Способ растворения натурального шелка

 

Изобретение относится к технологии производства волокон и пленок, в частности к способам растворения натурального шелка с получением растворов, пригодных для переработки в формовочные изделия. Из гидрата N-метилморфолин-N-оксида удаляют связаную воду, добавляют органический разбавитель до содержания воды и разбавителя 0,3-0,8 моль на 1 моль N-метилморфолин-N-оксида. В полученный комплекс помещают натуральный шелк и при 85-125oС перемешивают до полного растворения. 2 з. п. ф-лы, 1 табл.

Изобретение относится к способам растворения натурального шелка (в том числе некондиционного сырья) с получением растворов, пригодных для переработки в формовочные изделия (пленки, волокна), причем шелк регенерируется из раствора путем осаждения в водную или водно-органическую ванну.

Натуральный шелк представляет собой природный полимер фиброин (до 80%) с присутствием серицина, жировых, восковых и минеральных веществ. Большую трудность представляет собой растворение собственно фиброина шелка, так как другие составляющие достаточно легко растворимы в горячей воде или в известных органических растворителях.

Известны способы растворения фиброина природного шелка в концентрированных водных растворах солей, например хлористого кальция или роданистого аммония [Фиброин натурального шелка и модифицированные волокна на его основе.- Душанбе: Дониш, 1975, с. 37-39; McCormick C.L, Callais P.A., Hutchinson H. // Macromolecules, 1985, 18, 2394-2401; Petrus L., Gray D.G., BeMiller J. N. // Carbohydr. Res., 1995, 268, 319-323; Kettenbach G., Klufers P. , Mayer P. // Macromol. Symp., 1997, 120, 291-301], позволяющие получить концентрированные (10% полимера и более) растворы с формообразующими свойствами. Недостатком этого способа является необходимость проведения диализа растворов для удаления солей, что затрудняет создание непрерывного технологического цикла. Кроме того, для получения волокон и пленок часто бывает необходимо получать растворы двух или более полимеров в одном растворителе или смеси растворов полимеров в совместимых растворителях. Однако большинство полимеров растворимо не в водных, а в органических растворителях, и это обстоятельство не позволяет применять растворы смесей шелка с другими полимерами в одном растворителе. Но в известных органических растворителях шелк практически не растворяется.

Растворяют многие природные и синтетические полимеры, оксиды третичных аминов, в первую очередь N-метилморфолин-N-оксид (NMMO), способ получения которого в виде моногидрата (стабильная форма, в которой с молекулой аминоксида химически связана молекула воды) с температурой плавления 74-76oС и применение в качестве растворителя описаны в пат. США 34479399, опубл. 3.06.1969, МКИ С 09 D 3/04, 3/06, 3/08 (прототип). Названный растворитель предложен для растворения полимеров, содержащих водородные связи в своей кристаллической структуре, преимущественно целлюлозы, и в примерах показаны возможности растворителя для растворения других полимеров, в том числе натурального шелка. В прототипе приведен пример, согласно которому в моногидрате NMMO при 120oС можно получить 1,96% раствор шелка (см. табл. 1 патента). Как показывают экспериментальные исследования, указанная концентрация является максимальной для данного полимера, это связано с плохой растворимостью фиброина шелка в органических растворителях. Низкая концентрация полимера в растворе делает его непригодным для формования. То есть, в моногидрате NMMO нельзя получить формообразующий раствор натурального шелка.

Техническим результатом заявляемого способа является увеличение концентрации натурального шелка в растворе за счет увеличения его растворимости, придание раствору формообразующих свойств. Результат достигается тем, что из гидрата N-метилморфолин-N-оксида предварительно удаляют связанную воду, затем добавляют органический разбавитель до содержания воды и разбавителя 0,3-0,8 молей на 1 моль N-метилморфолин-N-оксида, в полученный комплекс помещают натуральный шелк и при 85-125oС перемешивают до полного растворения. В качестве органического разбавителя наиболее хорошие результаты дает использование апротонных разбавителей, лучше всего диметилсульфоксида (ДМСО).

