Производные полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) и способ их получения

Изобретение относится к производному полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты), которое может применяться для флуоресцентного анализа, формулы

где, когда X и Z образуют фрагмент -СН2=СН2-, R представляет собой Cl; когда X и Z представляют собой Н, R представляет собой Н. Это производное получают путем обработки полигетероарилдикарбоновой кислоты 10-кратным мольным избытком хлористого тионила с последующим взаимодействием полученного хлорангидрида с тетраэтил[иминоди(метилен)]бис(фосфонатом), взятым в мольном соотношении 2:1 по отношению к дикарбоновой кислоте, после чего полученный этиловый эфир гидролизуют 10-кратным мольным избытком триметилхлорсилана. Предложены новые соединения, эффективные в качестве органических водорастворимых лигандов для комплексообразования с ионами f-элементов, а также новый эффективный способ их получения. 2 н. и 2 з.п. ф-лы, 1 ил., 6 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к способу синтеза 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты) и 4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты) в качестве органических водорастворимых лигандов для комплексообразования с ионами f-элементов (в первую очередь с ионами европия), что может быть использовано во времяразрешенном иммунофлуоресцентном и других видах флуоресцентного анализа.

Предпосылки создания изобретения

Иммунохимический анализ на сегодняшний день признан одним из самых точных и результативных методов лабораторной диагностики различных опухолевых заболеваний, поскольку он обладает высокой точностью и воспроизводимостью результатов. Его относят к методам связывания - группе родственных методов, отличительной особенностью которых является возможность определять количество анализируемого вещества не по биологической (функциональной) активности, а по количеству комплекса-метки, образовавшегося при взаимодействии этого вещества со связывающим агентом и последующим измерении его распределения между «свободной» и «связанной» фазами. Иммунофлуоресцентный анализ не уступает в чувствительности и специфичности широко распространенным методам иммуноанализа с применением радиоактивной и ферментной метки. При этом нужно отметить, что флуоресцентные метки значительно дешевле изотопных, срок годности наборов для иммунофлуоресцентного анализа намного больше, чем наборов радиоиммунного анализа, а флуоресценцию можно измерять на простых флуориметрах. Хотя многие достоинства иммунофлуоресцентного анализа свойственны и методам иммуноферментного анализа (доступность методик ковалентного связывания ферментов с антигенами или антителами, стабильность меченых продуктов, безопасность и др.), но главный недостаток иммуноферментного анализа связан со способом измерения результата анализа, а именно с необходимостью дополнительной операции определения активности фермента с помощью соответствующего субстрата. Эта операция усложняет и замедляет анализ и в принципе может снижать точность результата. Кроме того, биологические образцы часто содержат ферменты, активность которых близка к активности ферментной метки. На результат анализа могут влиять и другие факторы, например присутствие в пробах ингибиторов фермента. Тот же недостаток (высокий уровень фона), а также неспецифическое окрашивание тканей некоторых типов, в частности почечных, имеет биотин-авидиновый комплекс. Исходя из вышесказанного, эффективным, недорогим и безопасным является использование флуоресцентных меток в иммуногистохимическом анализе.

Развитие флуоресцентного анализа в настоящее время происходит в следующих направлениях: поиск новых способов (технологий) проведения иммунохимических реакций и разделения их компонентов, разработка новых методов детекции и обработки флуоресцентного сигнала, увеличение чувствительности методов и поиск новых высокочувствительных маркеров, в первую очередь на основе хелатов ионов лантаноидов с гетероциклическими ароматическими соединениями (Hanaoka K.; Kikuchi K.; Kobayashi S.; Nagano Т.: Time-Resolved Long-Lived Luminescence Imaging Method Employing Luminescent Lanthanide Probes with a New Microscopy System. J. Am. Chem. Soc. 2007, 129, 13502-13509. Mizukami S.; Yamamoto Т.; Yoshimura A.; Watanabe S.; Kikuchi K.: Covalent Protein Labeling with a Lanthanide Complex and Its Application to Photoluminescence Lifetime-Based Multicolor Bioimaging. Angew. Chem. Int. Ed. 2011, 50, 8750-8752. Mizukami S.; Tonai K.; Kaneko M.; Kikuchi K.: Lanthanide-Based Protease Activity Sensors for Time-Resolved Fluorescence Measurements. J. Am. Chem. Soc. 2008, 130, 14376-14377. Liu X.; Ye Z.; Wei W.; Du Y.; Yuan J.; Ma D.: Artificial luminescent protein as abioprobe for time-gated luminescence bioimaging. Chem. Commun. 2011, 47, 8139-8141).

