Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления



Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления
Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления
Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления
Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления
Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления
Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей и устройство для его осуществления

Владельцы патента RU 2433405:

Государственное образовательное учреждение высшего профессионального образования "Уральский государственный экономический университет" (УрГЭУ) (RU)
Общество с ограниченной ответственностью Научно-производственное внедренческое предприятие "ИВА" (ООО НПВП "ИВА") (RU)

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку оксидант/антиоксидантной активности по изменению разности потенциалов на электродах, введенных в электропроводящую среду, при этом электропроводящая среда представляет собой гель, содержащий в качестве медиаторной системы пару химических соединений, содержащих элемент в разных степенях окисления, при этом электроды через гель контактируют с исследуемым объектом, а оксидант/антиоксидантную активность определяют по формулам. Для реализации способа представлено устройство, включающее прибор для измерения потенциалов и заполненную электропроводящей средой емкость с рабочим электродом и электродом сравнения, соединенными с прибором для измерения потенциалов, где емкость выполнена открытой с одной стороны, причем в качестве электропроводящей среды используют гель, а рабочий электрод выполнен в виде пластины, установленной со стороны открытой части емкости и частично перекрывающей ее. Данное изобретение обеспечивает повышение достоверности и точности получаемых результатов. 2 н. и 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к области электрохимических методов анализа, в частности к анализу поверхности биологических тканей (в т.ч. кожи) на предмет определения интегральной оксидант/антиоксидантной активности объекта исследования.

Известен способ оценки антиоксидантного состояния кожи [Международная публикация WO 2007/077360]. Измерения проводят методом вольтамперометрии с использованием рабочего электрода, электрода сравнения и противоэлектрода, помещенных в контактирующий с кожей раствор.

Недостатком этого способа является использование контактирующего с кожей раствора, питающего потенциостата и тока в качестве источника информации. Последний не является однозначной функцией содержания антиоксидантов в объекте исследования. Он зависит, наряду с другими, не поддающимися учету параметрами, также от температуры и состояния поверхности рабочего электрода.

Известен способ определения уровня каротиноидов в поверхностном слое биологических тканей как показателя их антиоксидантного состояния. В основе измерения лежит принцип Рамановской спектроскопии. Световой луч определенной длины волны отражается от молекул каротиноидов, при этом происходит смещение из голубой в зеленую часть спектра [Патент США №6205354].

Недостатком этого метода является то, что он позволяет оценить только антиоксидантную активность, обусловленную каротиноидами, которые являются лишь одним из видов большого количества антиоксидантов, содержащихся, в частности, в коже, то есть их концентрация не позволяет судить об общем содержании антиоксидантов в поверхностном слое биологической ткани.

Наиболее близким техническим решением по способу и устройству, выбранным в качестве прототипа, является способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящим раствором, содержащим Fe(III) или систему I2/NaI, и оценку оксидант/антиоксидантной активности по изменению потенциалов на электродах, введенных в электропроводящий раствор. Способ реализуют с помощью устройства, включающего прибор для измерения потенциалов, открытую с одной стороны и заполненную электропроводящим раствором емкость с рабочим электродом и электродом сравнения, соединенными с прибором для измерения потенциалов [Международная публикация WO/1996/013193].

Данные способ и устройство имеют следующие недостатки.

Для определения количества оксидантов и антиоксидантов используют разные тестовые растворы, т.е. для определения количества оксидантов и антиоксидантов в исследуемом объекте необходимо проводить два измерения, меняя используемый раствор. В качестве компонента тестового раствора для определения суммарного количества антиоксидантов используют раствор Fe(III) или ADP-Fe(III). Отсутствие восстановленной формы железа в растворе при определении антиоксидантов не позволяет измерить начальный потенциал исследуемой системы. Единственный измеряемый потенциал зависит от ряда неучитываемых факторов поскольку является не равновесным, а стационарным. Использование в качестве источника информации единственного потенциала, определяемого в конце процедуры измерения, вносит неопределенность, связанную с начальным состоянием системы. Результат измерения выражают в виде потенциала, определяемого в конце процедуры измерения. Не оценивается собственно величина активности антиоксидантов, что затрудняет интерпретацию результатов. Используется кислый раствор (рН 2), что травмирует кожу. Исследование включает много стадий: установку устройства на кожу, заполнение его раствором, введение в него электродов и лишь затем измерение.

Задачей, решаемой настоящим изобретением, является повышение достоверности и точности получаемых результатов.