Плохая растворимость натурального шелка обусловлена наличием в надмолекулярной структуре фиброина прочных внутри- и межмолекулярных водородных связей. Для перевода макромолекул в раствор необходимо, чтобы молекулы растворителя разъединяли связанные водородными связями макромолекулы и образовывали при сольватации активных групп полимера более прочные связи, чем в структуре полимера. Энергии связи полярной группы NO в моногидрате NMMO недостаточно для разрыва межмолекулярных водородных связей фиброина, поэтому моногидрат NMMO переводит в раствор только небольшую часть аморфных участков фиброина с ослабленной структурой, общая концентрация шелка в растворе не превышает 1,96%. Иными словами, растворимость фиброина шелка в моногидрате NMMO недостаточная для получения концентрированных растворов с формообразующими свойствами.

Существенным отличием предлагаемого технического решения является следующее. Как показали данные калориметрических исследований, при содержании воды и органического разбавителя 0,3-0,8 моль на 1 моль NMMO энергия взаимодействия растворителя с активными группами полимера резко увеличивается, и этой энергии оказывается достаточно для разрыва всех межмолекулярных связей в структуре полимера. После разрыва всех межмолекулярных связей в структуре фиброина шелка его растворимость существенно возрастает, и полимер полностью переходит в растворенное состояние. То есть, за счет увеличения растворимости фиброина шелка становится возможным получение концентрированных растворов полимера (10-15%), обладающих формообразующими свойствами и пригодных к переработке путем регенерации в осадительную ванну в виде волокон или пленок. Введение разбавителя дает возможность уменьшить температуру растворения при одновременном увеличении растворяющей способности комплексного растворителя при условии, что общее количество воды и разбавителя не превышает 0,3-0,8 моль на 1 моль NMMO. Наиболее благоприятным является использование органических разбавителей апротонной природы, например ДМСО, который за счет создания принципиально нового по качеству растворяющего комплекса дополнительно увеличивает энергию взаимодействия растворителя с активными группами полимера и позволяет получить растворы еще более высокой концентрации при уменьшенной до 85oС температуре. Принципиальной является последовательность приготовления раствора: перед растворением из моногидрата или водного раствора NMMO удаляется любым известным методом вода (например, удаление путем вакуумной отгонки), затем добавляют органический разбавитель, так чтобы общая сумма молей воды и разбавителя составляла 0,3-0,8 моль на 1 моль NMMO. В полученный комплекс помещают натуральный шелк в виде волокон, некондиционных волокон, некондиционной шелковой ткани и др. и при температуре 85-125oС перемешивают до полного растворения. Время растворения в зависимости от характеристик исходного шелка, температуры, скорости перемешивания составляет 5-30 мин. В качестве разбавителя могут быть использованы известные органические разбавители (например, пирролидон, спирт), но лучшие результаты дает использование разбавителей апротонной природы (например, ДМСО, ДМФА). Это связано с тем, что апротонные разбавители изменяют структуру растворителя, а ДМСО дополнительно увеличивает энергию сольватации. Экспериментально обнаружено, что если не придерживаться указанной последовательности приготовления раствора, например сначала смешать NMMO с разбавителем, а затем удалять воду или поместить шелк в моногидрат NMMO и после этого удалять воду или прибавлять разбавитель, то шелк не растворится - его растворимость останется очень низкой. Температурные пределы обусловлены растворимостью шелка (ниже 85oС растворимость пропадает) и его деструкцией (выше 125oС происходит деструкция полимера, и раствор теряет волокнообразующие свойства). Если брать суммарное количество воды и органического разбавителя больше указанного в формуле количества, то растворимость шелка пропадает, меньше - растворитель "работает" при температуре свыше 140oС, при этом происходит сильная деструкция полимера, приводящая к потере формообразующих свойств раствора.

Способ иллюстрируется следующими примерами (примеры использования способа выполнены как в лабораторных условиях, так и на полупромышленной установке, пример 4).

Пример 1. Получение комплекса NMMO0,3H2O0,5 ДМСО.

