Способ получения наноразмерных частиц серебра в водной среде



Способ получения наноразмерных частиц серебра в водной среде
Способ получения наноразмерных частиц серебра в водной среде
C25B1/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2654860:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кировский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Кировский ГМУ Минздрава России) (RU)

Изобретение относится к способу получения высокогомогенных по размерам (10-20 нм) наноразмерных частиц серебра в водной среде, включающему помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из серебра, пропускание между электродами переменного электрического тока. Способ характеризуется тем, что в качестве второго электрода используют серебряную пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет аммиачный раствор NH3 и перекисный раствор Н2О2, оба вещества взяты в молярном соотношении 3:1, при молярном соотношении данной смеси-катализатора к общему объему дистиллированной воды 1:100. Техническим результатом предлагаемого изобретения являются простота и дешевизна, низкая энерго- и ресурсоемкость получения высокогомогенных по размерам (10-20 нм) наноразмерных частиц серебра в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки. 1 ил.

 

Изобретение относится к области получения наноразмерных частиц серебра, распределенных в водной среде и стабилизированных соединениями (стабилизаторами).

Наноразмерные частицы серебра представляют собой агломераты атомарного серебра размерами 1-20 нм, поверхность которых окружена слоем молекул стабилизаторов, что позволяет достигать времен «жизни» системы вода/стабилизаторы/наноразмерные частицы серебра не менее 12 месяцев.

Наноразмерные частицы серебра, благодаря ярко выраженным биоцидным и канцероцидным свойствам, являются перспективным материалом и находят применение в медицине, ветеринарии и производстве косметических средств.

Получение наноразмерных частиц серебра в жидких средах состоит из 2-х основных операций:

1. Приготовление жидкой среды путем растворения стабилизаторов в органическом или неорганическом растворителе.

2. Выделение в полученную среду серебра в атомарной и/или ионной форме путем химических или электрохимических реакций с образованием наноразмерных частиц серебра.

Известно несколько способов получения наноразмерных частиц серебра в жидких средах, среди которых наиболее традиционным является химическое восстановление растворимых соединений серебра различными восстановителями.

Так, например, известен способ получения наночастиц серебра в водной среде, описанный Rodrigues-Sanchez L. et al. 2000. (источник Rodrigues-Sanchez L., Blanko M.L., Lopez-Quintela M.A. Electro-chemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B. 2000. Vol. 104. P 9683-9688).

Он состоит из следующих стадий:

1. Растворение стабилизатора (тетрабутиламмония бромида) в органическом растворителе (ацетонитриле).

2. Электрохимическое растворение анода (пластина серебра) в полученной на первой стадии органической среде.

При этом в качестве катода при пропускании постоянного электрического тока через раствор используют платину или алюминий. В описанном способе большая часть (55-80%) электрохимически растворенного серебра оседает на катодах в виде пленок (т.е. коэффициент выхода наночастиц серебра в раствор составляет не выше 45%). Также существенным недостатком способа является использование в качестве растворителя токсичного ацетонитрила, что исключает возможность применения финишной среды, содержащей наночастицы серебра, для медицины, ветеринарии и производства косметических препаратов.

Наиболее близким по технической сущности к предлагаемому является способ получения наночастиц серебра, включающий растворение стабилизаторов в растворителе, помещение в полученный раствор анода, выполненного в виде серебряной пластины, и катода, электрохимическое растворение анода при пропускании через раствор стабилизированного постоянного тока, в качестве растворителя применяют дистиллированную воду, в качестве катода используют пластину из нержавеющей стали, а процесс растворения стабилизаторов проходит в две стадии: сначала в дистиллированной воде при нагревании до 45-55°C и перемешивании растворяют стабилизатор, выбранный из полигликолей, поливинилпирролидона, желатина или полиакрилата натрия или калия, а затем после охлаждения в полученный раствор добавляют при перемешивании стабилизатор, выбранный из цитратов аммония, калия или натрия (метод Крейцберга-Голикова RU 2390344 С2, МПК А61К 33/38, опубл. 05.2010).

Недостатком указанного способа получения наночастиц серебра в водной среде является его сложность осуществления, необходимость соблюдать технику безопасности при работе с агрессивными химическими агентами.

Техническим результатом предлагаемого изобретения является упрощение и удешевление получения наноразмерных частиц серебра в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров до 10-20 нм, количество частиц увеличивается на порядки. При этом поверхность частиц возрастает. Чем больше число частиц и их суммарная поверхность, тем эффективнее действие, отсутствие острой токсичности, высокой бактерицидной и противоопухолевой активности по сравнению с другими способами получения наночастиц серебра в водных растворах, прозрачности, бесцветности, отсутствие вкуса и запаха. Полученная настоящим способом водно-мицеллярная система наноразмерных частиц серебра высокогомогенна в плане преобладания частиц наименьших размеров (10-20 нм). Это является фактором увеличения «терапевтического окна» (соотношение средней терапевтической и максимально допустимой дозы в единице объема жидкости) по сравнению с известными аналогами.

