Лекарственное средство на основе рифабутина, препарат противомикробного действия, содержащий наночастицы, и способ его получения

Изобретение относится к медицине и фармакологии и может быть использовано для лечения инфекционных заболеваний и, в частности, туберкулеза. Настоящее изобретение представляет собой лекарственное средство, содержащее рибафутин, сополимер молочной и гликолевой кислот (PLGA 50/50), D-маннит, полисорбат-80 и диметилсульфоксид, а также способ его получения, заключающийся в том, что смесь из рифабутина, PLGA 50/50, D-маннита, полисорбата-80 и ДМСО нагревают при 50÷60°С и перемешивают до полного растворения твердой фазы, после чего охлаждают до комнатной температуры, при добавлении к полученной смеси воды в соотношении 1:20 до 1:10 получают суспензию наночастиц размером ˜200÷400 нм. Изобретение обеспечивает создание лекарственного средства и препарата на основе рифабутина, уменьшающего токсичность активного вещества при сохранении противомикробной активности, а также стабильность при хранении и упрощение получения готовой лекарственной формы. 3 н.п. ф-лы, 4 табл., 1 ил.

 

Изобретение относится к области фармакологии и медицины, конкретно к новому поколению противомикробных препаратов регулируемого действия на основе рифабутина, содержащих наночастицы.

Рифабутин или 1',4-дидегидро-1-дезокси-1,4-дигидро-5'-(2-метилпропил)-1-оксорифамицин является антибиотиком из группы анкамицинов [1, 2].

Активен в отношении микобактерий туберкулеза и авиум-внутриклеточного комплекса. Дозировка рифабутина при туберкулезе легких составляет 150-300 мг внутрь, при инфицировании авиум-внутриклеточного комплекса 300 мг в сутки. Он угнетает синтез бактериями аминокислот в результате ингибирования ДНК-зависимой РНК полимеразы. Хорошо проникает внутрь клеток различных органов и тканей. Не проходит через гематоэнцефалический барьер. Подвергается биотрансформации в печени с образованием неактивных метаболитов. Однако вызывает тяжелые нарушения функции печени и почек, тромбоцитопению, аллергические реакции и диспептические явления. При лечении рифабутином требуется тщательный контроль функции печени и картины периферической крови.

В этой связи закономерно формулируется цель настоящего изобретения, а именно создание лекарственного средства и препарата на основе рифабутина, уменьшающего токсичность активного вещества при сохранении противомикробной активности, стабильного при хранении, и упрощение получения готовой лекарственной формы.

Поставленная цель достигается использованием рифабутина в препарате, содержащем наночастицы, и базируется на современных достижениях фармакологии и медицины.

Преимущества наносомальных антибиотиков при лечении различных внутриклеточных инфекций известны. Так, показана высокая эффективность наносомального ампицилина в отношении листериоза и сальмонеллеза [3]. Для лечения легочных инфекций предложены наносомальные композиции на базе ампицилина, гентамицина, рифампицина и их смесей [4]. В последнее время появились данные о высокой эффективности наносомальных препаратов при лечении туберкулеза легких [5-7]. Более того, включение рифампицина в наночастицы биодеградируемых полимеров приводит к значительному повышению его эффективности при лечении сальмонеллеза и сепсиса [8]. Антираковые препараты декапептил, золадекс, сандостатин и соматулин, содержащие, помимо цитостатиков, наночастицы биодеградируемых полимеров молочной и гликолевой кислот (PLGA), разрешены к применению в медицинской практике Российской Федерации [9].

Возвращаясь к факту нарушения функции печени и почек при приеме рифабутина, следует особо обратить внимание на возможность снижения накопления наночастиц лекарственной субстанции в печени («степс-эффект») и увеличение времени их циркуляции в организме за счет комплексного применения биодеградируемого полимера с неионогенными поверхностно-активными веществами (ПАВ), к примеру полисорбатом-80 [10]. Возникновение почечной недостаточности может быть преодолено путем включения в создаваемое лекарственное средство осмотических диуретиков, в частности D-маннита [11].

