Люминесцентный детектор катионов щелочных металлов

Изобретение относится к химии пористых металлорганических координационных полимеров и может быть использовано в качестве люминесцентного детектора катионов щелочных металлов. Материал имеет состав (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G, где ur - уротропин, fdc2-=2,5-фурандикарбоксилат, G=4DMF⋅14H2O⋅2H2fdc⋅2ur, состоит из вторичных блоков состава {Zn4(ur)(COO)12}, в которых к каждому атому азота уротропина координированы атомы цинка, и содержит гидрофобные и гидрофильные полости. При этом в гидрофильных полостях находятся гостевые катионы гидроксония, способные к замещению на катионы щелочных металлов. Изобретение позволяет получить материал, который сочетает преимущества твердотельного люминесцентного сенсора с высокой селективностью и чувствительностью по отношению к катионам щелочных металлов. 3 ил., 2 пр.

 

Изобретение относится к области химии и материаловедения, а именно к синтетической химии пористых металлорганических координационных полимеров, и может быть использовано в качестве люминесцентного детектора катионов щелочных металлов солей лития, натрия, калия, рубидия и цезия.

Детекция щелочных металлов необходима в самых различных областях современной науки и техники: от биохимии и биомедицины [G. R. С.Hamilton, S.K. Sahoo, S. Kamila, N. Singh, N. Kaur, В.W. Hyland, J.F. Callan, Chem. Soc. Rev., 2015, 44, 4415; J. Yin, Y. Hu, J. Yoon, Chem. Soc. Rev., 2015, 44, 4619] до атомной энергетики [A.G. Kalandarishvili, V.A. Kuchukhidze, T.D. Sordiya, Sh. Sh. Shartava, B.S. Stepennov, Atomic Energy, 1992, 73, 915]. Особенно важно определение катионов щелочных металлов для диагностики некоторых заболеваний; так, повышенное содержание катионов Li+ в крови человека приводит к сонливости, нечленораздельной речи и в конечном итоге вызывает тяжелое поражение нервной системы [D. Citterio, J. Takeda, М. Kosugi, Н. Hisamoto, S. Sasaki, H. Komatsu and K. Suzuki, Anal. Chem., 2007, 79, 1237]. Дисбаланс в содержании катионов натрия в крови ведет ряд серьезных заболеваний, связанных с изменением концентрации электролита в крови человека, таких как гипо- или гипернатримия, ведущих к изменению работы печени, а также периодонтиту [Т. Clausen, Physiol. Rev., 2003. 83, 1269; R.S. Kaslick, A.I. Chasens, I.D. Mandel, D. Weinstein, R. Waldman, T. Pluhar, R. Lazzara, J. Periodont, 1970, 41, 25]. Избыток ионов калия в крови ведет к бессоннице, общей слабости, может вызывать сердечный приступ и даже смерть [F.J. Gennari, Crit. Care Clin., 2002, 18, 273].

В литературе описано несколько подходов для детектирования ионов щелочных металлов, при этом большинство из описанных методов основаны на возникновении люминесцентного отклика при взаимодействии катионов металлов IA группы с супрамолекулярными системами, например при образовании аддуктов с модифицированными краун-эфирами. Однако применение растворимых соединений имеет ряд недостатков: 1. Возможность фактически одноразового использования такой молекулы-детектора, т.к. для повторного проведения опыта требуется извлечение вещества из раствора. 2. Как следствие, невозможность эффективного циклирования. В то же время использование твердых соединений с каркасной структурой помогает избежать этой проблемы, однако до сих пор не было получено твердотельных материалов, демонстрирующих заметный люминесцентный отклик при включении катионов щелочных металлов.

Ближайшими аналогами представленного в патенте соединения являются пористые каркасные металлорганические координационный полимеры, демонстрирующие люминесцентный отклик на включение ионов металлов. В качестве примера рассмотрим координационный полимер ZIF-8, [Zn(MeIM)2] (MeIM=2-метилимидазол).

