для разработки приборов контроля качества воды и воздушных сред, где используются экстракционные и оптические методы анализа.

Наиболее эффективным и доступным способом экстракции является жидкостная экстракция, которая использует широкий выбор растворителей из ряда спиртов, эфиров, углеводородов или масел, которые зачастую характеризуются токсичным эффектом. Замена жидкостной экстракции на твердофазную проводят в областях, где требуется экологичная замена растворителям, например при сорбции нефтяных загрязнений, экстракции металлов из растворов и аналитической химии. Основные требования, предъявляемые к сорбентам для твердофазной экстракции: нетоксичность, эффективность, дешевизна, способность к использованию после длительного хранения, легкость утилизации. В качестве сорбентов используют самые различные материалы, как природные, так и синтетические, в том числе полимеры. В качестве полимеров для твердофазной экстракции применяются поливинилхлорид, полиуретан, а также природные и синтетические каучуки и резины, выполненные в виде порошка, волокнистого субстрата, а также мембран или пластин.

Известен макропористый полимер полимеризованного метакрилата (патент US 5135660, B01D 17/022, опубл. 08.04.1992 г.) для удаления нефти в виде гидрофобного порошка. При контакте с нефтью поверхность полимеризованного метакрилата активно сорбирует нефть за счет ее сродства к собираемому материалу (силы Ван-дер-Ваальса), которая прочно удерживается в макропорах. Недостатком этого полимера является отсутствие диффузии внутрь объема полимера и эффективная работа только поверхности сорбента.

Известен способ получения низкомолекулярного полиметилметакрилата (патент РФ 2140931, опубл. 10.11.1999 г, С08А 120/14) путем радикальной полимеризации метилметакрилата в массе в присутствии инициирующей системы и гидрохинона, в качестве инициирующей системы используют систему, содержащую трибутилбор и дициклогексилпероксидикарбонат при их мольном соотношении от 2:1 до 10:1, используемую в количестве 1,4÷3,6% от массы мономера, гидрохинон используют в количестве 0,5÷3,0% от массы мономера и в полимеризующуюся смесь вводят регулирующую систему, в качестве которой используют смесь трибутилбора с 0,27÷0,94% от массы мономера ненасыщенного карбонильного соединения при молярном соотношении ненасыщенного карбонильного соединения и трибутилбора от 0,6:1 до 1,2:1. Недостатком этого полимера является химическая нестойкость при контакте с жидкими средами за счет вымывания в раствор ненасыщенных карбонильных соединений.

Известен способ получения полиметилметакрилата методом радикальной полимеризации метилметакрилата в массе в присутствии вещественного инициатора - пероксида бензоила (патент РФ 2394045, опубл. 10.07.2010 г., G08F 120/14) или азодиизобутиронитрила и модифицирующей добавки, в качестве второго компонента инициирующей системы используют макробициклические трис-1,2-диоксиматы железа(II) /Монаков Ю.Б., Исламова P.M., Садыкова Г.Р., Волошин Я.З., Макаренко И.Г., Лебедев А.Ю., Бубнов Ю.Н. // Доклады Академии наук. 2010. Т. 431. №3. С. 351-355/. Оптимальная температура полимеризации равна 60°C, мольное соотношение компонентов системы инициатор : металлокомплексная добавка составляет 1:1.

Недостатком этого способа является невозможность получения однородной структуры полимера, его рыхлость.

Известен полиметилсилоксановый полимер с иммобилизованным октадецилом на поверхности (Оазис С-18) способный к твердофазной микроэкстракции (Tsung-Ling Chiang, Yu-Chen Wang and Wang-Hsien Ding Trace Determination of Rhodamine В and Rhodamine 6G Dyes in Aqueous Samples by Solid-phase Extraction and High-performance Liquid Chromatography Coupled with Fluorescence Detection // Published Online Oct. 25, 2011; DOI: 10.1002/jccs.201100318). Недостатком этого способа является необходимость строго соблюдать условия кислотность среды, что неприемлемо в полевых условиях.