Таким образом, из приведенных выше данных следует, что новое лекарственное средство и препарат на основе рифабутина для достижения целей настоящего изобретения должен содержать наночастицы активной субстанции (рифабутин), иммобилизованной на биодеградируемом полимерном носителе (PLGA), неионогенное ПАВ (полисорбат 80) и осмотический диуретик (D-маннит).

В патентной литературе описано множество способов получения наночастиц, содержащих медицинские средства и биодеградируемые полимеры. К настоящему времени они суммированы в двух основополагающих патентах - это различные варианты эмульгирования с последующим лиофильным высушиванием [12] и механическое дробление в присутствии измельчающей среды [13], который предлагается в качестве прототипа. При этом следует иметь в виду, что для достижения эффективного всасывания препаратов в желудочно-кишечном тракте нужно, чтобы диаметр частиц был менее 500 нм [14].

Несмотря на явные успехи в области наномедицины в мире, в Российской Федерации достижения нанотехнологии в промышленном масштабе до сих пор не реализованы как в силу существенных финансовых затрат на заказ аппаратов и оборудования нового поколения, так и ввиду отсутствия соответствующего количества высококвалифицированного персонала. В этой связи нами был разработан новый доступный для промышленного внедрения способ получения лекарственного препарата регулируемого действия на основе рифабутина, содержащего наночастицы.

Предлагаемый способ базируется на упорядоченной структуре диметилсульфоксида (ДМСО), которая разрушается в интервале температур 40÷60°С и возобновляется при 20÷25°С [15]. При этом ДМСО стабилизирует неустойчивые (лабильные) вещества за счет его способности к координационной сольватации с органическими и неорганическими соединениями [16]. В медицинской практике ДМСО применяют в комплексной терапии ревматоидного артрита, болезни Бехтерева, дискоидной красной волчанке, тромбофлебите, экземе, фурункулезе, амилоидозе и пр. [17, 18]. В совокупности с дисульфирамом ДМСО приводит к длительному сенсибилизирующему эффекту у больных алкогольной зависимостью [19].

Используя изменения упорядоченности структуры ДМСО в интервале температур от 20 до 60°С и его высокую активность в координационной сольватации, экспериментальным путем были найдены такие соотношения рифабутина, PLGA (50/50), D-маннита, полисорбата-80, ДМСО (средство №1) и рифабутина, D-циклосерина, PLGA (50/50), D-маннита, полисорбата-80, ДМСО (средство №2), при которых образуются жидкие, однородные, прозрачные и стабильные при комнатных условиях системы. При разбавлении полученных средств водой в соотношениях от 1:20 до 1:10 образуются устойчивые опалесцирующие суспензии, содержащие в первом случае (препарат №1) частицы размеров ˜200÷400 нм (100%), а во втором (препарат №2) - ˜10% частиц размеров ˜100÷200 нм и ˜90% частиц размеров ˜3000 нм.

Исследования антибактериальной активности полученных суспензий (препараты №1 и №2) показали их высокую противомикробную активность и в отношении грамположительных, и в отношении грамотрицательных, и в отношении атипичных бактерий. Препарат №2, содержащий только ˜10% наночастиц, оказался менее эффективным, чем препарат №1, содержащий 100% наночастиц размеров ˜200÷400 нм. Превосходство препарата №1 в отношении Eschenchia coli, Pseudomonas aeruginosa и Salmonella spp.послужило причиной его оценки в опытах на лабораторных животных. Зафиксировано, что препарат №1 практически нетоксичен. При паталогоанатомическом вскрытии подопытных животных изменений в печени не наблюдалось. В то же время при введении лабораторным животным стандартной лекарственной формы рифабутина в терапевтической дозе наблюдается гепатотоксический эффект. Более того, новые препараты на основе рифабутина, содержащие наночастицы, в сравнении со стандартной лекарственной формой существенно активнее в отношении тест-культур микроорганизмов (таблица 4).

В целом получено новое средство на основе рифабутина, практически нетоксичный препарат, содержащий наночастицы, обладающий широким спектром высокоэффективного антибактериального действия, и предложен технологически простой способ его получения. Возможность разбавления средства водой в соотношении от 1:20 до 1:10 может быть использована для регулировки дозировки препарата в зависимости от индивидуальных особенностей больного.

