Способ производства триметаллических прутковых и проволочных изделий



 


Владельцы патента RU 2492011:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" (RU)

Изобретение предназначено для снижения энергоемкости процесса волочения и повышения качества протягиваемых триметаллических изделий. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический канал монолитной волоки. Снижение напряжения волочения и повышение единичных обжатий при волочении обеспечивается за счет того, что угол наклона образующей рабочего канала к оси волочения волоки регламентирован математической зависимостью, учитывающей вытяжку, параметры материалов, составляющих слои заготовки, и относительные площади сечения каждого из слоев, составляющих триметаллическую заготовку. 1 пр.

 

Изобретение относится к обработке металлов давлением и предназначено для производства триметаллических прутковых и проволочных изделий волочением.

К триметаллическим изделиям в виде прутков проволоки относят изделия, включающие три слоя из разных металлов.

Известно, что прутки и проволоку изготавливают по технологической схеме, совмещающей прокатку или прессование заготовки с последующим волочением триметаллической заготовки через конические волоки.

При деформировании в волочильном инструменте в заготовке возникает напряжение волочения, которое может приводить к обрыву переднего конца заготовки (см. Перлин И.Л., Ерманок М.З. Теория волочения. - М.: Металлургия, 1971. - С.17).

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ волочения изделий, включающий предварительное формирование захватки с заостренным и коническим участками и последующее волочение через монолитную волоку. Формирование конического участка захватки осуществляют с углом конусности на 2-3° меньшим, чем угол конусности волоки. Перед волочением заостренную часть захватки вводят в волоку, наносят технологическую смазку и осуществляют захват заостренного конца зажимом тянущего устройства (а.с. СССР №1245375, кл. В21С 1/00, 1986). Данный способ принят в качестве прототипа.

Недостатком известного способа, принятого за прототип, является то, что он не учитывает геометрию волочильного инструмента, в частности, угол наклона образующей рабочего канала волоки к оси волочения. Угол наклона образующей рабочего канала технологического волочильного инструмента является одним из основных параметров, определяющих напряжение волочения, единичные обжатия и энергозатраты при волочении.

Признаки прототипа, совпадающие с признаками заявляемого решения - предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический канал монолитной волоки.

Задачей изобретения является снижение напряжения волочения и энергоемкости процесса волочения триметаллических прутковых и проволочных изделий, повышение единичных обжатий и качества протягиваемых триметаллических изделий за счет оптимизации угла наклона образующей рабочего канала волочильного инструмента.

Поставленная задача была решена за счет того, что в известном способе, включающем предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический канал монолитной волоки, используют волоку, угол наклона образующей рабочего канала к оси волочения которой составляет

α в о п т = a r c t g [ 1,14 f ( σ s 3 σ q ) F 3 ¯ ln λ F 1 ¯ σ s 1 + F 2 ¯ σ s 2 + F 3 ¯ σ s 3 ] , ( 1 )

где λ = d 0 2 / d 1 2 - вытяжка при волочении;

d0, d1 - внешний диаметр триметаллического прутка или проволочной заготовки до и после деформации соответственно;

σs1, σs2, σs3 - усредненные по зоне деформации сопротивления деформации протягиваемых материалов триметаллической заготовки;

F ¯ 1 = F 1 F , F ¯ 2 = F 2 F , F ¯ 3 = F 3 F - относительные площади сечения каждого из слоев, составляющих триметаллическую заготовку;

f - коэффициент внешнего трения в очаге деформации при волочении;

σq - напряжение противонатяжения.

Признаки предлагаемого способа, отличительные от прототипа, - использование волоки, угол наклона образующей рабочего канала к оси волочения которой определяют по приведенной выше формуле.