Известен сополимер стиролдивинилбензола, модифицированный формальдегидными группами (Jian-Han Huang, Ke-Long Huang, Su-Qin Liu, A-TingWang, Chen Yan Adsorption of Rhodamine В and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution // Colloids and Surfaces A: Physicochem. Eng. Aspects 330 (2008) 55-61), способный к твердофазной экстракции в объем сополимера стиролдивинилбензола. Удерживание аналита достигается за счет его координации с закрепленным формальдегидом.

Недостатком этого способа является использование токсичного формальдегида для получения полимерной матрицы.

Известен способ анализа химического состава веществ в жидких и газообразных средах с экстракционным концентрированием и устройство для его осуществления (патент РФ 2219525 опубл. 20.12.2003, G01N 21/43), в котором анализируемое вещество экстрагируется в органическую полимерную фазу и анализируется оптическим методом. Экстракцию осуществляют на поверхности двухслойной полимерной композиции в системе открытых пор, причем сконцентрированные анализируемые соединения попадают на границу раздела за счет диффузии в системе органическая фаза - двухслойная полимерная композиция, а обновление органической фазы происходит за счет ее выноса в пробу. Двухслойная пористая гидрофобная композиция состоит из микропористой мембраны и полимера, имеющего систему открытых поверхностных капилляров. Гидрофобная полимерная композиция сохраняет прозрачность после концентрирования вещества, что подтверждается дальнейшим использованием ее в качестве оптического волновода.

Недостатками предложенной полимерной экстрактивной системы является наличие двух смежных слоем различных полимерных материалов, которые вследствие различного температурного коэффициента расширения нарушают целостность потока органической фазы.

Наиболее близким решением является способ получения полиметилметакрилата (патент РФ 2446178, опубл. 27.03.2012 г., C08F 120/00) радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила или азодиизобутиронитрил, в качестве второго компонента инициирующей системы используют комплекс железа(III) пивалат-анион оксотрис(акво)гексакис(пивалато)трижелезо(III)-катион этанол сольват, [Fe3O(OOCCMe3)6(H2O)3]+(OOCCMe3)-3EtOH, мольное соотношение вещественный инициатор : комплекс железа(III) составляет (1.0):(0.1÷5.0), полимеризацию проводят при 30-90°C. Результатом является получение полиметилметакрилата с улучшенными характеристиками, а именно с регулируемой молекулярной массой, более низкой полидисперсностью и повышенной термостойкостью.

Недостатком является гидрофобность полученного полимера, препятствующая твердофазной экстракции гидрофильных веществ.

Задачей настоящего изобретения является получение полимерного материала для твердофазной экстракции, который обладает экстрактивной способностью по отношению к гидрофильным и гидрофобным веществам и ионов металлов в широком диапазоне положительных и отрицательных температур и сохранением прозрачности после твердофазной экстракции.

Эта задача решается тем, что экстрагирующий полимерный материал представляет собой прозрачный продукт совместной полимеризации метилметакрилата в присутствии полиэтиленгликоля ПЭГ 400. Метилметакрилат после полимеризации формирует гидрофобную структуру полимера в виде полиметилметакрилата, обеспечивая удерживание экстрагируемого вещества в твердой фазе. Полиэтиленгликоль ПЭГ 400 формирует гидрофильные цепи, которые обеспечивают поступление экстрагируемого вещества в объем полимера. Это обеспечивает экстрактивную способность твердой полимерной фазы за счет комбинации гидрофильного и гидрофобного полимера, термическую устойчивость за счет совмещения полимеров в единой фазе, также совместимость указанных полимеров обеспечивает длительный срок сохранения экстрактивной способности и сохранение прозрачности полимера после твердофазной экстракции.

При изготовлении патентуемого экстрагирующего материала, так же как и в способе-прототипе, осуществляется радикальная полимеризация в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила, в качестве второго компонента инициирующей системы используют комплекс соли металла и пластификатора, полимеризацию проводят при 60-90°C.

Новым в способе является то, что в качестве соли металла используют метакрилат кальция, обеспечивающий структурообразование между гидрофобной полиметакрилатной массой и гидрофильным полиэтиленгликолем; в качестве пластификатора используют полиэтиленгликоль ПЭГ 400 для обеспечения диффузии экстрагируемого вещества внутрь полимерной твердой фазы.