Предлагаемое изобретение иллюстрируется нижеследующими примерами.

Пример 1. Способ получения средств на основе рифабутина

В трехгорлую стеклянную колбу, снабженную мешалкой, приводимую в действие электромотором, термометром и воздушным (обратным) холодильником, при 20-25°С последовательно загружают ингредиенты, приведенные в таблицах 1 и 2, в указанных процентных соотношениях. Смесь перемешивают и нагревают на колбонагревателе при 50-60°С до полного растворения твердой фазы, после чего охлаждают до комнатной температуры в течение 20-30 мин. Готовые средства хранят в герметичной таре оранжевого стекла.

Таблица 1
Состав средства №1
№ п/пНаименование компонентамас.%
1Рифабутин2.95÷3.05
2PLGA 50/502.95÷3.05
3D-Маннит2.95÷3.05
4Полисорбат-800.95÷1.00
5ДиметилсульфоксидОстальное
Таблица 2
Состав средства №2
№ п/пНаименование компонентамас.%
1Рифабутин2.95÷3.05
2D-Циклосерин4.95÷5.05
3PLGA 50/502.95÷3.05
4D-Маннит2.95÷3.05
5Полисорбат-800.95÷1.00
6ДиметилсульфоксидОстальное
Примечание. Соотношение компонентов в средствах №1 и №2 подбиралось с учетом:

- терапевтических доз противотуберкулёзных ингредиентов;

- однородности средств в интервале температур 20÷25°С;

- стабильности основных показателей качества средств при хранении.

Указанные выше средства №1 и 2 представляют собой прозрачные однородные жидкости темно-красного цвета, устойчивые при хранении свыше года. При добавлении к ним воды в соотношении 1:20 до 1:10 образуются устойчивые опалесцирующие суспензии (препараты №1 и №2), определение размеров частиц которых приведено в примере 2.

Таким образом, заявленный способ получения препарата по сравнению с прототипом [13] является более простым за счет уменьшения количества стадий без использования механического дробления.

Пример 2. Определение размеров частиц препаратов на основе рифабутина в водной среде

Определение размеров частиц и распределение размеров частиц по фракциям осуществляли методом автокорреляционной спектроскопии на субмикронном лазерном спектрометре Coulter N4MD фирмы Coulter Electronics (Франция-США). Алгоритм измерений основан на программе CONTIN.

Предварительно смешанные с водой средства №1 и №2 в соотношении 1:20 вносили в кювету с дистиллированной водой (3 мл) в количестве 10÷20 мкл и подвергали ультразвуковому воздействию в течение 1 мин с помощью ультразвуковой ванны (Weswood Ultrasonics Ltd, Model 90S). Затем производили измерения. Результаты представлены в таблице 3.

Таблица 3
Результаты анализа размеров полимерсодержащих частиц препаратов на основе рифабутина
ПрепаратУнимодальный анализРаспределение частиц по размерамРаспределение размеров частиц по фракциям
Значение размера, нмСтандартное отклонение, нмСреднее значение, нмСтандартное отклонение, нмКоэффициент вариации, %Размер, мСтандартное отклонение, нмКоличество, %
№1348nar288732528873100
№22800broad26601100411815612
300035088
Примечания. broad - в широких пределах; nar - в узких пределах.

Из таблицы 3 видно, что препарат №1 на 100% состоит из частиц размером 200-400 нм, а препарат №2 содержит ˜10% частиц размером 100-250 нм и ˜90% микрочастиц.

Пример 3. Оценка противомикробной активности препаратов

Определение противомикробной активности стандартных форм рифабутина, циклосерина и образцов препаратов №1 и 2 в отношении тест-культур грамположительных, грамотрицательных и атипичных бактерий осуществляли методом серийных микроразведений в жидкой среде в соответствии с рекомендациями NCCLS [20] при визуальной регистрации видимого роста. Динамическое измерение оптической плотности проводили с помощью многоканального спектрофотометра Bioscreen (Labsystems) при длине волны 610 нм с интервалом 20 мин. Планшеты с бактериальными суспензиями инкубировали при 37°С в термостатируемом модуле прибора. Исходная концентрация микроорганизмов составляла 5×104 КОЕ/мл. Полученные результаты суммированы в таблице 4 и на чертеже.