ZIF-8 представляет собой твердое кристаллическое вещество, не растворимое в большинстве полярных и неполярных растворителей. Данный координационный полимер обладает цеолитоподобной каркасной структурой с топологией типа SOD, построенной на основе цинксодержащих фрагментов {Zn6(MeIM)6} и {Zn4(MeIM)4}. Благодаря наличию полостей внутри структуры координационного полимера соединение способно включать нитраты двухвалентных металлов [S. Liu, Z. Xiang, Z. Hu, X. Zheng, D. Cao, J. Mater. Chem., 2011, 21. 6649], что влияет на фотолюминесцентные свойства каркаса. Так, интенсивность характерной полосы при 449 нм (λвозб=396 нм) в спектре люминесценции каркаса ZIF-8 значительно падает при включении ионов Cu2+, однако использование данного соединения не позволяет определять катионы щелочных металлов.

До сих пор в литературе не было описано ни одного металлорганического координационного полимера, демонстрировавшего отчетливый отклик на включение катионов щелочных металлов, хотя имеются примеры включения солей щелочных металлов в фотолюминесцентные координационные полимеры. Так, тербиевый координационный полимер [Tb43-OH)4(bpdc)3(bpdca)0.5(H2O)6]ClO4, для спектра твердотельной фотолюминесценции которого характерна узкая интенсивная полоса при 544 нм, отвечающая переходу иона Tb3+ [J. М. Zhou et al., J. Phys. Chem. C, 2014, 118, 416], способен к сорбции хлоридов натрия и калия из водных растворов, однако включение катионов в каркас не приводит к значительному изменению интенсивности фотолюминесценции. Другим аналогом является кристаллический магнийсодержащий координационный полимер [Mg(DHT)(dmf)2] (H2DHT=2,5 - дигидрокситерефталевая кислота, dmf=N,N-диметилформамид), имеющий интенсивную широкую полосу в твердотельном спектре фотолюминесценции при 508 нм, который способен сорбировать нитраты лития и натрия из раствора в диметилсульфоксиде, однако включение солей практически не влияет на интенсивность полосы в спектре [K. Jayaramulu et al., Inorg. Chem., 2012, 51, 10089] и не позволяет использовать данное соединение для определения катионов щелочных металлов.

Близким аналогом изобретения, демонстрирующим люминесцентный отклик именно при взаимодействии структуры-хозяина с гостевыми катионами щелочных металлов, являются производные хорошо растворимых краун-эфиров. Эти соединения обладают довольно сложным строением и состоят из двух блоков: кольцо краун-эфира, выполняющее роль рецептора для анализируемых катионов, и присоединенный к нему хромофорный фрагмент. Захват катионов щелочных металлов рецептором ведет к изменению электронной структуры всей молекулы и, следовательно, ее люминесцентных свойств [M.K. Kim, С.S. Lim, J.Т. Hong, J.Н. Han, H.-Y. Jang, H.M. Kim and B. R. Cho, Angew. Chem., Int. Ed., 2010, 49, 364; M. Magzoub, P. Padmawar, J.A. Dix and A. S. Verkman, J. Phys. Chem. B, 2006, 110, 21216-21221]. Однако сложность извлечения данных веществ из раствора после определения металла затрудняет повторное использование данных соединений в качестве детектора. Использование же твердых нерастворимых соединений с каркасной структурой помогает избежать этой проблемы, однако до сих не было получено твердотельных материалов, демонстрирующих заметный люминесцентный отклик при включении катионов щелочных металлов.

Задачей изобретения является получение материала, который сочетает преимущества твердотельного люминесцентного сенсора с высокой селективностью и чувствительностью по отношению к катионам щелочных металлов. Техническим результатом изобретения является создание твердотельного люминесцентного материала-детектора катионов щелочных металлов, обладающего селективностью и чувствительностью к этим металлам.

Технический результат достигается тем, что люминесцентный детектор катионов щелочных металлов на основе металлорганического координационного полимера, характеризующегося наличием гидрофильной полости, имеет состав (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G, где ur - уротропин, fdc2-=2,5-фурандикарбоксилат, G=4DMF⋅14H2O⋅2H2fdc⋅2ur, состоит из вторичных блоков состава {Zn4(ur)(COO)12}, в которых к каждому атому азота уротропина координированы атомы цинка, и содержит гидрофобные и гидрофильные полости, при этом в гидрофильных полостях находятся гостевые катионы гидроксония, способные к замещению на катионы щелочных металлов.