Технический результат, обеспечиваемый настоящим изобретением, заключается в возможности достоверно определять как начальный, так и конечный потенциал измеряемой системы и определять интегральные значения антиоксидантной и оксидантной активности в одном измерении, что повышает точность и достоверность получаемой информации.

Технический результат и решение поставленной задачи достигаются тем, что в качестве электропроводящей среды используется гель, содержащий медиаторную систему, включающую окисленную и восстановленную формы (Ox/Red пара соединений одного и того же элемента). Измерительный электрод непосредственно контактирует с исследуемым объектом через гель, оксидант/антиоксидантную активность рассчитывают, используя разность конечного и начального потенциалов.

, причем

, причем

где ΔЕ - разница между начальным потенциалом системы и значением потенциала, установившегося в конце измерения, COx - концентрация окисленной формы медиаторной системы, М; CRed - концентрация восстановленной формы медиаторной системы, М; АОА - антиоксидантная активность, мМ-экв; OA - оксидантная активность, мМ-экв.

Технический результат по способу достигается также тем, что изменение разности потенциалов фиксируют от момента установления контакта геля и электрода с исследуемым объектом и до истечения 5-15 мин.

Предлагаемое устройство обеспечивает достижение технического результата тем, что в качестве электропроводящей среды используют гель, а рабочий электрод выполнен в виде пластины, установленной со стороны открытой части емкости и частично перекрывающей ее.

Указанные отличительные признаки существенны.

Медиаторная система, состоящая из пары соединений с химическим элементом в разных степенях окисления обеспечивает возможность окислять все известные антиоксиданты биологических объектов и восстанавливать продукты окисления и гидропероксиды, что позволяет определять интегральные антиоксидантную и оксидантную активности в одном измерении. Кроме того, наличие одновременно двух компонентов медиаторной системы позволяет достоверно определить как начальный, так и конечный потенциал исследуемой системы. Применение геля в качестве электропроводящей среды, заполняющего пространство с электродами, изначально исключает попадание кислорода воздуха в исследуемую систему, что повышает точность определения начального и конечного потенциалов, а выполнение рабочего электрода в виде пластины создает возможность непосредственного контакта электрода с исследуемым объектом через гель.

На фиг.1 изображен общий вид устройства для реализации способа.

На фиг.2 представлен общий вид толстопленочного платинового электрода.

На фиг.3 приведена зависимость потенциала медиаторной системы в геле на поверхности кожи от времени. Время измерения составляет 10 минут. Уменьшение потенциала свидетельствует об антиоксидантной активности объекта.

На фиг.4 приведена зависимость потенциала медиаторной системы в геле на поверхности кожи от времени для случая, когда выражена оксидантная активность. Время измерения составляет 7 минут. Увеличение потенциала свидетельствует об оксидантной активности объекта.

На фиг.5 приведены значения антиоксидантной активности кожи здоровых людей 18-20 лет (n=20).

На фиг.6 приведены результаты определения антиоксидантной активности кожи добровольцев, принимавших орально аскорбиновую кислоту (АК) в количестве 1000 мг. Измерена антиоксидантная активность кожи через 60 и 180 мин после приема.

Реализация способа заключается в следующем.

Электропроводный гель с введенной в него медиаторной системой в виде пары соединений химического элемента в разных степенях окисления K3[Fe(CN)6]/K4[Fe(CN)6] наносится на поверхность биологической ткани (кожи человека), на которой размещают также рабочий электрод, который контактирует с гелем, содержащим медиаторную систему. В контакт с гелем вводят электрод сравнения и измеряют изменение потенциала системы с использованием цифрового анализатора. При этом взаимодействие с антиоксидантами кожи описывается следующей схемой:

a·Fe(III)+b·АО(в коже)=a·Fe(II)+b·AOOx (в коже),

где АО - антиоксиданты в коже, AOOx - продукты окисления антиоксиданта в коже; a, b - стехиометрические коэффициенты реакции.

Способ иллюстрируется следующими примерами.

Пример 1

Электропроводный гель с введенной в него медиаторной системой, содержащей 0,001М K3[Fe(CN)6]+0,00001М K4[Fe(CN)6], наносится на поверхность кожи человека, на которой размещают также рабочий электрод, который контактирует с указанным гелем. В контакт с гелем вводят электрод сравнения и измеряют начальный потенциал системы, который оказывается равным 281 мВ, значение потенциала, измеренное через 5 минут, составляет 258 мВ. Антиоксидантную активность рассчитывают по формуле:

, причем ,

где ΔЕ - разница между начальным потенциалом системы и значением потенциала, установившегося в конце измерения, COx - концентрация окисленной формы медиаторной системы, М; CRed - концентрация восстановленной формы медиаторной системы, М; АОА - антиоксидантная активность, мМ-экв.