100 г моногидрата NMMO (на 86,7 г NMMO приходится 13,3 г химически связанной воды) с температурой плавления 74-76oС помещают в круглодонную трехгорлую колбу с мешалкой, обратным холодильником и вакуумным отсосом. На масляной бане нагревают содержимое до расплавления, затем при температуре 95-105oС и давлении 30-130 mbar отгоняют воду. Процесс прекращают, когда удалится 9,31 г воды. Таким образом, на 86,7 г NMMO приходится 3,99 г воды, при этом мольное соотношение составляет 1:0,3. К этому комплексу прибавляют 28,9 г ДМСО, или 0,5 моль на 1 моль NMMO. В полученный растворитель добавляют 12 г шелка-сырца 2 сорта (линейная плотность 2,33 текс, влажность 9,8%, разрывная нагрузка 28 сН/текс, удлинение при разрыве 20%). Продолжая поддерживать температуру 95oС, перемешивают до полного растворения шелка (15 мин). Полноту растворения контролируют в поляризованном свете микроскопа. Концентрация шелка в растворе составила 11,69%, вязкость раствора (контролировали при помощи Реотеста в одинаковых для всех растворов условиях) 1020 Пас. Из полученного раствора осаждением в водно-ацетоновую ванну сформовали пленки, которые после высушивания имеют разрывную прочность 77 Н/мм2, удлинение 5,5%.

Пример 2. Аналогично примеру 1 получают NMMO с содержанием воды 0,2 моль на 1 моль NMMO, отогнав 10,64 г воды, затем добавляют 5,78 г ДМСО. В полученном комплексе при 125oС растворили за 20 мин 14,86 г шелка (некондиционное сырье в виде коротких волокон длиной до 5 мм, диаметром 35 мкм, свойства аналогичны примеру 1). Полученный гомогенный прозрачный раствор имеет концентрацию 13,5%, вязкость 1250 Пас. Прочность сформованныx пленок составила 75 Н/мм2, удлинение 5,2%.

Пример 3. Получают растворитель состава NMMO0,1H2O0,7 ДМСО, в полученный растворитель при температуре 85oС помещают навеску шелковой ткани арт. 15008, отмытой от замасливателя, и за 30 мин при перемешивании получают 12,95%-ный гомогенный прозрачный раствор с вязкостью 1080 Пас. Прочность пленок 81 Н/мм2, удлинение 6,3%.

Пример 4. В полупромышленном смесителе при температуре 95oС и давлении 40 mbar отгоняют воду из 60%-ного водного раствора NMMO до содержания 0,3 моля на 1 моль NMMO, затем прибавляют ДМФА из расчета 0,4 моль на 1 моль NMMO. В полученный комплекс добавляют некондиционный шелк (рвань шелка-сырца крученая) и при температуре 95oС за 15 мин получают 11,15%-ный раствор. Вязкость раствора 760 Пас. Осаждением в водную ванну, содержащую 35% сульфата натрия, получили пленки с разрывной нагрузкой 71 Н/мм2 и удлинением 5,9%, а также волокно c линейной плотностью 2,2 текс, разрывной нагрузкой 17 сН/текс, удлинением 11%. Остальные примеры аналогичны; в примере 6 натуральный шелк перед растворением отмывают в горячей воде и бензоле от серицина, жировых, восковых и минеральных веществ. Способ по прототипу воспроизведен в лабораторных условиях.

Анализ приведенных в таблице данных показывает, что при получении растворителя и раствора в указанной последовательности и температуре за счет увеличения растворимости шелка результатом являются концентрированные растворы, обладающие формообразующими свойствами и пригодные к регенерации. Эти растворы могут быть использованы также в смеси с растворами других полимеров в совместимых органических растворителях или для получения смеси полимеров в одном растворителе, с целью придания сформованным изделиям улучшенных потребительских свойств, в первую очередь повышенной гидрофильности (пленки, полученные из смеси полиамида и натурального шелка 1:1 по способу, указанному в формуле, имеют гидрофильность в 3,6 раза большую, чем аналогичные пленки из полиамида). Способ позволяет создать технологически замкнутый цикл, так как использованные после регенерации компоненты растворителя могут быть подвергнуты разделению и повторному использованию.