Отличительными признаками изобретения являются: уникальная структура нового металлорганического координационного полимера на основе катионов цинка (II) и 2,5-фурандикарбоновой кислоты состава (H3O)2[Zn4(ur)(Hfdc)2(fdc)4], наличие двух полостей - гидрофобных и гидрофильных, в гидрофильных полостях находятся гостевые катионы гидроксония, способные к замещению на катионы щелочных металлов, характер спектров люминесценции координационного полимера и его аддуктов с катионами щелочных металлов.

Координационный полимер состава (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G (ur = уротропин, fdc2-=2,5-фурандикарбоксилат, G=4DMF⋅14H2O⋅2H2fdc⋅2ur) получен нагреванием смеси гексагидрата нитрата цинка (II), 2,5-фурандикарбоновой кислоты, уротропина и N-метилпирролидона при 100°С в течение суток.

По данным рентгеноструктурного анализа координационный полимер (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G построен из вторичных строительных блоков состава {Zn4(ur)(COO)12}, в которых к каждому атому азота уротропина координированы атомы цинка (рис. 1, а). Вторичные строительные блоки объединены посредством мостиковых фурандикарбоксилатов в трехмерный каркас, содержащий полости двух типов. К первому типу относятся гидрофобные полости диаметром порядка 4 , содержащие некоординированные гостевые молекулы растворителя. Также в структуре присутствуют гидрофильные полости, содержащие атомы кислорода пятичленного фуранового кольца и карбоксильных групп 2,5-фурандикарбоксилата, в которых находятся ионы гидроксония (H3O+) (рис. 1, б).

На рис. 1 представлено строение каркаса координационного полимера (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G, где а) структура вторичного строительного блока в координационном полимере (атомы цинка показаны зеленым, атомы азота синим, атомы кислорода красным, атомы углерода серым); б) гидрофильная полость внутри координационного полимера с катионом гидроксония (центральный атом кислорода показан розовым цветом, контакты показаны оранжевыми пунктирными линиями); Гидрофобные полости в фрагменте каркаса координацонного полимера, вид вдоль оси а.

Таким образом, по своему строению и расположению атомов кислорода фурановых колец полость напоминает кислородное окружение краун-эфиров, что ведет к схожему химическому поведению: координационный полимер способен вступать в реакции ионного обмена иона гидроксония, изначально присутствующего в этих полостях, на однозарядные катионы щелочных металлов. Так, выдерживание образца координационного полимера (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G в насыщенных растворах нитратов щелочных металлов (Li+, Na+, K+, Rb+, Cs+) в N-метилпирролидоне приводит к замещению ионов гидроксония на щелочной металл.

Рентгеноструктурные исследования по замещению иона гидроксония в координационном полимере показали, что обмен ионов гидроксония на катионы калия происходит полностью. Расстояния от атомов кислорода фурановых колец до катиона гидроксония составляют 2,9803(1) , а от атомов карбоксилатных групп COO- 3,0762(1) . После замещения Н3О+ на К+ расстояния катион калия - атомы кислорода фурановых колец составили 2,8588(0) , расстояния между катионами калия и кислородами карбоксилатных групп равны 3,0243(0) . В случае остальных солей щелочных металлов замещение происходит не полностью, что можно объяснить кинетическими факторами, различными радиусами гостевых катионов по сравнению с калием, не позволяющими им с помощью диффузии заместить все катионы гидроксония, однако даже неполное замещение катионов гидроксония на соответствующие катионы приводит к значительным изменениям фотофизических свойств полученного аддукта.

На рис. 2 представлены данные рентгенофазового анализа образцов координационного полимера и его аддуктов с катионами щелочных металлов, подтверждающих фазовую чистоту координационного полимера и его аддуктов с солями щелочных металлов (рис. 2).

После установления фазовой чистоты образцов были записаны их твердотельные спектры фотолюминесценции при комнатной температуре. На рис. 3 представлены спектры твердотельной фотолюминесценции координационного полимера и его аддуктов с катионами щелочных металлов.