В ряде работ описано получение фосфонатных хелатирующих агентов на основе замещенного пиридина (L. Charbonniere, С. Christine, A. Lecointre, K. Nchmimi Nono "Bifunctional phosphonate chelating agents" US 0199243 18 june 2012; P.J. Cywinski, K. Nchimi Nono, L. Charbonniere, T Hammanna, H.-G. Lohmannsroben "Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays", Phys. Chem. Chem. Phys., 2014, 16, 6060; Song X.-P., Bouillon C., Lescrinier E., Herdewijn P. Iminodipropionic Acid as the Leaving Group for DNA Polymerization by HIV-1 Reverse Transcriptase//ChemBioChem., 2011, 12 (12), 1868). Но в указанных работах фосфонатная функция входит в состав аминогруппы, а не карбоксамидной.

Наиболее близким к изобретению является синтез диамидов 2,2'-бипиридил-6,6'-дикарбоновых кислот, описанный в патенте RU 2530025, Н.Е. Борисова, М.Д. Решетова, Ю.А. Устынюк, А.В. Иванов, Л.А. Коротков, М.Ю. Аляпышев, В.А. Бабаин "Диамиды 2,2'-бипиридил-6,6'-дикарбоновых кислот и способ их получения". Описанный в патенте способ получения диамидов 2,2'-бипиридил-6,6'-дикарбоновых кислот заключается в обработке хлорангидридов 2,2'-бипиридил-6,6'-дикарбоновых кислот различными этиларил замещенными вторичными аминами. Однако в данном методе не описано получение диамидов с функционально замещенными аминами.

Раскрытие изобретения

Задачей изобретения является синтез производных полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) и разработка способа их получения с целью образования люминесцирующих комплексов редкоземельных элементов.

Поставленная задача решается синтезом производных полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) общей формулы

где при X и Z, представляющих собой CH2 группы, соединенные между собой двойной связью (-СН2=СН2-), R представляет собой Cl; в случае, когда X и Z представляют собой Н, R представляет собой Н.

В случае при X=Z=H и R=H соединение представляет собой 2,2'-Бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен) тетракис(фосфоновую кислоту) формулы

При X и Z, представляющих собой CH2 группы, соединенные между собой двойной связью (-CH2=CH2-) и R=Cl соединение представляет собой 4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновую кислоту) формулы

Поставленная задача также решается способом получения заявляемых соединений, заключающемся в том, что полигетероарилдикарбоновые кислоты кипятят с хлористым тионилом, взятым в по меньшей в 10-кратном мольном избытке по отношению к кислоте, а затем полученные хлорангидриды обрабатывают вторичным амином тетраэтил[иминоди(метилен)]бис(фосфонатом), взятом в мольном соотношении не менее чем 2:1 по отношению к полигетероарилдикарбоновой кислоте с получением диамидов. Гидролиз последних в системе Me3SiCl/KI, взятом по меньшей мере в 10-кратном мольном избытке по отношению к эфиру приводит к получению заявляемых соединений.

Техническим результатом группы изобретений является синтез новых соединений, обладающих способностью образования люминесцирующих комплексов с редкоземельными элементами, а также в качестве лигандов для разделения редкоземельных элементов.

Краткое описание чертежей

На фиг. 1 представлены спектры испускания люминесценции растворов комплекса европия с 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислотой) в водном метаноле (λех=270 нм), где под цифрой 1 обозначен спектр раствора соединения в метаноле, 2 - раствор с добавлением 100 мкл воды, 3 - с добавлением 200 мкл воды, 4 - с добавлением 300 мкл воды, 5 - с добавлением 400 мкл воды, 6 - с добавлением 500 мкл воды.

