Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившего масла и вычисляют коэффициент испаряемости КG как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D и коэффициент сопротивляемости R по формуле: По данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления. Технический результат: расширение арсенала технических средств, относящихся к технологии испытания смазочных материалов для определения влияния концентрации продуктов окисления на их состав в зависимости от температуры испытания. 4 ил.

 

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления.

Известен способ определения термической стабильности смазочного масла путем определения коэффициента поглощения светового потока, вязкости, коэффициента энергетического состояния, температуры начала нагарообразования и разности коэффициентов поглощения светового потока до и после центрифугирования (патент РФ 2240558 О, дата приоритета 10.04.2003, дата публикации 20.11.2004, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения температурной стойкости смазочных масел, принятый в качестве прототипа, при котором отбирают пробу масла, делят ее на равные части, каждую из которых нагревают при атмосферном давлении с конденсацией паров и отводом конденсата, при этом для каждой последующей части пробы масла температуру испытания повышают на постоянную величину, после чего определяют коэффициент поглощения светового потока, величину испарившейся массы как разность массы пробы масла до и после испытания. Далее определяют коэффициент испаряемости как отношение испарившейся массы пробы масла к оставшейся массе и коэффициент сопротивляемости температурной деструкции, зависящий от коэффициента поглощения светового потока и коэффициента испарения, затем строят графическую зависимость коэффициента сопротивляемости температурной деструкции от температуры испытания, а температурную стойкость определяют по величине коэффициента сопротивляемости температурной деструкции в зависимости от температуры (патент РФ 2406087 С1, дата приоритета 08.06.2009, дата публикации 10.12.2010, авторы: Ковальский Б.И. и др., RU, прототип).

Недостатком прототипа и известного аналога является то, что они не учитывают влияние температуры испытания на состав продуктов окисления смазочных материалов.

Задачей изобретения является установление количественных показателей влияния температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации.

Для решения поставленной задачи предложен способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов, при котором пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившего масла и вычисляют коэффициент испаряемости КG как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D и коэффициент сопротивляемости R по формуле: По данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления.

На фиг. 1 представлены зависимости коэффициента сопротивляемости окислению от оптической плотности и температуры испытания минерального моторного масла Tavota Castle 10W-30 SL при температурах 180, 170 и 160°С. На фиг. 2 - зависимости при испытании частично синтетического моторного масла Zic А 10W-40 SL при температурах 200, 190 и 180°С. На фиг. 3 - зависимости частично синтетического моторного масла Zic 5000 10W-40 CG-4/SH при температурах 200, 190 и 180°С. На фиг. 4 - зависимости синтетического моторного масла Elf evolution 5W-40 SL/CF при температурах 180, 170 и 160°С.

Пример конкретного выполнения способа.

Испытанию подвергались товарные моторные масла: минеральное - Tavota Castle 10W-30 SL; частично синтетические Zic A 10W-40 SL и Zic 5000 10W-40 CG-4/SH; синтетическое Elf evolution 5W-40 SL/CF.

Пробу масла массой, например 100±0,1 г заливают в термостойкий стеклянный стакан и перемешивают стеклянной мешалкой с частотой вращения 300 об/мин. Температура испытания и частота вращения мешалки поддерживается автоматически. Через равные промежутки времени пробу окисленного масла взвешивают, определяют массу испарившегося масла, вычисляют коэффициент испаряемости как отношение массы испарившегося масла за время испытания t к массе пробы до испытания, отбирают часть пробы окисленного масла (2 г) для прямого фотометрирования при толщине фотометрируемого слоя 2 мм и определения оптической плотности D по формуле:

D=lg300/П,

где 300 - показания фотометра при незаполненной кювете окисленным маслом, мкА; П - показания фотометра при заполненной окисленным маслом кювете, мкА.