Поставленный технический результат достигается тем, что получение наноразмерных частиц серебра в водном растворе включает помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из серебра, пропускание между электродами переменного электрического тока, в качестве второго электрода используют серебряную пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет смесь перекиси водорода Н2О2 (1 молярная доля) и аммиачного раствора NH4 (3 молярных доли), при соотношении катализатора (предварительно подготовленная смесь перекиси и аммиачного раствора в молярном соотн. 1:3) к общему объему дистиллированной воды 1:100.

Предлагаемый способ реализуется устройством, показанным на чертеже. Устройство, реализующее предлагаемый способ получения наноразмерных частиц серебра в водном растворе, состоит рабочей емкости 1, разделенной на 2 камеры: камеру 2 и камеру 3, разделенных между собой микропористой мембраной 4, соотношение камеры 2 к камере 3 составляет 10:1 по объему. Устройство снабжено общей крышкой 5, на которой расположены (жестко фиксированы либо раздвигаются по специальному пазу с метками-фиксаторами - фиксаторы и метки на чертеже не показаны) два электрода 6 и 7, выполненные из серебра. Масса электродов по отношению к объему рабочей емкости 1 составляет 1:50 (на 1000 мл общего объема, общий вес электродов 20 г), соотношение электродов между собой 1:4, электрод с большим весом 7 монтируется на крышке над камерой 2, электрод с меньшим весом 6 над камерой 3. К электроду 7 присоединяется диод 8, например, Д 240, на оба электрода подается переменный ток напряжением 220 В. Позицией 9 обозначен рабочий раствор.

В обе камеры 2 и 3 наливается дистиллированная вода (Д/вода), в камеру 2 добавляется катализатор (смесь аммиачного раствора NH3 и перекиси водорода Н2О2), молярное соотношение катализатора к общему объему Д/воды составляет 1:100. Расстояние между пластинами устанавливается посредством их раздвижения по пазу скольжения и фиксации на метках-фиксаторах (паз и метки-фиксаторы на чертеже не показаны) в процессе работы по показаниям силы тока: при температуре рабочего раствора в камере 230°C сила тока должна составлять 2 А, при повышении силы тока расстояние между электродами увеличивается пользователем.

Простота и дешевизна, низкая энерго- и ресурсоемкость получения наноразмерных частиц серебра в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки. При этом поверхность частиц возрастает. Чем больше число частиц и их суммарная поверхность, тем эффективнее действие. Тем выраженней отсутствие острой токсичности, высокая бактерицидная и противораковая активность по сравнению с другими способами получения наноразмерных частиц серебра. Получаемый водный серебросодержащий состав прозрачен, бесцветен, лишен вкуса и запаха. Все это является достоинством и преимуществом предлагаемого технического решения по сравнению с прототипом.

Способ получения высокогомогенных по размерам (10-20 нм) наноразмерных частиц серебра в водной среде, включающий помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из серебра, пропускание между электродами переменного электрического тока, отличающийся тем, что в качестве второго электрода используют серебряную пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет аммиачный раствор NH3 и перекисный раствор Н2О2, оба вещества взяты в молярном соотношении 3:1, при молярном соотношении данной смеси-катализатора к общему объему дистиллированной воды 1:100.



 

Похожие патенты:

Изобретение относится к газодиффузионному слою для размещения между биполярной пластиной и электродом электрохимического элемента. Слой характеризуется тем, что он включает по меньшей мере два наслоенных друг на друга слоя, причем по меньшей мере один из слоев выполнен как пружинящий компонент с прогрессивной характеристикой пружины.

Изобретение относится к области получения наноматериалов, а именно нанопорошков кремния, и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток.

Изобретение относится к производству магнетитового литья и магнетитовых анодов, применяемых для электролиза водных сред (рН 2÷14) и катодной защиты от коррозии. Производят нагрев и плавление шихты из мелкой обогащенной магнетитовой руды, разлив в форму и кристаллизацию расплава в среде углекислого газа при атмосферном давлении.

Изобретение относится к способу получения раствора тетраметиламмония гидроксида, заключающемуся в том, что в пятикамерном электродиализаторе с ионообменными мембранами подвергают электродиализу хлорид тетраметиламмония.

Изобретение относится к электролизеру воды, содержащему источник тока, блок управления, герметичный корпус, на внешней поверхности которого установлен датчик температуры, подключенный к блоку управления, устройство для поддержания температуры герметичного корпуса в заданных пределах, расположенные в герметичном корпусе пористую гидрофильную мембрану, два прилегающих к ней пористых гидрофобных электрода - анода и катода, подключенных к источнику тока, две герметичные перегородки, одна из которых соединена с торцевой частью анода и герметичным корпусом с образованием кислородной полости между внешней поверхностью анода, перегородкой и внутренней поверхностью герметичного корпуса, а другая - с торцевой частью катода и герметичным корпусом с образованием водородной полости между внешней поверхностью катода, перегородкой и внутренней поверхностью герметичного корпуса, при этом между перегородками образована полость электролита, соединенная с магистралью подачи воды с клапаном заправки воды, магистрали выдачи водорода и кислорода с клапанами для их выпуска из соответствующих полостей, регулятор перепада давления газов, соединенный с магистралями выдачи указанных газов, и датчик давления, подключенный к блоку управления.