В реальных условиях волочения напряжение волочения монометаллической заготовки определяется по формуле (см. Механика композиционных материалов и конструкций. 2010 - Том 16, №2. С.-191-196)

σ в о л = ( ln λ + 4 3 3 t g α в ) [ σ s + f c t g α П ( σ s σ q ) ] + σ q , ( 2 )

где λ = d 0 2 / d 1 2 - вытяжка при волочении;

d0, d1 - внешний диаметр монометаллического прутка или проволочной заготовки до и после деформации соответственно;

αв - угол наклона образующей инструмента к оси волочения;

αП - приведенный угол волоки tgαП=0,65tgαв;

σs - среднее по зоне деформации сопротивление деформации протягиваемого материала;

f - коэффициент внешнего трения в очаге деформации при волочении;

σq - напряжение противонатяжения.

Триметаллическая заготовка состоит из трех слоев: центрального сердечника, промежуточного слоя и внешней оболочки. Напряжение, обеспечивающее деформацию центрального сердечника, полагая, что в формуле (2) f=0, будет равно

σ в о л 1 = ( ln λ + 4 3 3 t g α в ) σ s 1 + σ q , ( 3 )

где σs1 - сопротивление деформации металлосердечника заготовки.

Напряжению волочения (3) соответствует усилие, затрачиваемое на деформацию сердечника

P 1 = F 1 [ ( ln λ + 4 3 3 t g α в ) σ s 1 + σ q ] , ( 4 )

где F1 - площадь сердечника триметаллической заготовки.

Напряжение волочения промежуточного слоя триметаллической заготовки в соответствии с формулой (2) при f=0 составит

σ в о л 2 = ( ln λ + 4 3 3 t g α в ) σ s 2 + σ q , ( 5 )

где σs2 - сопротивление деформации промежуточного слоя заготовки.

Напряжению волочения (5) соответствует усилие, затрачиваемое на деформацию промежуточного слоя

P 2 = F 2 [ ( ln λ + 4 3 3 t g α в ) σ s 2 + σ q ] , ( 6 )

где F2 - площадь промежуточного слоя триметаллической заготовки.

Для внешней оболочки, находящейся в контакте с волочильным инструментом, напряжение волочения составит

σ в о л 3 = ( ln λ + 4 3 3 t g α в ) [ σ s 3 + f c t g α П ( σ s σ q ) ] + σ q . ( 7 )

где σs3 - сопротивление деформации внешнего слоя заготовки.

Напряжению волочения (7) соответствует усилие, затрачиваемое на деформацию оболочки

P 3 = F 3 ( ln λ + 4 3 3 t g α в ) [ σ s 3 + f c t g α П ( σ s 3 σ q ) ] + σ q . ( 8 )

где F3 - площадь внешней оболочки триметаллической заготовки.

Общее усилие, необходимое для пластической деформации триметаллической заготовки, составит

P = P 1 + P 2 + P 3 . ( 9 )

После подстановки соотношений (4), (6) и (8) в формулу (9), преобразований и перехода к среднему напряжению волочения триметаллической заготовки получим

σ в о л = ( ln λ + 4 3 3 t g α в ) [ σ s 1 F ¯ 1 + σ s 2 F ¯ 2 + σ s 3 F ¯ 3 + f c t g α П ( σ s σ q ) F ¯ 3 ] + σ q , ( 10 )

где F ¯ 1 = F 1 F , F ¯ 2 = F 2 F , F ¯ 3 = F 3 F - относительные площади сечения каждого из слоев, составляющих триметаллическую заготовку.

Минимальное значение напряжения волочения и соответственно усилия волочения триметаллической заготовки, а также энергоемкости процесса, обеспечивается из условия равенства нулю производной от напряжения волочения по тангенсу угла наклона образующей рабочего канала волочильного инструмента, а именно

d σ в о л d ( t g α в ) = 0. ( 11 )

Продифференцировав выражение (10) согласно условию (11), после преобразований получим уравнение для определения оптимального значения тангенса угла наклона образующей рабочего канала волоки к оси волочения

t g α в о п т = 1,14 f ( σ s 3 σ q ) F 3 ¯ ln λ F ¯ 1 σ s 1 + F 2 ¯ σ s 2 + F ¯ 3 σ s 3 , ( 12 )

и соответственно

α в о п т = a r c t g [ 1,14 f ( σ s 3 σ q ) F 3 ¯ ln λ F ¯ 1 σ s 1 + F 2 ¯ σ s 2 + F 3 ¯ σ s 3 ] . ( 1 )

Соотношение (1) позволяет определить оптимальный угол наклона образующей рабочего канала волоки к оси волочения, что обеспечивает минимальное значение напряжения волочения и минимальную энергоемкость процесса волочения триметаллической заготовки.