Процентное соотношении компонентов - пероксид бензоила : метакрилат кальция : полиэтиленгликоль (ПЭГ 400) составляет (0.03):(0.5):(4÷1).

Изобретение реализуется следующим образом. Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, помещали ее в термостат с температурой (60÷90)±0.1°C и выдерживали до достижения 98-100% степени конверсии.

Полимеризация метилметакрилата, инициированная пероксидом бензоила, при температуре ниже 60°C занимает более 24 ч, что нецелесообразно. Выше 90°C проводить полимеризацию метилметакрилата нежелательно, т.к. возможно вскипание мономера (температура кипения метилметакрилата 104°C). Достижение 98-100% степени конверсии в указанных условиях достигается за 7 ч.

Пример 1. Твердофазная экстракция флюоресцирующих веществ из водного раствора

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч. Температура экстракции 20°C. Масса полимера 50 мг. Хранение полимера в течение 2 дней. В таблице 1 приведено количество экстрагированного вещества в течение 20 мин из 50 мл раствора, содержащего 30 мг/л флюоресцирующих веществ, при pH=4.

* Полученное значение связано со 100% экстракцией в условиях 10% погрешности измерения.

Пример 2. Твердофазная экстракция тиоционат-иона из пластовой воды

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч.

Температура экстракции 42°C. Масса полимера 50 мг. Хранение полимера в течение 2 дней. В таблице 2 приведено количество экстрагированного вещества в течение 20 мин из 10 мл пластовой воды буровой скважины при рН=6,8.

*Полученное значение связано со 100% экстракцией в условиях 10% погрешности измерения.

Пример 3. Твердофазная экстракция иодид-иона из лекарственных препаратов

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч.

Температура экстракции 20°C. Масса полимера 50 мг. Хранение полимера в течение 5 месяцев. В таблице 3 приведено количество экстрагированного вещества в течение 20 мин из 10 мл водного раствора йодсодержащего препарата при рН=9,1.

Пример 4. Твердофазная экстракция красителя малахитовый зеленый из рыбы и рыбного фарша

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч. Температура экстракции 20°C. Масса полимера 50 мг. Хранение полимера в течение 3 месяцев. В таблице 4 приведено количество экстрагированного вещества в течение 20 мин из 10 г измельченного мяса рыбы и рыбного фарша при рН=3.

*Полученное значение связано со 100% экстракцией в условиях 10% погрешности измерения.

Пример 5. Твердофазная экстракция нитрит-иона из овощей

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч. Температура экстракции 20°C. Масса полимера 50 мг. Хранение полимера в течение 3 месяцев. В таблице 5 приведено количество экстрагированного вещества в течение 20 мин из 50 г измельченных овощей при рН=5.

*Полученное значение связано со 100% экстракцией в условиях 10% погрешности измерения.

Пример 6. Твердофазная экстракция ксантеновых красителей из водно-углеводородной эмульсии

Для полимеризации в массе реакционную смесь заливали в инертную стеклянно-силиконовую форму, выдерживали в термостате с температурой 90±0.1°C в течение 7 ч. Температура экстракции 27°C. Масса полимера 50 мг. Хранение полимера в течение 7 месяцев.

Внутрь шприца объемом 20 мл помещали полимер массой 50 мг, затем шприц опускали в водно-углеводородную эмульсию таким образом, чтобы можно было отобрать в основном водную фракцию объемом 10 мл. После отбора впускали небольшое количество воздуха 2-4 мл в шприц для того, чтобы было удобно встряхивать полимер с анализируемым раствором. После 5-минутного встряхивания анализируемый раствор сливали и вынимали полимер, высушивали фильтровальной бумагой и измеряли оптическую плотность при 536 нм для эозина и 530 нм для родамина.

В таблице 6 приведены результаты определения ксантеновых красителей в водно-углеводородной эмульсии

Результатом является получение полиметилметакрилата с улучшенными характеристиками, а именно экстракционной способностью в твердой фазе полимера.