Спектры были получены в диапазоне от 350 до 800 нм при длине волны возбуждения λвозб=340 нм. Изначально в спектре координационного полимера наблюдалась интенсивная широкая полоса испускания с максимумом при 470 нм (рис. 3), имеющая интралигандный характер. Включение солей щелочных металлов в полимер не ведет к изменению положения пика в спектре, однако оказывает влияние на его интенсивность.

Видно, что наиболее сильные изменения в интенсивности люминесценции произошли после реакции обмена ионов гидроксония на катионы с нитратами лития, калия и натрия, а также цезия, таким образом, соединение является эффективным люминесцентным детектором на эти катионы, что имеет большое значение для биомедицины и разработки методик ранней диагностики заболеваний, связанных с повышенным содержанием вышеперечисленных ионов в клетках тканей человека.

Типичные примеры.

Пример 1.

1.1. Синтез металлорганического координационного полимера состава (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G.

Смесь гексагидрата нитрата цинка (0,300 г, 1 ммоль), 2,5-фурандикарбоновой кислоты (0,160 г, 1 ммоль), уротропина (0,140 г, 1 ммоль) и N-метилпирролидона (25 мл) обрабатывают ультразвуком в течение 10 мин и нагревают при 100°С в закрытой стеклянной емкости в течение 24 ч. Полученные кристаллы промывают N,N-диметилформамидом (DMF) (2×10 мл), диэтиловым эфиром (2×10 мл) и сушат на воздухе. Выход: 0,186 г (40% в пересчете на Zn). Найдено (%): С 37.4, Н 4.6, N 8.6. Вычислено для (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G, G=4DMF⋅14H2O⋅2H2fdc⋅2ur, C78H118N16O60Zn4 (%):

С 37.5, Н 4.8, N 9.0. ИК-спектр (ν, см-1): 3371, 3126, 1628, 1580, 1524, 1422, 1353, 1243, 1225, 1194, 1163, 1102, 1025, 1013, 970, 850, 810, 781, 724, 663, 615, 566, 496.

1.2. Реакция катионного обмена.

Кристаллы (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G (G=4DMF⋅14H2O⋅2H2fdc⋅2ur) (0.038 мг) выдерживают в химическом стакане с пересыщенным раствором нитрата калия (1,6 г) в N-метилпирролидоне (50 мл) в течение 72 часов. Полученные кристаллы промывают N-метилпирролидононом (2×10 мл) и сушат на воздухе.

1.3. Исследование фотолюминесцентных свойств металлорганического координационного полимера (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G и его аддукта с калием.

Твердотельные спектры фотолюминесценции кристаллов полученного аддукта с калием K@[Zn4(ur)(Hfdc)2] и координационного полимера (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G (G=4DMF⋅14H2O⋅2H2fdc⋅2ur) регистрировали при комнатной температуре на приборе Varian Cary Eclipse в диапазоне от 350 до 800 нм при длине волны возбуждения λвозб=340 нм. В спектре наблюдалась широкая полоса с максимумом при 470 нм. При этом интенсивность пика в спектре после реакции обмена изменилась.

Пример 2. Синтез металлорганического координационного полимера и реакции катионного обмена с другими нитратами щелочных металлов проводят аналогично примеру 1. Фазовая частота всех соединений была установлена методом рентгенофазового анализа (РФА). Спектры фотолюминесценции были получены в аналогичных примеру 1 условиях.

Данные рентгенофазового анализа образцов координационного полимера и его аддуктов с катионами щелочных металлов представлены на рис. 2.

Спектры твердотельной фотолюминесценции координационного полимера и его аддуктов с катионами щелочных металлов представлены на рис. 3.

Люминесцентный детектор катионов щелочных металлов на основе металлорганического координационного полимера, характеризующегося наличием гидрофильной полости, отличающийся тем, что координационный полимер имеет состав (H3O)2[Zn4(ur)(Hfdc)2(fdc)4]⋅G, где ur - уротропин, fdc2-=2,5-фурандикарбоксилат, G=4DMF⋅14H2O⋅2H2fdc⋅2ur, состоит из вторичных строительных блоков состава {Zn4(ur)(COO)12}, в которых к каждому атому азота уротропина координированы атомы цинка, и содержит гидрофобные и гидрофильные полости, при этом в гидрофильных полостях находятся гостевые катионы гидроксония, способные к замещению на катионы щелочных металлов.