Приведенные в таблице 4 экспериментальные данные убедительно свидетельствуют о существенном преимуществе заявляемого препарата №1 в сравнении с другими образцами.

Таблица 4
Антимикробная активность образцов препаратов на основе рифабутина
ПрепаратКонцентрация средства, %Зоны задержки роста микроорганизмов, мм
Escherichia coli АТСС 1257Staphylococcus aureus 906 (ЛВА + гемолитический)Staphylococcus spp. (гемолитический)Enterococcus faecalis АТСС 29212Pseudomonas aeruginosa АТСС 10145Salmonella spp.(атипичная форма)Shigella sonnei, spp.
Рифабутин107 б/с5 б/с5 б/снетнет7 б/снет
(Рифабутин + ДМСО)57 б/снетнетнетнетнетнет
№11021 б>35 б>35 б16 б18 б14 б15 б
(Рифабутин +...)515 б>35 б>35 б15 б15 б12 б12 б
№21010 б/с>35 б>35 б18 б14 б12 б15 б
(Рифабутин + циклосерин+...)58 б/с>35 б>35 б15 б12 б10 б/с12 б
Контроль107 б/снетнетнетнет11 б/снет
(Циклосерин + ДМСО)57 б/снетнетнетнетнетнет
Примечания. АТСС - American type culture collection (Американская типовая коллекция культур);

spp. - "дикий" штамм (клинический изолят);

б/с - бактериостатическое действие;

б - бактерицидное действие.

Пример 4. Оценка токсичности средства на основе рифабутина

Определение токсичности рифабутина и образцов средства №1 (рифабутин + полимер + вспомогательные вещества) осуществлялось согласно общепринятым методикам [21, 22].

В исследованиях на мышах линии Balb-C и крысах Wistar (животные обоего пола) установлено, что готовый к употреблению препарат (разбавление водой 1:10 средства №1) при однократном введении внутрь в дозе, эквивалентной эффективной разовой терапевтической дозе рифабутина для человека (300 мг), а также в дозах, в 5 и 10 раз ее превосходящих, не проявлял токсического действия и паталогических изменений в печени подопытных лабораторных животных зафиксировано не было, при том что сам рифабутин в указанных дозах проявлял токсические свойства.

Таким образом, заявленная группа изобретений позволяет получать нетоксичный эффективный препарат в виде наночастиц с высокой антибактериальной активностью, который возможно использовать при лечении инфекционных заболеваний и, в частности, вероятно, туберкулеза, который представляет в настоящее время серьезную проблему.

Источники информации

1. РЛС-Энциклопедия лекарств. Изд. 8-е, перераб. и доп. / Гл. ред. Ю.Ф.Крылов. М.: "РЛС-2001", 2000. - С.766.

2. The Merck Index. Twelfth Edition. Monograph Number 8297. MERCK & CO., INC. 1996.

3. Pinto-Alphandary H., Andremont A., Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. // Int. J. Antimicrob. Agents. - 2000. - V.13. - N 3. - P.155-168.

4. Гельперина С.Э., Гуляев А.Е., Иванов А.А., Пальцев М.А., Северин Е.С., Скидан И.H. Композиция для лечения легочных инфекций. / Патент РФ №2185818. - 2001 г.

5. Khuller G.К., Pandey R. Sustained release drug delivery systems in management of tuberculosis. // J. Chest Dis. Allied Sci. - 2003. - V.45. - P.229-230.

6. Pandey R., Zahoor A., Sharma S., Khuller G.K. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. // Tuberculosis. - 2003. - V.83. N6. - P.373-378.

7. Оганесян Е.А., Будько А.П., Стукалов Ю.В. и др. Разработка и изучение наносомальной лекарственной формы рифампицина. // Антибиотики и химиотерапия. - 2005. - Т.50. - №8-9. - С.15-19.