Способ получения полиметилметакрилата радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила, отличающийся тем, что в качестве второго компонента инициирующей системы используют метакрилат кальция, в качестве пластификатора используют полиэтиленгликоль (ПЭГ 400) при процентном соотношении пероксид бензоила : метакрилат кальция : полиэтиленгликоль (ПЭГ 400) составляет (0.03):(0.5):(4÷1), полимеризацию проводят при 60-90°С.



 

Похожие патенты:
Изобретение относится к способу получения акриловых и метакриловых полимеров, которые могут быть использованы при получении композиционных материалов, покрытий, лакокрасочных изделий.
Изобретение относится к способу получения полиолефинов путем полимеризации олефинов при температуре 20-200°C и давлении 0,1-20 МПа, в присутствии катализатора полимеризации и состава антистатического действия в реакторе полимеризации.

Изобретение относится к акриловым полимерам с контролируемым размещением (само)реакционноспособных групп в структуре полимера. Полимеры находят применение для получения клеев и эластомеров.
Изобретение относится к способам получения супервпитывающих полимеров. Предложен способ получения супервпитывающего полимера, включающий а) проведение для композиции мономера, содержащей (мет)акриловую кислоту и инициатор полимеризации, термической полимеризации или фотополимеризации с получением полимерного гидрогеля, b) высушивание полимерного гидрогеля, с) размалывание высушенного полимерного гидрогеля до размера частиц 150-850 мкм, d) добавление к размолотому полимерному гидрогелю частиц, характеризующихся i) площадью удельной поверхности согласно методу БЭТ в диапазоне от 300 до 1500 м2/г и ii) пористостью, составляющей 50% и более, и поверхностного сшивателя и е) проведение реакции поверхностного сшивания.

Изобретение относится к способу разделения полимерных и газообразных компонентов состава, полученных в результате полимеризации под высоким давлением этиленненасыщенных мономеров в присутствии катализаторов полимеризации со свободными радикалами.

Изобретение относится к способу получения блок-сополимеров, к блок-сополимеру и его применению в качестве регулятора реологических свойств жидкой среды. Способ получения блок-сополимера включает этап (Е) мицеллярной радикальной полимеризации.

Настоящее изобретение относится к композиции добавки для контроля и ингибирования полимеризации ароматических виниловых мономеров, включающих стирол. Описана композиция добавки для контроля и ингибирования полимеризации ароматических виниловых мономеров, включающих стирол, состоящая из: (a) одного или нескольких производных хинон-метида; и характеризующаяся тем, что композиция дополнительно содержит: (b) один или несколько третичных аминов, причем указанный третичный амин выбирают из группы, состоящей из: (i) триизопропаноламина (TIPA), (ii) N,N,N',N'-тетракис(2-гидроксиэтил)этилен-диамина (THEED) и (iii) их смеси.

Изобретение относится к способу непрерывной газофазной полимеризации. Способ включает полимеризацию олефина с получением полимера на основе олефина в реакторе полимеризации и введение светостабилизатора на основе затрудненного амина в реактор полимеризации.

Изобретение относится к сгущающему средству, способу его получения, к содержащей поверхностно-активные вещества кислотной композиции, включающей по меньшей мере одно сгущающее средство, применяемой в качестве кондиционера для стирки белья или жидких моющих средств, а также применение сгущающего средства, например, в качестве средства, изменяющего вязкость.

Изобретение относится к применению способа полимеризации олефина для увеличения производительности катализатора. Способ полимеризации олефинов включает пропускание потока катализатора через впрыскивающую форсунку и в псевдоожиженный слой, расположенный в реакторе.
Изобретение относится к смолам для получения носителей для тонеров, предназначенных для электрофотографической печати. Описан способ получения латексных смол, предназначенных для нанесения покрытия на носители, осуществляемый путем порционного введения смеси анионогенного поверхностно-активного вещества, по меньшей мере одного алифатического циклоакрилата и по меньшей мере одного диалкиламиноакрилата в смесь анионогенного поверхностно-активного вещества с водой с получением эмульсии, содержащей частицы латекса.

Настоящее изобретение относится к полиакрилату, полученному радикальной полимеризацией по меньшей мере одного акрилатного мономера (Ас) в присутствии полимерного фотоинициатора.