Изобретение относится к способу получения водорода с помощью термической диссоциации воды или низкотемпературных диссоциирующих веществ, содержащих в составе водород.

Изобретение относится к синтезу никотинатов металлов, которые могут применяться в качестве биологически активных добавок в сельском хозяйстве. Проводят электролиз насыщенного раствора никотиновой кислоты с медными электродами при постоянном токе, отделяют полученный осадок, промывают и сушат его.

Изобретение относится к улучшенному способу получения N1-[2-амино-4-(трифторметил)фенил]-N1-фенил-4-(трифторметил)бензол-1,2-диамина и его производных общей формулы (I). Получаемые соединения могут использоваться для синтеза ароматических полиимидов, находящих применение в различных передовых технологиях для полупроводников, упаковок электронных схем, топливных элементов, жидкокристаллических дисплеев (LCD), для разделения газов с использованием полимерных мембран.

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Устройство разложения воды на кислород и водород содержит емкость, выполненную из изоляционного материала и имеющую входное и выходное водяные отверстия.

Изобретение относится к устройству и способу получения обогащенной водородом воды и может быть использовано в медицинском оборудовании для оздоровительно-лечебных процедур и в хозяйственно бытовой деятельности.
Изобретение относится к антистатическим напольным покрытиям и может использоваться в производстве покрытий данного типа. Напольное покрытие содержит отверждаемую смолу и наполнитель, при этом отверждаемой смолой является эпоксидная смола, а наполнителем являются одностенные углеродные нанотрубки в количестве 0,001-0,5 мас.%, предпочтительно 0,01-0,05 мас.%.

Изобретение относится к радиоэлектронике и может быть использовано в устройствах измерения и контроля параметров материалов и изделий электронной техники. Измерительный зонд представляет собой консоль с проводящим покрытием и иглой из эвтектической композиции индий-галлий, удерживаемой на свободном конце консоли с помощью по меньшей мере одной металлической нити.

Изобретение относится к улучшенному способу получения вторичных аминов. Получаемые амины находят применение в фармацевтической, сельскохозяйственной промышленности и при производстве пластических масс.

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию.

Изобретение относится к биотехнологии. Описаны трансляторы на основе нуклеиновых кислот, способные осуществлять логические операции с улучшенной эффективностью, максимизированным выходом и сниженным побочным действием, в частности в биологической системе.

Представленные изобретения касаются способа детектирования наличия аналита в жидком образце, способа детектирования наличия патогена в образце цельной крови, способа детектирования наличия вируса в образце цельной крови, способа детектирования присутствия нуклеиновой кислоты-мишени в образце цельной крови, способа детектирования наличия организмов, относящихся к видам Candida в жидком образце, системы для детектирования одного или более аналитов нуклеиновой кислоты в жидком образце и сменного картриджа для размещения реагентов для анализа и расходных материалов в указанной системе.
Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об.

Использование: для создания оптических модуляторов и переключателей лазерного излучения в заданном спектральном диапазоне с использованием наноразмерной оптики.

Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния Si3N4, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость.
Изобретение относится к композитному материалу на основе углерода и способу его получения, который может быть использован в ракетно-космической и авиационной отраслях.

Изобретение относится к способу получения наноразмерных частиц золота в водной среде, включающему помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из золота, пропускание между электродами стабилизированного постоянного электрического тока, отличающемуся тем, что в качестве второго электрода используют золотую пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет смесь цитратного раствора С6Н8O7 и аммиачного раствора NH3, при молярном соотношении смеси-катализатора к общему объему дистиллированной воды 1:100. Техническим результатом предлагаемого изобретения являются дешевизна, безопасность, простота получения наноразмерных частиц золота в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки, при этом поверхность частиц возрастает, чем больше число частиц и их суммарная поверхность, тем эффективнее действие. 1 ил.

Изобретение относится к способу получения высокогомогенных по размерам наноразмерных частиц серебра в водной среде, включающему помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из серебра, пропускание между электродами переменного электрического тока. Способ характеризуется тем, что в качестве второго электрода используют серебряную пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет аммиачный раствор NH3 и перекисный раствор Н2О2, оба вещества взяты в молярном соотношении 3:1, при молярном соотношении данной смеси-катализатора к общему объему дистиллированной воды 1:100. Техническим результатом предлагаемого изобретения являются простота и дешевизна, низкая энерго- и ресурсоемкость получения высокогомогенных по размерам наноразмерных частиц серебра в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки. 1 ил.

Наверх