Пример реализации предлагаемого способа.

Предлагаемый способ использован для волочения триметаллической заготовки низкотемпературного сверхпроводника, состоящего из медного сердечника, промежуточного сверхпроводникового ниобия и медной стабилизирующей оболочки. При этом геометрические и физические соотношения составляли: F ¯ 1 = 0,3 ; F ¯ 2 = 0,4 ; F ¯ 3 = 0,3 ; σs1s3=300 МПа; σs2=500 МПа. При волочении заготовки через волочильный инструмент с αв=12° без противонатяжения и вытяжки λ=1,2 при коэффициенте трения f=0,1 среднее напряжение триметаллической заготовки волочения составило 154 МПа.

По формуле (1) предлагаемого способа определили оптимальный угол конусности волочильного инструмента, получили α в о п т = 5,3 . После изготовления инструмента с оптимальной конусностью провели волочение заготовки с прежними технологическими параметрами, среднее напряжение волочения при этом оказалось равным 134,3 МПа.

Таким образом, снижение среднего напряжения волочения при использовании предлагаемого способа составило 12,8%.

Способ производства триметаллических прутковых и проволочных изделий, включающий предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через конический канал монолитной волоки, отличающийся тем, что используют волоку, угол наклона образующей рабочего канала к оси волочения которой составляет
α в о п т = a r c t g [ 1,14 f ( σ s 3 σ q ) F 3 ¯ ln λ F 1 ¯ σ s 1 + F 2 ¯ σ s 2 + F 3 ¯ σ s 3 ] ,
где λ = d 0 2 / d 1 2 - вытяжка при волочении;
d0, d1 - внешний диаметр триметаллического прутка или проволочной заготовки до и после деформации, соответственно, мм;
σs1, σs2, σs3 - усредненные по зоне деформации сопротивления деформации протягиваемых материалов триметаллической заготовки, МПа;
F ¯ 1 = F 1 F , F ¯ 2 = F 2 F , F ¯ 3 = F 3 F - относительные площади сечения каждого из слоев, составляющих триметаллическую заготовку;
f - коэффициент внешнего трения в очаге деформации при волочении;
σq - напряжение противонатяжения, МПа.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением, в частности к волочению провода контактного из меди и ее сплавов с площадью поперечного сечения 65, 85, 100, 120, и 150 мм, и может быть использовано в метизной промышленности для изготовления фасонных профилей с вогнутыми и выпуклыми поверхностями.
Изобретение относится к способам обработки металлов давлением, в частности к производству холодно-деформированных труб, и может быть использовано для производства прецизионных труб.

Изобретение относится к обработке металлов давлением и предназначено для производства биметаллических прутковых и проволочных изделий волочением. .

Изобретение относится к области металлургии, а именно к методам интенсивной проработки структуры металла пластической деформацией. .

Изобретение относится к обработке металлов давлением и может быть использовано в качестве промежуточного тягового устройства волочильной машины. .

Изобретение относится к оборудованию для производства проволоки веерным способом, т.е. .
Изобретение относится к обработке металлов давлением и предназначено для производства высокопрочной проволоки волочением для армирования железобетонных изделий.

Изобретение относится к области производства холоднотянутых профилей электротехнического назначения из следующих нетермоупрочняемых бронз: кадмиевой, магниевой, оловянной, серебряной и других.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении полуфабрикатов или прутков и проволоки с ультрамелкозернистой (УМЗ) структурой.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении полуфабрикатов или прутков и проволоки с ультрамелкозернистой (УМЗ) структурой.