Осуществление изобретения

Для синтеза диамидов 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты) и 1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты) предложена следующая схема:

В качестве исходных соединений для синтеза заявляемых соединений используют полигетероарилдикарбоновые кислоты, выбранные из группы 2,2-бипиридил-6,6-дикарбоновую кислоту и 4,7-дихлор-1,10-фенантролин-2,9-дикарбоновую кислоту, а также любые арилдикарбоновые кислоты.

Постадийный метод синтеза диамидов представлен ниже.

Исходную 2,2'-бипиридил-6,6'-дикарбоновую кислоту (0.37 г, 0.0015 моль) кипятили в 10 мл хлористого тионила с добавлением 0.3 мл диметилформамида в течение 2.5 ч. Хлористый тионил удаляли отгонкой, оставшийся хлорангидрид высушивали в вакууме водоструйного насоса и растворяли в 15 мл абсолютного тетрагидрофурана. Полученный раствор при перемешивании порциями добавляли к смеси 1 г (0.00315 моль) тетраэтил[иминоди(метилен)]бис(фосфоната) и 1 мл триэтиламина в 10 мл абсолютного тетрагидрофурана. По окончании прибавления полученную смесь защищали от влаги воздуха хлоркальциевой трубкой, перемешивали в течение 16 ч при комнатной температуре. К реакционной массе добавляли 5 мл воды и отделяли органический слой. Органическую фазу промывали водой и высушивали над безводным сульфатом натрия. После упаривания растворителя к полученному темному маслу добавляли 5 мл диэтилового эфира и затирали до образования осадка. Выпавший осадок отфильтровывали, промывали холодным эфиром и высушивали на воздухе. Получали 1 г (0.0012 моль, 79%) белого вещества. Тпл=116-118°С. Спектр ЯМР 1Н (CDCl3, J Нz, 400 MHz) δ, м. д.: 1.19 (12Н, т., 3J=7.0, СН2СН3), 1.36 (12Н, т., 3J=7.0, СН2СН3), 3.94-4.01 (8Н, м., СН2СН3), 4.20-4.27 (8Н, м., СН2СН3), 4.39 (4Н, д., 2J=11.1, 2СН2Р), 4.76 (4Н, д., 2J=11.2, 2СН2Р), 7.85 (2Н, д, 3J=7.5, 3,3'-СН), 7.97 (2Н, т, 3J=7.7, 4,4'-СН), 8.50 (2Н, д, 3J=7.2, 5,5'-СН). Спектр ЯМР 13С (CDCl3, 100 MHz) м. д.: 16.2 (д, J=5.1), 16.3 (д, J=5.0), 41.3 (д, J=155.9), 44.5 (д, J=154.7), 62.2 (д, J=6.0), 62.6 (д, J=5.7), 122.1, 125.4, 138.2, 152.5, 153.1, 167.5. Спектр ЯМР 31Р (CDCl3, 162.1 MHz) м. д.: 21.64, 21.65. Масс-спектр (MALDI-TOF), m/z: 881 [M+K]+. Найдено, %: С 45.72; Н 6.51; N 14.78. C32H54N4O14P4. Вычислено, %: С 45.61; Н 6.46; N 14.70.

Октаэтил{2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]}тетракис-(фосфрнат) (1) (0.1 г, 0.0001 моль) растворили в 3 мл сухого ацетонитрила, добавили сухой KI (0.15 г, 0.001 моль) и перемешивали до растворения. Затем медленно по каплям добавили триметилхлорсилан (0.11 г, 0.001 моль) и перемешивали при комнатной температуре 4 ч. По истечении этого времени реакционную массу фильтровали от хлористого калия, а ацетонитрил испаряли под вакуумом без нагрева. К сухому остатку добавили немного воды и упарили все досуха под вакуумом. К остатку добавили немного изопропилового спирта и затирали до кристаллизации. Выход: 0.040 г (65%), Тпл>250°С. Спектр ЯМР 1Н (D2O, J Hz, 400 MHz) δ, м. д.: 3.88 (4Н, д., 2J=10.7, 2СН2Р), 4.04 (4Н, д., 2J=11.8, 2СН2Р), 7.81 (2Н, д, 3J=7.7, 3,3'-СН), 8.20 (2Н, т, 3J=7.9, 4,4'-СН), 8.29 (2Н, д, 3J=8.1, 5,5'-СН). Спектр ЯМР 13С (D2O, 100 MHz) м. д.: 43.9 (д, J=146.7), 46.8 (д, J=145.4), 124.5, 125.2, 141.6, 150.7, 150.7, 167.7. Спектр ЯМР 31Р (D2O, 162.1 MHz) м. д.: 15.49, 16.97. Найдено, %: С 31.19; Н 3.65; N 9.14. C16H22N4O14P4. Вычислено, %: С 31.08; Н 3.59; N 9.06.