В связи с тем, что при термостатировании смазочного материала сброс избыточной тепловой энергии происходит по двум параллельным каналам с образованием продуктов окисления, концентрация которых определяется оптической плотностью D и продуктов испарения, выраженных коэффициентом испаряемости КG, то сопротивляемость испытуемого смазочного материала температурным воздействиям можно выразить параллельным соединением сопротивлений электрической цепи RЭ:

Если принять, что сопротивляемость любого смазочного материала температурным воздействиям равна единице, то при термостатировании его сопротивление будет уменьшаться до нуля, что будет соответствовать выражению для определения коэффициента сопротивляемости R:

По полученным данным оптической плотности D и коэффициента испаряемости КG при термостатировании исследуемых масел при разных температурах строятся графические зависимости изменения коэффициента сопротивляемости R от оптической плотности и температуры испытания (фиг. 1 - фиг. 4), по которым определяется влияние температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации. Установлено, что в начальный период термостатирования независимо от температуры испытания зависимости совпадают, что подтверждает одинаковый состав продуктов окисления. При большой концентрации продуктов окисления зависимости расходятся и тем больше, чем ниже температура испытания. Причем продолжительность совпадения зависимостей на одной кривой зависит от температуры испытания. Так, для минерального моторного масла Tavota Castle 10W-30 SL (фиг. 1) продолжительность однородного состава продуктов окисления составляла для температур 180, 170 и 160°С (кривые 1, 2 и 3) - D ≈ 0,06. Для частично синтетического моторного масла Zic A 10W-40 SL (фиг. 2) продолжительность однородного состава продуктов окисления составляла для температур 200, 190 и 180°С (кривые 1, 2 и 3) - D ≈ 0,13. Для частично синтетического моторного масла Zic 5000 10W-40 CG-4/SH (фиг. 3) продолжительность однородного состава продуктов окисления составляла для температур 200, 190 180°С (кривые 1, 2 и 3) - D ≈ 0,11. Для синтетического моторного масла Elf evolution 5W-40 SL/CF (фиг. 4) продолжительность однородного состава продуктов окисления составляла для температур 180 и 170°С (кривые 1 и 2) - D ≈ 0,15; для температур 170 и 160°С (кривые 2 и 3) - D ≈ 0,05.

Таким образом, установлено, что в начальный период окисления моторного масла различной базовой основы независимо от температуры термостатирования образуются продукты окисления одинакового состава (начальные), и их влияние на сопротивляемость масел температурным воздействиям также одинаковое. Дальнейшее увеличение оптической плотности вызывает преобразование начальных продуктов окисления в более энергоемкие, образование которых зависит от температуры термостатирования.

Предлагаемое техническое решение позволяет подтвердить механизм окисления смазочных масел, заключающийся в начальном образовании продуктов окисления независимо от базовой основы масел и температуры испытания, которые в дальнейшем переходят в более энергоемкие, влияющие более интенсивно на оптическую плотность и зависящие от температуры испытания.

Технический результат, достигаемый изобретением, заключается в расширении арсенала технических средств, относящихся к технологии испытания смазочных материалов для определения влияния температуры испытания смазочных материалов на состав продуктов окисления в зависимости от их концентрации.

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов, при котором пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием, через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившегося смазочного материала и вычисляют коэффициент испаряемости КG как отношение массы испарившего смазочного материала к массе пробы до испытания, отбирают часть пробы окисленного смазочного материала, определяют оптическую плотность D, определяют коэффициент сопротивляемости R по формуле: , по данным изменения коэффициента сопротивляемости R окислению от температуры испытания исследуемого смазочного материала строят графическую зависимость его от оптической плотности и температуры испытания, по которой определяют однородность состава продуктов окисления и влияние температуры на изменение состава в зависимости от концентрации продуктов окисления.



 

Похожие патенты:

Изобретение относится к способам защиты деталей из алюминиевых сплавов с применением упрочняющих покрытий и контроля этих покрытий при работе деталей в условиях кавитации и может быть использовано для выбора оптимального, с точки зрения кавитационной стойкости, режима нанесения покрытия и состава электролита при МДО.

Изобретение относится к области пожарной безопасности зданий. Сущность: осуществляют проведение технического осмотра, установление вида бетона и арматуры железобетонного элемента, выявление условий его опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонного элемента под испытательной нагрузкой в условиях стандартного теплового воздействия, проведение оценочных испытаний без разрушения по комплексу единичных показателей качества железобетонного элемента, при котором технический осмотр сопровождают инструментальными измерениями геометрических размеров железобетонного элемента и его опасных сечений, устанавливают площади бетона и арматуры в опасном сечении.

Изобретение относится к испытательной технике и может быть использовано при проведении комплексной оценки состояния изоляционного покрытия обмоток электродвигателей локомотивов.