Концентрацию окисленной и восстановленной форм медиаторной системы определяют известными методами.

Расчет показывает, что для данных значений потенциалов и концентраций АОА равна 1,58·10-5 М-экв.

Пример 2

В качестве объекта исследования выбрана поверхность кожи человека. Подготовку, измерения и расчет проводят, как в примере 1, но время выдержки между измерениями потенциалов составляет 10 мин. В результате измеренные величины потенциалов составляют E1=280 мВ, Е2=255 мВ. В результате расчетов получаем значения АОА=1,80·10-5 М-экв.

Пример 3

В качестве объекта исследования выбрана поверхность кожи человека. Подготовку, измерения и расчет проводят, как в примере 1, но время выдержки между измерениями потенциалов составляет 15 мин. В результате измеренные величины потенциалов составляют E1=280 мВ, Е2=254 мВ. В результате расчетов получаем значения АОА=1,91·10-5 М-экв.

Пример 4

В качестве объекта исследования выбрана поверхность кожи человека. Подготовку, измерения и расчет проводят, как в примере 1, но время выдержки между измерениями потенциалов составляет 5 мин. В результате измеренные величины потенциалов составляют E1=280 мВ, Е2=308 мВ.

Оксидантную активность рассчитывают по формуле:

, причем ,

где ΔЕ - разница между начальным потенциалом системы и значением потенциала, установившегося в конце измерения, COx - концентрация окисленной формы медиаторной системы, М; CRed - концентрация восстановленной формы медиаторной системы, М; OA - оксидантная активность, мМ-экв.

Расчет показывает, что для данных значений потенциалов и концентраций OA равна 6,88·10-6 М-экв.

Пример 5

В качестве объекта исследования выбрана поверхность кожи человека. Подготовку, измерения и расчет проводят, как в примере 1, но время выдержки между измерениями потенциалов составляет 10 мин. В результате измеренные величины потенциалов составляют E1=281 мВ, Е2=312 мВ. В результате расчетов получаем значения АОА=7,25·10-6 М-экв.

Способ реализуют с помощью устройства, которое включает рабочий электрод в виде пластины 1, установленной со стороны открытой части емкости 3 и частично перекрывающей ее, электрод сравнения 2 и соединенный с ними прибор для измерения потенциалов 7. На нижнюю часть емкости 3 нанесен клеящий слой 4, а сама емкость заполнена электропроводящим гелем 5. Рабочий электрод 1 и гель 5 контактируют с исследуемым объектом 6.

Пластина рабочего электрода 1 выполнена в виде керамической подложки 8 с контактной зоной платиносодержащего слоя 9 и отделенной от последней изолятором 10 рабочей зоной платиносодержащего слоя 11.

Устройство работает следующим образом.

Рабочий электрод 1 крепится на поверхности биологической ткани, в частности кожи (фиг.1), с помощью клейкого слоя 4. В качестве электрода сравнения 2 используется хлоридсеребряный электрод, вмонтированный в верхнюю часть емкости 3.

Электропроводный гель 5 с введенной в него медиаторной системой заполняет емкость 3 и наносится на поверхность кожи 6. Необходимым условием является нахождение хлоридсеребряного электрода и рабочей зоны платинового электрода в контакте с проводящим гелем.

Окислительное действие кислорода воздуха на медиаторную систему исключается за счет ее изоляции от внешних воздействий клеем 4 и гелем 5.

Установившийся в системе электрический потенциал измеряют с помощью прибора 7.

В качестве рабочего электрода используется толстопленочный платиновый электрод, изготовленный методом трафаретной печати, или любой плоский электрод, потенциал которого определяется составом медиаторной системы.

Окислительное действие кислорода воздуха на медиаторную систему исключается благодаря ее изоляции от внешних воздействий клеящим слоем 4.

Установившийся в системе электрический потенциал измеряют с помощью прибора 3.

Предлагаемые способ и устройство обеспечивают достоверное и точное определение оксидант/антиоксидантного состояния живой биологической ткани.

1. Способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему, и оценку оксидант/антиоксидантной активности по изменению разности потенциалов на электродах, введенных в электропроводящую среду, отличающийся тем, что электропроводящая среда представляет собой гель, содержащий в качестве медиаторной системы пару химических соединений, содержащих элемент в разных степенях окисления, при этом электроды через гель контактируют с исследуемым объектом, а оксидант/антиоксидантную активность определяют по формулам
, причем
, причем
где ΔЕ - разница между начальным потенциалом системы и значением потенциала, установившегося в конце измерения, COx - концентрация окисленной формы медиаторной системы, М; CRed - концентрация восстановленной формы медиаторной системы, М; АОА - антиоксидантная активность, мМ-экв; ОА - оксидантная активность, мМ-экв.