8. Скидан И.H., Гелъперина С.Э., Севериин С.Е., Гуляев А.Е. Повышение антибактериальной активности рифампицина в отношении внутриклеточных инфекций с помощью биодеградируемых наночастиц. // Антибиотики и химиотерапия. - 2003. - №1. - С.23-26.

9. Штилъман М.И. Полимеры медико-биологического назначения. М.: Академкнига. - 2006. - 400 с.

10. Moghimi S.М., Hunter А.С., Murrey J.C. Long-circulating and targetspecific nanoparticles: theory to practice. // Pharmacol. Rev. - 2001. - V.53. - P.283-318.

11. Машковский М.Д. Лекарственные средства. В двух частях. Ч.1. / 12-е изд., перераб. и доп. М.: Медицина. - 1993. - С.586-597.

12. Фанг Джиа-Хва, Сингх Манмохан, О'Хейган Дерек, Хора Маниндер. Композиции микрочастиц и способы их получения. / Патент РФ №2257198. - 2005 г.

13. Сиджфрид К. Джун. Частицы, включающие плохорастворимое кристаллическое терапевтическое или диагностическое средство и способ их получения. / Патент РФ №2124886. - 1999 г.

14. Вранкс А., Делустье М., Делеер М. Фармацевтический состав, содержащий нанокапсулы, и способ его получения. / Патент РФ №2145498. - 1994 г.

15. Кукушкин Ю.H. Диметилсульфоксид - важнейший апротонный растворитель. // Соросовский образовательный журнал. - 1997. - №9. - С.54-59.

16. Оаэ С. Химия органических соединений серы. / Пер. с японск. М.: Мир, 1975. - С.223-278.

17. Инструкция по медицинскому применению препарата ДИМЕКСИД. Регистрационный номер: PN 003411/01 от 22.04.2005.

18. Yu Z.W., Quinn P.J. Dimethyl sulphoxide: a rewiew of its applications in cell biology. // Biosci. Rep.- 1994. - V.14. - P.259-281.

19. Собетов Б.Г., Собетова В.Б., Алексеевич Я.И., Озеров Б.Г., Меркулов С.П. Способ получения инъекционной формы дисульфирама. / Патент РФ №2013090. - 1994 г.

20. National Committee for Clinical Laboratory Standards. 1997. Method for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved Standard M-7-A4. / 4 th ed. Villanova.

21. Лабораторные животные: Положение и руководство. / Под ред. Н.Н.Каркищенко. М.: 2003. - 138 с.

22. Принципы и методы оценки токсичности химических веществ. Ч.1. Совместное издание программы ООН по окружающей среде и Всемирной организации здравоохранения. ВОЗ. Женева. - 1981.

1. Лекарственное средство, обладающее антимикробной активностью, характеризующееся тем, что оно содержит рифабутин, сополимер молочной и гликолевой кислот (PLGA 50/50), D-маннит, полисорбат 80 и диметилсульфоксид (ДМСО) при следующем соотношении компонентов, мас.%:

Рифабутин2.95÷3.05
PLGA 50/502.95÷3.05
D-маннит2.95÷3.05
Полисорбат 800.95÷1.00
ДМСОостальное

2. Препарат, обладающий антимикробной активностью, характеризующийся тем, что содержит средство по п.1, которое при разбавлении его водой в соотношении от 1:20 до 1:10 представляет собой суспензию наночастиц размером ˜200÷400 нм, содержащих рифабутин в эффективной дозе.

3. Способ получения препарата по п.2, характеризующийся тем, что в емкость последовательно загружают рифабутин, PLGA 50/50, D-маннит, полисорбат 80 и ДМСО, смесь нагревают при 50-60°С и перемешивают до полного растворения твердой фазы, после чего охлаждают до комнатной температуры, при добавлении к полученной смеси воды в соотношении от 1:20 до 1:10 получают суспензию наночастиц размером ˜200÷400 нм.



 

Похожие патенты:

Изобретение относится к высокоэффективной жидкой среде с распределенными наночастицами для охлаждения ядерного реактора в качестве основного материала, с которым смешаны наночастицы, к способу и устройству для изготовления жидкой среды и к способу обнаружения утечки жидкой среды.