Изобретение предназначено для повышения точности формы и размеров высокопрочной арматурной проволоки больших диаметров, производимой методом холодного волочения и термомеханической обработкой из высокоуглеродистой стали. Способ включает волочение круглой заготовки и нанесение на нее трехстороннего периодического профиля. Получение арматурной проволоки для предварительно напряженных железобетонных конструкций с сечением, максимально близким к кругу, обеспечивается за счет того, что волочение круглой заготовки до нанесения на ее поверхность периодического профиля осуществляют с суммарной степенью обжатия 55-61%, а нанесение периодического профиля на ее поверхность осуществляют путем придания сечению круглой заготовки формы стрельчатого треугольника гладкими роликами с вогнутой рабочей поверхностью радиусом, равным не менее 5 радиусов круглой заготовки, и последующего нанесения на выступы стрельчатого треугольника периодических вмятин профилирующими роликами с суммарной степенью обжатия в роликах с вогнутой поверхностью и профилирующих роликах, равной 5-8%, при этом расстояние между осями группы роликов с гладкой рабочей поверхностью и осями группы профилирующих роликов составляет 0,6-0,7 их диаметра. 3 ил., 1 пр.

Изобретение предназначено для уменьшения усилий при обработке давлением технически чистого алюминия. Снижение микротвердости материала заготовки обеспечивается за счет того, что перед волочением на заготовку воздействуют импульсным магнитным полем, индукция которого не превышает 0,7 Тл, создаваемым посредством установленного перед волокой индуктора, на который подают импульсы тока регламентированных параметров от источника токовых импульсов. 3 ил.

Изобретение предназначено для снижения себестоимости арматурной высокопрочной проволоки. Способ включает деформацию заготовки путем приложения тянущей силы с одновременным приложением дополнительной деформации сдвига вращением. Снижение затрат на производство проволоки с повышенными физико-механическими свойствами посредством повышения величины накопленной деформации обеспечивается за счет того, что величину деформации сдвига устанавливают регламентированным изменением величины угла подъема винтовой линии вращения, причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50°. 1 табл.

Изобретение предназначено для повышения физико-механических свойств арматурной высокопрочной проволоки преимущественно 9 группы диаметров (более 8,0 мм) при одновременном снижении затрат на ее производство. Способ включает волочение заготовки из высокоуглеродистой стали с сорбитизированной структурой и последующее ее профилирование. Исключение разрушения цементитных пластин структуры стали при сокращении количества протяжек, повышение значения временного сопротивления разрыву и условного предела текучести, относительного удлинения, релаксационной и коррозионной стойкости готовой проволоки обеспечивается за счет того, что перед профилированием заготовку подвергают двухпроходной радиальной деформации с равными вытяжками и одновременным приложением сдвиговой деформации знакопеременным пластическим кручением в противоположных направлениях в каждом проходе на регламентированную глубину распространения по сечению. 1 ил., 1 табл.

Изобретение предназначено для увеличения срока службы калиброванных валков, уменьшения количества перевалок, увеличения производительности устройства для производства холоднодеформируемых труб прокаткой и волочением. Способ изготовления труб включает холодную прокатку трубной заготовки в возвратно-поступательно перемещающейся рабочей клети с валками и калибрование трубы волочением. Изготовление труб различной длины из труднодеформируемых материалов при любых углах поворота трубы при холодной пильгерной прокатке с увеличенной подачей заготовки обеспечивается за счет того, что калибрование трубы волочением осуществляют синхронно с холодной прокаткой трубной заготовки возвратно-поступательным перемещением обоймы с вращающимся волокодержателем и волокой. Устройство содержит возвратно-поступательно перемещающуюся от привода рабочую клеть с валками, механизм подачи и поворота трубной заготовки и механизм калибрования трубы волочением. Механизм калибрования трубы волочением установлен непосредственно за рабочей клетью и выполнен в виде корпуса с направляющими и возвратно-поступательно перемещающейся от привода по направляющим обоймы с установленным внутри нее волокодержателем с волокой, имеющим возможность вращения. Привод перемещения обоймы механизма калибрования волочением выполнен в виде соединенного с обоймой соленоида и расположенной в корпусе катушки. 2 н. и 1 з.п ф-лы, 1 ил.