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов.

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определения по полученным величинам пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определение, по полученным величинам, пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способу определения стойкости к истиранию по меньшей мере одного слоя износа, расположенного на несущей пластине. Сущность: осуществляют этапы: записи по меньшей мере одного БИК-спектра слоя износа, расположенного по меньшей мере на одной несущей пластине, a) перед затвердеванием по меньшей мере одного слоя износа, b) после затвердевания по меньшей мере одного слоя износа или c) перед затвердеванием по меньшей мере одного слоя износа с несущей пластиной и после него с применением по меньшей мере одного БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм; определения стойкости к истиранию по меньшей мере одного слоя износа путем сравнения БИК-спектра, записанного для определения стойкости к истиранию по меньшей мере одного слоя износа, по меньшей мере с одним БИК-спектром, записанным по меньшей мере для одного эталонного образца по меньшей мере одного слоя износа с известной стойкостью к истиранию, с помощью многопараметрового анализа данных (МАД), при этом по меньшей мере один БИК-спектр, записанный по меньшей мере для одного эталонного образца с известной стойкостью к истиранию по меньшей мере одного слоя износа, определили заранее a) после затвердевания по меньшей мере одного слоя износа или b) перед затвердеванием и после него с использованием того же БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм.

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, а именно к способам определения теплостойкости Т.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных при трех одинаковых временных интервалах, и возможности прогнозирования с получением значений показателей расчетным методом.

Изобретение предлагает устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при трех температурах, выбранных в зависимости от базовой основы и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в машиностроении. Способ заключается в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, при этом определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в узлах трения. Способ основан на использовании верхнего и нижнего слоя поверхностей трения в присутствии исследуемого слоя смазки между ними, при этом формируют молекулярную модель пары трения с рандомизированным расположением молекул в смазочном слое с использованием ЭВМ и программы молекулярного моделирования, реализующей методы молекулярной механики, молекулярной динамики и квантовой химии, при этом после размещения двух параллельных слоев поверхностей трения с исследуемым слоем смазки между ними, проводят, используя процедуры минимизации энергии системы, оптимизацию положения молекул в смазочном слое, после чего находят межфазную поверхностную энергию, путем определения разницы энергий системы до взаимодействия смазочного слоя с поверхностью трения и после взаимодействия; затем осуществляют циклический сдвиг верхней поверхности трения относительно нижней, сохраняя параллельность заданное количество раз, повторяя процесс оптимизации положения молекул на каждом шаге сдвига, вследствие чего молекулы в смазочном слое принимают определенное геометрическое расположение в пространстве; после чего с учетом расположения молекул относительно поверхностей трения по известным зависимостям рассчитывают ориентационный коэффициент, а коэффициент упорядоченности молекул в смазочном слое рассчитывают из заданного соотношения, затем с помощью программы молекулярного моделирования рассчитывают потенциальную энергию системы, при этом ориентационный коэффициент, коэффициент упорядоченности молекул в смазочном слое и максимальное значение потенциальной энергии системы коррелируют с напряжением сдвига и, соответственно, силой трения; после чего по полученным данным определяют наиболее эффективное смазочное средство, которое обладает наименьшим напряжением сдвига при наименьшем значении потенциальной энергии системы и наибольших ориентационном коэффициенте и коэффициенте упорядоченности.

Изобретение относится к области автоматического измерения физико-химических параметров жидкостей. Устройство содержит блок регистрации и управления, состоящий из вычислителя с программным обеспечением, включающего в себя алгоритм вычисления численных значений степени засоленности ДЭГ, который соединен передающими кабелями с терминалом ввода и отображения информации, дискретного модуля для управления установкой абсорбционной осушки газа и аналогового модуля для преобразования сигнала, полученного от кондуктометрического датчика, соединенных с вычислителем и блоком питания, измерительный модуль, состоящий из преобразователя сигналов и кондуктометрического датчика, соединенный с преобразователем сигналов специальным кабелем.

Изобретение относится к области испытания материалов с помощью нагрева, в частности к технологии определения температуры вспышки смазочных масел без применения поджога паров, и может быть использовано при оценке эксплуатационных характеристик товарных и работающих смазочных масел.

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления.
Наверх