 

Похожие патенты:

Изобретение относится к области биохимии, в частности к способу обнаружения присутствия гена aad-12 в трансгенном растении сои, содержащем событие pDAB4472-1606. Также раскрыт набор для использования в указанном способе обнаружения присутствия или отсутствия гена aad-12 в геноме растения сои.

Группа изобретений относится к способам определения содержания асфальтенов в подземном пласте. Способ включает: перемещение скважинного инструмента в стволе скважины, проходящей в подземном пласте, причем подземный пласт содержит флюид различной вязкости; извлечение флюида в скважинный инструмент и измерение интенсивности флуоресценции; оценку содержания асфальтенов в извлеченном флюиде на основании измеренной интенсивности флуоресценции, причем отношение интенсивности флуоресценции к содержанию асфальтенов не является линейным и определяется, например, по следующей формуле: , где Iƒ представляет собой измеренную интенсивность флуоресценции; α представляет собой параметр подгонки; β' представляет собой параметр, определяемый как (8RTτ0)/3; R представляет собой универсальную газовую постоянную; Т представляет собой температуру извлеченного флюида; τ0 представляет собой собственное время жизни флуоресценции; η представляет собой вязкость; [А] представляет собой содержание асфальтенов.

Изобретение относится к регулированию текучей среды в оптических датчиках. Оптический датчик содержит: головку датчика, включающую в себя первое и второе оптическое окно, по меньшей мере, один источник света, излучающий свет через первое оптическое окно в поток текучей среды и, по меньшей мере, один детектор, обнаруживающий флуоресцентные излучения через второе оптическое окно из потока текучей среды; проточную камеру, включающую в себя корпус, задающий полость, в которую вставляется головка датчика, впускной порт, передающий поток текучей среды за пределами полости внутрь полости, и выпускной порт, передающий поток текучей среды изнутри полости обратно за пределы полости, при этом впускной порт задает первое сопло, направляющее часть потока текучей среды к первому оптическому окну, и второе сопло, направляющее часть потока текучей среды ко второму оптическому окну.

Изобретение относится к области обработки данных и медицины, а именно к нейроонкологии. Способ включает следующие этапы, на которых получают изображение исследуемого участка ткани, полученное в ходе проведения флуоресцентной диагностики и фиксированное с помощью монохромной и цветной видеокамер.

Изобретение относится к области оптических измерений и касается дозиметра ультрафиолетового излучения. Дозиметр включает в себя последовательно расположенные по ходу распространения излучения средство оптической фильтрации, пропускающее ультрафиолетовое излучение, фотолюминесцентный преобразователь ультрафиолетового излучения в видимое и фотодетектор.

Группа изобретений относится к приборам для качественного и количественного анализа нуклеиновых кислот (ДНК и РНК) и может быть использована в медицинской практике при диагностике инфекционных, онкологических и генетических заболеваний человека и животных, в также в исследовательских целях.

Группа изобретений относится к медицине, биологии и включает систему и способ ее использования для адресного контроля нейронов мозга живых, свободноподвижных животных на основе размыкаемого волоконно-оптического зонда с многоканальными волокнами.

Группа изобретений относится к области анализа биологических материалов, в частности медицинских тестов. В заявке описаны устройство, система, способ и машиночитаемый носитель для универсального анализа результатов иммунологических диагностических экспресс-тестов.

Изобретение относится к медицине и может быть использовано для визуализации биологических объектов. Для этого осуществляют мечение анализируемых клеточных компонент, клеток, тканей или органов флуоресцентными зондами.

Изобретение относится к медицине и касается способа дифференциальной диагностики аденомы с дисплазией III степени и ранней аденокарциномы толстой кишки, включающего исследование биоптатов новообразования толстой кишки, где гистологический срез биоптата новообразования толстой кишки подвергают флуориметрическому исследованию, измеряя спектры возбуждения флуоресценции с последующим сравнением спектров, испускаемых исследуемым фрагментом ткани, со спектрами доброкачественных и злокачественных новообразований толстой кишки.