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки. Снижение напряжения волочения и энергоемкости процесса волочения обеспечивается за счет того, что используют волоку, угол наклона образующей рабочего канала к оси волочения которой регламентируют математической зависимостью, учитывающей влияние таких факторов как сопротивление деформации материала наружного слоя, напряжение противонатяжения, соотношение площадей сечения слоев и др., что позволяет повысить единичные обжатия и качество протягиваемых изделий.

Изобретение относится к волочильному и калибровочному производству. Многократный прямоточный волочильный стан для калибровки заготовок, включает раму, закрепленные на ней опорные патрубки, установленные на патрубках в подшипниках по меньшей мере два тяговых барабана с приводом от двигателя с понижающим редуктором и коробкой скоростей и установленные перед ними волочильные инструменты. Улучшение технологических параметров волочения в сочетании с возможностью изготовления и эксплуатации стана в условиях малого предприятия при низких затратах обеспечивается за счет того, что в качестве рамы использована рама автомобиля, а в качестве привода барабанов - связанные между собой детали, узлы и механизмы автомобильной трансмиссии, при этом в качестве понижающего редуктора использована главная передача трансмиссии автомобиля, 1-я и 2-я полуоси которой являются выходными валами понижающего редуктора, а коробка скоростей выполнена в виде коробки перемены передач автомобиля, при этом 1-й тяговый барабан соединен с 1-й полуосью, а 2-й тяговый барабан - со 2-й полуосью посредством шарниров, с возможностью передачи полуосями крутящего момента и с обеспечением равенства крутящих моментов на валах тяговых барабанов посредством дифференциального механизма трансмиссии автомобиля, причем между тяговыми барабанами установлен с возможностью свободного вращения обводной ролик, задающий траекторию проволоки от 1-го тягового барабана к волочильному инструменту, расположенному перед 2-м тяговым барабаном, элементы трансмиссии закреплены на раме сварными соединениями, а на опорных патрубках установлены опорные трубы для передачи технологических нагрузок от барабанов на раму. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области производства труб волочением на монолитной самоустанавливающейся оправке и может быть использована при изготовлении труб из различных материалов, предназначенных для машиностроения. Способ включает формирование головки на трубной заготовке, нанесение технологической смазки, установку и перемещение оправки в полости заготовки до основания головки и последующее волочение. Сокращение затрат на технологический инструмент, уменьшение трудоемкости и снижение количества брака обеспечивается за счет того, что перемещение оправки, при условии формирования головки холодной деформацией, осуществляют подачей сжатого воздуха давлением определенной величины или, при формировании головки как холодной, так и горячей деформацией - воздействием на оправку генератора импульсной нагрузки с обеспечением определенной начальной скорости движения оправки. 2 н. и 1 з.п. ф-лы.

Изобретение относится к области волочения винтовых профилей. Способ включает протягивание заготовок через ролики, установленные в теле волоки. Упрощение получения винтовых профилей и снижение энергозатрат за счет исключения принудительного вращения волоки обеспечивается тем, что формирование винтовых профилей осуществляют роликами, установленными в самовращающейся в подшипниках волоке под углом к продольной оси заготовки, регламентированным математической зависимостью, учитывающей площади поперечного сечения заготовки до волочения, поперечного сечения изделия с продольными бороздками и поперечного сечения винтового профиля, радиус и коэффициент трения в подшипнике и другие параметры. Способ позволяет получить винтовые профили без дополнительного приложения крутящего момента. 2 ил., 1 табл., 1 приложение.

Изобретение относится к области волочения при производстве прутков и проволоки. Способ включает формирование на изделии захватки с заостренным и коническим участками и последующее волочение через монолитную волоку. Снижение напряжения волочения и энергоемкости процесса обеспечивается за счет оптимизации угла наклона образующей рабочего канала волоки, регламентируемого математической зависимостью, учитывающей такие параметры, как коэффициент внешнего трения в очаге деформации, длину очага деформации, длину калибрующего пояска волоки, сопротивление деформации материала протягиваемой заготовки, напряжение противонатяжения, коэффициент вытяжки. 1 з.п. ф-лы, 1 ил.
Наверх