Формула изобретения

1. Способ растворения натурального шелка в гидрате N-метилморфолин-N-оксида при повышенной температуре, отличающийся тем, что из гидрата N-метилморфолин-N-оксида предварительно удаляют связанную воду, затем добавляют органический разбавитель до содержания воды и разбавителя 0,3-0,8 молей на 1 моль N-метилморфолин-N-оксида, в полученный комплекс помещают натуральный шелк и при 85-125°С перемешивают до полного растворения.

2. Способ по п.1, отличающийся тем, что в качестве органического разбавителя используют апротонный разбавитель.

3. Способ по пп.1 и 2, отличающийся тем, что в качестве органического апротонного разбавителя используют диметилсульфоксид.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к производству химических волокон, в частности к способу получения раствора для формирования химического волокна из натурального шелка, фиброина, полиакрилонитрила или их смесей

Изобретение относится к текстильно-отделочному производству, а именно к технологии облагороживания ткани из натурального шелка
Изобретение относится к текстильной промышленности, а именно к технологии первичной переработки отходов шелка-сырца в волокно с целью получения из него порошка, который может быть использован в пищевой и косметической промышленности

Изобретение относится к технологии первичной обработки натурального шелка, а именно к обработке отходов кокономотального производства

Изобретение относится к технологии переработки шелкового сырья, а именно к получению натурального шелка из коконов дубового шелкопряда, и может быть использовано для изготовления микрохирургического шовного материала

Изобретение относится к текстильному производству, а именно к технологии размотки коконов и формирования из коконных нитей шелка-сырца. Способ получение нитей шелка-сырца состоит из последовательных операций запаривания коконов, подыскивания концов коконных нитей и совместного разматывания нескольких коконов, с многократной подачей кокона, при обрыве сходящей с него нити, на повторное подыскивание концов и разматывание. При этом подыскивание конца нити и разматывание кокона после первого обрыва производится на машинах второй очереди, а после второго и последующих обрывов на машинах третьей очереди, причем температура воды на машинах каждой последующей очереди ниже, чем на предыдущих. Полезный эффект от предлагаемого изобретения заключается в повышение равномерности линейной плотности шелка-сырца на 16-20% и увеличение нормы выработки мотальщиц автоматов от 100-120 до 130-140 г-таз/ч, и повышение производительности кокономотальных автоматов на 16%. Дополнительным положительным эффектом предлагаемого изобретения является то, что при раздельной запарке новых и старых коконов, на растрясочной машине, выход шелка-сырца повышается на 10%. Еще одним положительным эффектом является уменьшение числа дефектных коконов при подготовке их к размотке на 10-15%, из-за сокращения числа перепадов давления воздуха внутри коконов. 1 ил., 1 табл.

Изобретение относится к технологии получения волокон и пленок из смесей природных полимеров целлюлозы и фиброина, которые могут быть использованы, например, для изготовления изделий бельевого ассортимента

Изобретение относится к области получения полимерных материалов и касается способа получения пленки на основе фиброина шелка для изготовления контактных линз

Изобретение относится к способу прядения волокна, содержащего полипептидный полимер, а также к продуктам, включающим упомянутое полимерное волокно. Способ прядения волокна включает вытяжку волокна из прядильного раствора, содержащего полимер, предпочтительно полипептид шелка, который может быть введен в водный раствор с концентрацией, составляющей по меньшей мере 0,15 мг/мл, полиакриламид (ПАА), который увеличивает продольную вязкость прядильного раствора, и растворитель. Изобретение позволяет получать волокна, включающие живой и неживой биологический материал, которые могли бы исполнять функцию каркасного материала для тканевой инженерии и выращивания искусственных органов. Использование ПАА в прядильном растворе ведет к получению гладких и однородных волокон, небиоразлагаемых и долговечных. Кроме того, использование очень низких концентраций полимеров и/или очень низких концентраций улучшителей продольной вязкости ПАА облегчает прядение волокон из прядильного раствора. 6 н. и 18 з.п. ф-лы, 4 ил., 7 пр.
Наверх