Изобретение относится к получению ацетилсалицилата тербия(III), который находит применение в качестве излучающего вещества в электролюминесцентных устройствах. Описывается электрохимический синтез ацетилсалицилата тербия(III) в безводном ацетонитрильном растворе фонового электролита - хлорида лития и ацетилсалициловой кислоты, взятой в количестве 3 ммоль, при мольном соотношении компонентов ацетонитрил : ацетилсалициловая кислота : хлорид лития 3000:3:2 соответственно, с анодом из металлического тербия и инертным катодом, анодной плотности тока 6-8 мА/см2 и силе тока 24-32 мА в течение 2,5-3,5 часов.

Изобретение относится к области светочувствительных материалов, применяющихся для записи информации на многослойных оптических дисках с флуоресцентным считыванием.

Изобретение относится к получению замещенных фталоцианинов, которые могут быть использованы в качестве люминесцентных материалов и красителей для полимерных материалов, в частности полистирола и вискозы.

Изобретение относится к осветительному устройству, включающему источник света для генерирования излучения источника света и конвертер света. Конвертер включает матрицу из первого полимера.

Изобретение относится к ингибиторам солеотложений, содержащим флуоресцентный маркер, и может быть использовано для предотвращения отложений солей в водооборотных системах.
Изобретение раскрывает тонер, флуоресцирующий красным цветом под действием УФ-излучения, содержащий пигмент, содержащий комплекс лантанидов в количестве по меньшей мере около 3% по весу, по меньшей мере одну аморфную смолу, необязательно кристаллическую смолу, агрегирующий агент, стабилизатор, который не образует комплексов металлических ионов, где стабилизатор содержит соль глюконовой кислоты, выбранную из глюконата натрия или глюконата калия, необязательно поверхностно-активное вещество и необязательно воск, при этом тонер имеет длину волны λmax поглощения от около 330 до 380 нм и длину волны λmax излучения от около 612 до 618 нм.

Изобретение относится к капиллярной дефектоскопии неразрушающего контроля деталей, а именно к составам жидкостей, применяемых для очистки контролируемой поверхности от избытка пенетранта.

Изобретение относится к новым комплексам лантанидов с органическими лигандами, которые могут быть использованы в органических светоизлучающих диодах. Описываются 9-антраценаты лантанидов формулы M(ant)3, где М - лантан и лантаниды, кроме прометия Pm и церия Ce, проявляющие люминесцентные свойства.

Изобретение относится к новым производным ряда 5-гидрокси-4,7-диметил-2-оксо-2H-хромен-6,8-дикарбальдегида, а именно к N',Nʺ'-((5-гидрокси-4,7-диметил-2-оксо-2H-хромен-6,8-диил)бис(метанилилиден))бис(4-бромбензогидразиду) формулы 1, обладающему свойствами амбидентатного хромогенного и флуоресцентного хемосенсора на катионы ртути (II) и фторид-анионы.

Изобретение относится к люминесцентным соединениям тербия и может быть использовано для создания люминесцентных меток, например для маркировки ценных бумаг. Описываются разнолигандные комплексные соединения тербия с фенантролином формулы Tb(L)3(phen) и их сольваты, за исключением трис-салицилата Tb(sal)3(phen), где Tb(L)3 - комплекс тербия с анионным органическим лигандом L, проявляющий при комнатной температуре ионную, регистрируемую визуально люминесценцию тербия, (phen) – фенантролин.

Изобретение относится к получению замещенных фталоцианинов, которые могут быть использованы в качестве люминесцентных материалов и красителей для полимерных материалов, в частности полистирола и вискозы.

Изобретение относится к химии пористых металлорганических координационных полимеров и может быть использовано в качестве люминесцентного детектора катионов щелочных металлов. Материал имеет состав 2[Zn424]⋅G, где ur - уротропин, fdc2-2,5-фурандикарбоксилат, G4DMF⋅14H2O⋅2H2fdc⋅2ur, состоит из вторичных блоков состава {Zn412}, в которых к каждому атому азота уротропина координированы атомы цинка, и содержит гидрофобные и гидрофильные полости. При этом в гидрофильных полостях находятся гостевые катионы гидроксония, способные к замещению на катионы щелочных металлов. Изобретение позволяет получить материал, который сочетает преимущества твердотельного люминесцентного сенсора с высокой селективностью и чувствительностью по отношению к катионам щелочных металлов. 3 ил., 2 пр.

Наверх