2. Способ по п.1, отличающийся тем, что изменение разности потенциалов определяют за период времени от момента установления контакта геля и электродов с исследуемым объектом и по истечении 5-15 мин.

3. Устройство для реализации способа по п.1, включающее прибор для измерения потенциалов и заполненную электропроводящей средой емкость с рабочим электродом и электродом сравнения, соединенными с прибором для измерения потенциалов, отличающееся тем, что емкость выполнена открытой с одной стороны, причем в качестве электропроводящей среды используют гель, а рабочий электрод выполнен в виде пластины, установленной со стороны открытой части емкости и частично перекрывающей ее.

4. Устройство по п.3, отличающееся тем, что в качестве рабочего электрода используют планарный толстопленочный платиновый электрод, обеспечивающий необходимую площадь контакта его рабочей зоны с поверхностью исследуемого объекта.



 

Похожие патенты:

Изобретение относится к биометрии, а именно к фотометрии, и может быть использовано для определения фотометрических свойств биологической ткани. .

Изобретение относится к медицине и предназначено для составления рациона питания при заболеваниях, в патогенезе которых важна избыточная масса тела. .

Изобретение относится к области медицины, а именно к оториноларингологии, и касается способа диагностики хронического тонзиллита (XT). .

Изобретение относится к терапии, в частности к нефрологии и патологической анатомии. .

Изобретение относится к области раздела биоминералогии - медицинской минералогии и может быть использовано: - в медицине, при исследовании болезней, связанных с воспалениями, нарушением тканевого дыхания, разложением белков; - в фармакологии, для выявления ятрогенных болезней, вызванных различными лекарственными наполнителями;- в биофизике (магнитобиологии), для объяснения механизма биомедицинских эффектов, производимых электромагнитными полями в организме человека; - в минералогии, поскольку значительно расширяют температурно-барометрические, временные и окислительно-восстановительные рамки оксидного и сульфидного минералообразования; - в биохимии, коллоидной химии и т.д.
Изобретение относится к области медицины и описывает способ определения гепарина у родильниц, перенесших в третьем триместре беременности вспышку герпес-вирусной инфекции, характеризующийся тем, что у родильниц забирают кусочек плаценты, готовят гомогенат и обрабатывают его для выделения гликозаминогликанов, затем полученные экстракты глюкозаминогликанов разделяют методом гель-электрофореза в полиакриламидном геле и рассчитывают процентное содержание гепарина методом денситометрии по оптической плотности, при этом вспышку герпес-вирусной инфекции устанавливают спектрофотометрически по нарастанию титра антител к вирусу герпеса.
Изобретение относится к области медицины, а именно к оториноларингологии. .

Изобретение относится к области медицины. .
Изобретение относится к области медицины, а именно к диагностике злокачественных процессов в организме человека. .
Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам количественного определения гормонов. .

Изобретение относится к медицине и описывает способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со ), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сн-Со).

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.

Изобретение относится к устройствам для анализа воды по следующим характеристикам: мутности, цветности, температуре, результатам седиментационного анализа, электропроводности, вязкости, электрофоретической подвижности, дзета-потенциалу частиц взвеси, химической потребности в кислороде, содержанию хлора, водородному показателю и редокс-потенциалу и может быть использовано для мониторинга водных объектов, технического и питьевого водоснабжения.

Изобретение относится к способам определения различных термодинамических и условных констант равновесия неорганических и органических веществ, которые применяются в теоретической и практической области химии.

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и в контурах под давлением с водным теплоносителем, в том числе в контурах исследовательских и энергетических реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок (ЯЭУ) с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.
Изобретение относится к электроэнергетике и может быть использовано для диагностики жидких диэлектриков. .
Изобретение относится к аналитической химии органических соединений применительно к анализу фармацевтических средств и препаратов для спортивного питания. .

Изобретение относится к области физики и может быть использовано для анализа материалов с помощью биохимических электродов. .

Изобретение относится к области аналитической химии, в частности к инверсионному вольтамперометрическому способу определения флавоноида, обладающего высокой антиоксидантной активностью и клинической эффективностью в лечении ряда заболеваний.

Изобретение относится к способу приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода и может быть использовано в аналитической химии, в клинической диагностике, для контроля состояния окружающей среды, в различных областях промышленности
Наверх