Изобретение относится к нанотехнике, а более конкретно к способу направленного изменения электрофизических свойств углеродных нанотрубок. .
Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами размером менее 0,2 мкм, используемых для производства металлокерамики, композиционных материалов, а также в качестве горючего термитных и пиротехнических составов.
Изобретение относится к технологии получения материалов для нанесения защитных покрытий на поверхность различных естественных и искусственных материалов. .

Изобретение относится к способу получения нанокомпозита из олефиновой полимерной матрицы и смектитовой глины. .

Изобретение относится к порошковой металлургии, в частности к нанокристаллическому материалу со структурой аустенитной стали и его получению. .

Изобретение относится к получению нанокомпозитных покрытий и может быть использовано в нанотехнологии, в частности при изготовлении функциональных структур наноэлектроники.

Изобретение относится к технологии получения пористых трехмерных волокнистых конструкций, изготовленных из термостойких или жаростойких волокон, и может быть использовано при изготовлении деталей из термоконструкционного композитного материала.
Изобретение относится к области металлургии, а именно к литым композиционным материалам на основе алюминиевого сплава, и может быть использовано для изготовления деталей, обладающих высокой жаропрочностью и износостойкостью.
Изобретение относится к области литейного производства и может быть использовано при приготовлении лигатур алюминий - тугоплавкие металлы для выплавки литейных алюминиевых сплавов и получении из них точных отливок.

Изобретение относится к фармацевтической промышленности и медицине и касается ранозаживляющего лекарственного средства местного применения для лечения гнойно-воспалительных заболеваний кожи и мягких тканей различной этиологии, в том числе пролежней, ожогов, длительно незаживающих ран, трофических язв.

Изобретение относится к области медицины и касается мягких лекарственных форм, а именно мазей на гидрофобной основе с кортикостероидами, которые могут найти применение для лечения различных видов дерматозов, в том числе осложненных бактериальной и грибковой инфекцией.

Изобретение относится к новым производным N-формилгидроксиламина формулы (I) где Х означает -CH2-, -СН(ОН)-, -CH(OR)-, -CF2- или -CH(F)-, где R означает С1-C7алкил, R1 означает фенил, хинолинил, изохинолинил, пиридил, оксипиридил, каждый из которых необязательно замещен заместителями R6, R7 , R8 R9, или означает структурный фрагмент формулы (IV) где каждый из R10 и R 11 независимо означает Н, галоген; каждый R 2, R3, R4, R5 независимо означает Н, С 1-С7алкил, n равно 0-2, при условии, что если n равно 0, то Х означает -СН2-, каждый R6, R7, R 8, R9 независимо означает Н, ОН, галоген, С1-С7алкил, замещенный галогеном С1-С 7алкил, С1-С7 алкокси, фенил или его фармацевтически приемлемая соль.

Изобретение относится к химико-фармацевтической промышленности и медицине, и касается нового нетоксичного средства для лечения бактериального вагиноза, при это средство выполнено в виде вагинального геля.

Изобретение относится к новым производным бис-(4-алкиламинопиридиний-1)алканов формулы (1) где X - липофильным анион, выбранный из группы: трииодид I3, иодат IO3, перхлорат ClO4; Y - линейная или разветвленная алкиленовая группа, содержащая от 4 до 18 атомов углерода; R - линейная или разветвленная алкильная, циклоалкильная или арилалкильная группа, содержащая от 5 до 18 атомов углерода, к способам их получения и применению их в качестве веществ, проявляющих антибактериальную и антивирусную активность.

Изобретение относится к области медицины и касается антигенной композиции, способу ее получения и ее применению. .
Изобретение относится к медицине, а именно к новым биологически активным химическим соединениям - сольватокомплексам глицератов кремния и титана, а также к гидрогелям на их основе, обладающим транскутанной проводимостью медикаментозных средств, которые могут найти применение в виде мазевой основы трансдермальных терапевтических систем, обладающих высокой пенетрирующей способностью.
Изобретение относится к медицине, к анестезиологии и реаниматологии. .

Изобретение относится к медицине и фармакологии и может быть использовано для лечения инфекционных заболеваний и, в частности, туберкулеза

Наверх