Изобретение относится к способу улучшения свойств текучести расплава, содержащего термопластичный полимер, включающему введение в состав названного термопластичного полимера перед переработкой расплава или во время переработки расплава от 0,005% до 0,5% массы из расчета на массу термопластичного полимера одного или нескольких гребенчатых сополимеров или гребенчатых блоксополимеров, которые получают на первой стадии а) свободнорадикальной полимеризацией алкилового эфира акриловой или метакриловой кислоты с числом атомов углерода в алкильной группе от одного до десяти и, при необходимости, одного или нескольких мономеров без сложноэфирной связи, а на второй стадии б) модифицированием в полимераналогичной реакции переэтерификации с первичным или вторичным спиртом с образованием гребенчатого сополимера или гребенчатого блоксополимера.

Изобретение относится к аналитической химии, а именно к исследованию и анализу высокомолекулярных материалов с помощью ИК-спектроскопии при определени состава сополимеров полиакрилата и полиакрилонитрила (ПАН) для обеспечения контроля качества углеродного волокна.

Изобретение относится к формированию радикально полимеризуемой покрывающей композиции, используемой при отделке транспортных средств, в частности автомобиля, и методам отверждения такой покрывающей композиции.

Изобретение относится к методам отверждения покрывающих композиций, содержащих радикально полимеризуемое соединение и органоборан-аминный комплекс, и которые используют при формировании отвержденного покрытия, например при отделке автомобиля.

Заявляемое изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотополимеризующейся композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей.

Изобретение относится к способу получения ацетонциангидрина. Предлагаемый способ включает в качестве стадий: A) взаимодействие ацетона и синильной кислоты в реакторе для получения реакционной смеси, причем реакционную смесь подвергают циркуляции и получают ацетонциангидрин; B) охлаждение, по меньшей мере, части реакционной смеси; C) отвод, по меньшей мере, части полученного ацетонциангидрина из реактора; D) непрерывную дистилляцию отведенного полученного ацетонциангидрина с получением кубового продукта ацетонциангидрина и головного продукта ацетона в дистилляционной колонне; E) возвращение, по меньшей мере, части головного продукта ацетона на стадию А.

Изобретение относится к способу получения ацетонциангидрина. .

Изобретение относится к усовершенствованному способу получения сложных алкиловых эфиров метакриловой кислоты, который включает следующие стадии: i) предоставление ацетонциангидрина, ii) реализацию контакта ацетонциангидрина с неорганической кислотой, сопровождаемую образованием метакриламида, iii) реализацию контакта метакриламида со спиртом в реакторе в присутствии неорганической кислоты при температуре от 100 до 140°С, сопровождаемую образованием сложного алкилового эфира метакриловой кислоты, iv) непрерывное выведение по меньшей мере части сложного алкилового эфира метакриловой кислоты из реактора в дистилляционную колонну в виде потока вторичных паров, причем указанное выведение осуществляют путем подачи в реактор содержащего водяной пар выводящего потока.

Изобретение относится к фторсодержащим эфирам акриловой кислоты, в частности к новому мономеру - (перфтор-2-трихлорметилизопропил)акрилату, и полученному из него полимеру - (перфтор-2-трихлорметилизопропил)акрилату, который наиболее эффективно может использоваться для изготовления светопроводящих жил и оболочки оптических волноводов.

Изобретение относится к способу получения полиметилметакрилата для его использования в аналитическом приборостроении, в частности в способах экстракционных процессов с применением раздельных сред. Полимер может быть использован при разработке приборов контроля качества воды и воздушных сред, где используются экстракционные и оптические методы анализа. Способ получения полиметилметакрилата осуществляют радикальной полимеризацией в массе метилметакрилата в присутствии инициирующей системы, одним из компонентов которой является пероксид бензоила. Способ отличается тем, что в качестве второго компонента инициирующей системы используют метакрилат кальция, в качестве пластификатора используют полиэтиленгликоль при процентном соотношении пероксид бензоила : метакрилат кальция : полиэтиленгликоль - ::, полимеризацию проводят при 60-90°С. Технический результат – получение полимерного материала для твердофазной экстракции с улучшенными характеристиками по экстракционной способности полимера. 6 табл., 6 пр.

Наверх