Исходную 4,7-дихлор-1,10-фенантролин-2,9-дикарбоновую кислоту (0.25 г, 0.00075 моль) грели при 60°С в 10 мл хлористого тионила с добавлением 0.3 мл диметилформамида в течение 4 ч. Хлористый тионил удаляли отгонкой, оставшийся хлорангидрид высушивали в вакууме водоструйного насоса и растворяли в 10 мл хлористого метилена. Полученный раствор при перемешивании порциями добавляли к смеси 0.57 г (0.0018 моль) тетраэтил[иминоди(метилен)]бис(фосфоната) и 0.5 мл триэтиламина в 5 мл хлористого метилена. По окончании прибавления полученную смесь защищали от влаги воздуха хлоркальциевой трубкой, перемешивали в течение 16 ч при комнатной температуре. К реакционной массе добавляли 5 мл воды и отделяли органический слой. Органическую фазу промывали водой и высушивали над безводным сульфатом натрия. После упаривания растворителя к полученному темному маслу добавляли 5 мл диэтилового эфира и затирали до образования осадка. Выпавший осадок отфильтровывали, промывали холодным эфиром и высушивали на воздухе. Получали 0.5 г (0.00053 моль, 71%) белого вещества. Тпл=120-123°С. Спектр ЯМР 1Н (CDCl3, J Hz, 400 MHz) δ, м. д.: 1.03 (12Н, т., 3J=6.6, СН2СН3), 1.35 (12Н, т., 3J=6.8, СН2СН3), 3.78-3.93 (8Н, м., СН2СН3), 4.20-4.38 (8Н, м., СН2СН3), 4.38 (4Н, д., 2J=11.4, СН2Р), 4.56 (4Н, д., 2J=11.6, СН2Р), 8.47 (2Н, с, 1,10-СН), 8.52 (2Н, с, 3,8-СН). Спектр ЯМР 13С (CDCl3, 100 MHz) м. д.: 16.2, 19.2, 19.4, 65.1, 65.5, 65.8, 127.2, 127.3, 128.1, 128.4, 147.5, 151.2, 167.1. Найдено, %: С 43.80; Н 5.66; N 7.08. C34H52Cl2N4O14P4. Вычислено, %: С 43.65; Н 5.60; N 5.99.

Октаэтил {4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди-(метилен)]}тетракис(фосфонат) (3) (0.2 г, 0.00021 моль) растворили в 3 мл сухого ацетонитрила, добавили сухой KI (0.315 г, 0.0021 моль) и перемешивали до растворения. Затем медленно по каплям добавили триметилхлорсилан (0.23 г, 0.0021 моль) и перемешивали при комнатной температуре 4 ч. По истечениии этого времени реакционную массу фильтровали от хлористого калия, а ацетонитрил испаряли под вакуумом без нагрева. К сухому остатку добавили немного воды и упарили все досуха под вакуумом. К остатку добавили немного изопропилового спирта и затирали до кристаллизации. Выход: 0.095 г (64%), Тпл>250°С. Спектр ЯМР 1H (D2O, 400 MHz) δ, м. д.: 4.46-4.51 (4Н, м, 2СН2), 4.49-4.54 (4Н, м, 2СН2), 8.47 (2Н, с, 1,10-СН), 8.52 (2Н, с, 3,8-СН). Найдено, %: С 30.58; Н 2.89; N 7.95. C18H20Cl2N4O14P4. Вычислено, %: С 30.40; Н 2.83; N 7.88.

Комплекс европия с 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислотой).

При перемешивании к раствору 2,2'-бипиридин-6,6-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислотой) (2) (0.02 г, 0.00003 моль) в 2 мл дистиллированной воды добавили раствор 0.013 г гексагидрата нитрата европия (III) в 0.5 мл дистиллированной воды, перемешивали 5 мин и отфильтровали белый осадок. Выход 85%. Спектр ЯМР 1Н (D2O, J Hz, 400 MHz): 3.55-3.60 (4Н, м., 2СН2), 3.74-3.80 (4Н, м., 2СН2), 7.51-7.60 (2Н, м., 2Н Аr), 8.03-8.17 (2Н, м., 2Н Ar), 8.46-8.55 (2Н, м., 2Н Ar). Найдено, %: С 20.17; Н 2.40; N 10.32. C16H22EuN7O23P4. Вычислено, %: С 20.10; Н 2.32; N 10.25.

Комплекс европия с 4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислотой).

При перемешивании к раствору 4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислотой) (4) (0.02 г, 0.000028 моль) в 2 мл дистиллированной воды добавили раствор 0.013 г гексагидрата нитрата европия (III) в 0.5 мл дистиллированной воды, перемешивали 5 мин и отфильтровали белый осадок. Выход 73%. Спектр ЯМР 1Н (D2O, 400 MHz) δ, м. д.: 4.46-4.51 (4Н, м, 2СН2), 4.49-4.54 (4Н, м, 2СН2), 7.86 (2Н, с, 1,10-СН), 7.95 (2Н, с, 3,8-СН). Найдено, %: С 20.80; Н 2.01; N 9.39. C18H20Cl2EuN7O23P4. Вычислено, %: С 20.61; Н 1.92; N9.35.

Комплекс нитрата европия с {[2,2'-бипиридин]-6,6-диилбис[карбонилнитрилобис(метилен)]}тетракис(фосфоновой кислотой) в метанольном растворе имеет квантовый выход люминесценции 36%, а при добавлении небольшого количества воды резко падает до 15% (фиг. 1). Дальнейшее разбавление метанола водой не изменяет квантовый выход люминесценции 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты) данного комплекса.

1. Производные полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) общей формулы

где при X и Z, представляющих собой CH2 группы, соединенные между собой двойной связью (-СН2=СН2-), R представляет собой Cl; в случае, когда X и Z представляет собой Н, R представляет собой Н.

2. Соединение по п. 1, характеризующееся тем, что представляет собой 2,2'-бипиридин-6,6'-диилбис[карбонилнитрилоди(метилен)тетракис(фосфоновую кислоту) формулы

3. Соединение по п. 1, характеризующееся тем, что представляет собой 4,7-дихлор-1,10-фенантролин-2,9-диилбис[карбонилнитрилоди(метилен)]тетракис(фосфоновую кислоту) формулы

4. Способ получения производных полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) по п. 1, включающий обработку полигетероарилдикарбоновой кислоты хлористым тионилом, взятым по меньшей мере в 10-кратном мольном избытке по отношению к дикарбоновой кислоте, а затем по реакции полученных хлорангидридов с тетраэтил[иминоди(метилен)]бис(фосфонатом), взятым в мольном соотношении не менее чем 2:1 по отношению к дикарбоновой кислоте, полученные этиловые эфиры гидролизуют триметилхлорсиланом, взятым по меньшей мере в 10-кратном мольном избытке по отношению к эфиру, с получением производных полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот).



 

Похожие патенты:

Изобретение относится к соединениям, выбранным из указанной ниже группы, а также их фармацевтически приемлемым солям, которые обладают ингибирующей активностью в отношении STAT3 и/или STAT5.

Изобретение относится к соединениям, выбранным из указанной ниже группы, а также их фармацевтически приемлемым солям, которые обладают ингибирующей активностью в отношении STAT3 и/или STAT5.

Изобретение относится к способу получения N-(фосфонометил)-глицина, используемого в качестве пестицида, арборицида, гербицида с широким спектром активности. Предложенный способ получения N-(фосфонометил)-глицина путем каталитического окисления N-алкильных-производных-N-(фосфонометил)-глицина в присутствии нанесенных на углеродные носители благородных металлов отличается тем, что в качестве окислителя используют пероксид водорода, а в качестве катализатора - наноразмерные частицы золота, нанесенные на углеродные носители.

Изобретение относится к соединениям, композициям на их основе для лечения инфекций и новообразований со структурами где R1 представляет собой остаток соединения, выбранного из группы, состоящей из цитарабина, флударабина, гемцитабина, клофарабина, кладрибина, видазы, дакогена, пентостатина и кладрибина или аристеромицина, ацикловира, ганцикловира, пенцикловира, адефовира, цидофовира, тенофовира, зидовудина и ламивудина; X и Y независимо представляют собой О, S или NH; и R2 и R3 независимо выбраны из группы, состоящей из Н, алкила, фенила, гетероарила и остатка фрагмента витамина В6, выбранного из где гетероарил представляет собой ароматическое кольцо, содержащее от 1 до 3 гетероатомов, выбранных из кислорода, серы и азота, и где по меньшей мере один из R2 и R3 представляет собой остаток фрагмента витамина В6, L представляет собой алкил.

Изобретение относится к 5-аминоспиро[2.3]гексан-1-фосфоновой кислоте указанной ниже формулы, которая является конформационно-жестким аналогом γ-аминомасляной кислоты и обладает психотропным действием.

Предлагаемое изобретение относится к новому гербициду и способу его получения, которые могут быть использованы в сельском хозяйстве. Предложена соль N1,N1,N4,N4-тетраметил-2-бутин-1,4-диамина с N-фосфонометилглицином формулы (1), которую получают взаимодействием N1,N1,N4,N4-тетраметил-2-бутин-1,4-диамина с эквимольным количеством водного раствора N-фосфонометилглицина при 20-25°С и перемешивании в течение 2,5-3,0 ч.

Изобретение относится к процессу получения используемого в сельском хозяйстве N-(фосфонометил)-глицина (Глифосата). В предложенном способе N-(фосфонометил)-иминодиуксусную кислоту подвергают каталитическому жидкофазному окислению водным раствором пероксида водорода в двухфазной системе (органическая фаза - водная фаза) в присутствии металлокомплексного катализатора с общей формулой Q3{PO4[W(O)(O2)2]4}, где: Q - четвертичный аммониевый катион - [(R1)3NR2]+, где: R1, R2 содержат от 1 до 16 атомов углерода.

Изобретение относится к соединению формулы IA или его фармацевтически приемлемой соли, где R4 представляет собой -CO2R4a, -C(O)NH2 или -СН2ОН; где R4a выбран из группы, состоящей из Н и СН3; R5 представляет собой Н или фтор; R6 выбран из группы, состоящей из: (i) С1-С4 алкила; (ii) С1-С3 фторалкила; (iii) -О-(C1-С6 алкила); (iv) -R6a, где R6a выбран из группы, состоящей из: (a) С3-С6 циклоалкила, (b) группы формулы (1b), где R6a1 представляет собой Н или -CH2CH2NH2; и (c) 5-членного гетероарила, содержащего 1-3 гетероатома, выбранных из группы, состоящей из N, О и S; где R6a является незамещенным или замещен 1-3 фрагментами R6a2, выбранными из группы, состоящей из галогена и С1-С3 алкила; (v) -O-R6b; где R6b выбран из группы, состоящей из: (a) С3-С6 циклоалкила; и (b) группы формулы (2b), где p равно 1 или 2 и q равно 1 или 2; где R6b является незамещенным; и R7 представляет собой Н или галоген.

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): , где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу -(СН2)n-, Ar, или -S-, n представляет собой число от 1 до 12, Y представляет собой алифатическую С1-С12 углеродную цепь, Ar представляет собой фенил, бифенил или нафтил и X представляет собой Н, Cl или независимую от Y С1-С12 углеродную цепь.

Изобретение относится к способу получения 1,3-диамино-2-гидроксипропан-N,N′-диметилфосфоновой-N,N′-диуксусной кислоты, которая может быть применена в качестве ингибитора отложения минеральных солей в системах водопользования промышленных предприятий, предприятий большой и малой энергетики и коммунального хозяйства.

Изобретение относится к получению металлоорганического каркасного соединения с люминесцентными свойствами. Способ включает смешение гидрата нитрата иттербия или эрбия или их смеси в диметилформамиде концентрации 9 ммоль/л с раствором бензол-1,3,5,-трикарбоновой кислоты в диметилформамиде концентрации 42 ммоль/л при комнатной температуре.

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций.

Изобретение относится к получению ацетилсалицилата тербия(III), который находит применение в качестве излучающего вещества в электролюминесцентных устройствах. Описывается электрохимический синтез ацетилсалицилата тербия(III) в безводном ацетонитрильном растворе фонового электролита - хлорида лития и ацетилсалициловой кислоты, взятой в количестве 3 ммоль, при мольном соотношении компонентов ацетонитрил : ацетилсалициловая кислота : хлорид лития 3000:3:2 соответственно, с анодом из металлического тербия и инертным катодом, анодной плотности тока 6-8 мА/см2 и силе тока 24-32 мА в течение 2,5-3,5 часов.

Изобретение относится к обратимому термохимическому индикатору на основе двойного координационного соединения - сесквигидрата гекса(изотиоцианато)хромата(III)диакватрис(никотиновая кислота)эрбия(III).

Изобретение относится к получению замещенных фталоцианинов, которые могут быть использованы в качестве люминесцентных материалов и красителей для полимерных материалов, в частности полистирола и вискозы.

Изобретение относится к способу полимеризации норборнена. Способ включает проведение полимеризации норборнена в присутствии компонентов катализатора - [(acac)Pd(L)2]BF4, где асас – ацетилацетонат, L - замещенные анилины, такие как 2,6-диизопропиланилин, 2,6-диметиланилин, орто-метиланилин, пара-метиланилин, и эфирата трифторида бора формулы BF3OEt2.

Изобретение относится к получению содержащих оксид индия покрытий. Способ жидкофазного получения содержащих оксид индия покрытий включает нанесение на подложку состава, содержащего по меньшей мере один оксоалкоксид индия общей формулы MxOy(OR)z[O(R’O)eH]aXbYc[R"OH]d), в которой x означает число от 3 до 25, у означает число от 1 до 10, z означает число от 3 до 50, а означает число от 0 до 25, b означает число от 0 до 20, с означает число от 1 до 20, d означает число от 0 до 25, е означает 0 или 1, M означает индий, R, R', R" соответственно означают органический остаток, X означает фтор, хлор, бром или йод и Y означает -NO3, -NO2, при условии, что сумма b+с означает число от 1 до 20, и по меньшей мере один растворитель.

Изобретение относится к способу получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином. Способ включает взаимодействие фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, сплавление полученного 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он с фенилуксусной кислотой и солью лантаноида при температуре 320-330°C в течение 50-60 мин, выделение и очистку целевых продуктов методом хроматографии.

Изобретение относится к порфиразину общей формулы в которой R представляет собой BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил). Изобретение также относится к порфиразиновому комплексу гадолиния и к применению порфиразина и порфиразинового комплекса гадолиния в качестве мультимодального агента фотодинамической терапии злокачественных новообразований.

Изобретение относится к способу повышения летучести комплексов лантаноидов. Способ включает получение бета-дикетонатных комплексов лантаноидов и их обработку кислородсодержащими органическими соединениями.

Изобретение относится к способу синтеза перфторированных алкоксидов лантаноидов, которые могут быть использованы в технологиях химического осаждения из газовой фазы при нанесении покрытий со специальными свойствами, при легировании полупроводников и синтезе сверхпроводниковых материалов, при разделении сложных смесей металлов и их глубокой очистке от примесей. Способ включает обработку комплексной соли лантаноида, в качестве которой применяют алифатические алкоксиды лантаноидов общей формулы (OCnH2n+1)3Ln, где CnX2n+1 - линейный или разветвленный алкильный радикал при n=3-4, соединением перфторированного спирта, в качестве которого используют триметилфторакоксисилан общей формулы [(CH3)3SiOCR1R2R3], где R1, R2, R3 являются CF3 или C2F5, в среде органического растворителя при нагревании и последующее удаление в вакууме растворителя и летучих продуктов реакции. Предлагаемый способ позволяет получить целевые продукты высокой чистоты при использовании упрощенной технологии. 1 з.п. ф-лы, 2 пр.
Наверх