Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотного диапазона



Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотного диапазона
Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотного диапазона

 

H01L33/30 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2503091:

Открытое акционерное общество "Зеленоградский инновационно-технологический центр" (ОАО "ЗИТЦ") (RU)

Изобретение может быть использовано при изготовлении твердотельных компактных мощных генераторов субтерагерцового и терагерцового диапазонов частот. Гетеропереходная структура согласно изобретению представляет собой совокупность чередующихся пар узкозонных (GaAs, либо GaN) и широкозонных (соответственно, Ga1-x Alx As, либо Ga1-xAlxN) полупроводниковых слоев. Толщины чередующихся узкозонных и широкозонных слоев выбираются одинаковыми в диапазоне 30…100 нм, узкозонные GaAs и GaN слои многослойной гетероструктуры легируются донорами до концентраций 5·1017…1·1018 см-3, а широкозонные слои Ga1-xAlxAs и Ga1-xAlxN не легируются, количество периодов пар чередующихся GaAs и Ga1-x Alx As (и, соответственно, GaN и Ga1-xAlxN) слоев мультислойной гетероструктуры выбирается от трех до нескольких десятков, мольная доля арсенида алюминия для всех слоев арсенида галлия - арсенида алюминия выбирается из диапазоне 0,20…0,35, а мольная доля нитрида алюминия для всех слоев нитрида галлия - нитрида алюминия выбирается из диапазона 0,35…0,65, при этом в слое Ga1-x Alx As (для системы GaAs-AlAs) и в слое Ga1-xAlxN (для системы GaN-AlN) из пары, наиболее удаленной от подложки, мольная доля арсенида алюминия (соответственно, нитрида алюминия) понижена и составляет около 0.7·Х, а сам этот слой покрыт более толстым (не менее 150 нм) легированным GaAs (соответственно, GaN) слоем. Вариантом заявляемой структуры может быть структура, в которой в слое твердого раствора из пары, ближайшей к подложке, мольная доля арсенида алюминия (соответственно, нитрида алюминия) составляет (0,65…0,75)·Х. Изобретение обеспечивает существенное увеличение мощности твердотельных генераторов субтерагерцового и терагерцового диапазона частот излучения 2 н.п. ф-лы, 2 ил.

 

Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотного диапазона

Данное изобретение найдет применение в качестве приборных структур для компактных и мощных импульсных генераторов, детекторов и смесителей субтерагерцового и терагерцового диапазона частот.

Известна гетероструктура для резонансно-туннельного диода (РТД), реализующая «квантовый» режим генерации и усиления электромагнитных волн субтерагерцового и терагерцового диапазона частот /1/. Такой режим должен проявляться в стороне от области отрицательной дифференциальной проводимости ВАХ и только на частотах, соответствующих условию ħω>Δ, где Δ - квантовая ширина резонансного уровня. Недостатками такой структуры и устройства (РТД) на ее основе являются как чрезвычайно жесткие условия для реализации указанного «квантового» режима, так и достаточно низкие для множества прикладных применений выходные мощности (предельно достижимые расчетные значения мощности не превышают 10 мВт).

В качестве прототипа заявляемой в настоящем изобретении структуры для генератора субтерагерцового диапазона мы выбираем мультислойную структуру для резонансно-туннельных гетеропереходных диодов на основе твердых растворов GaAs-AlAs, позволяющую реализовать частоты субтерагерцового диапазона частот /2/. Однако, и это решение не способно обеспечить на указанных частотах генератору выходную мощность превышающую 100 мкВт (для генераторов на основе резонансно-туннельных структур мощность убывает с частотой как 1/ω4) /2/.

Задача изобретения - существенное увеличение мощности твердотельных генераторов субтерагерцового и терагерцового диапазона частот излучения.

Это достигается тем, что в мультислойной гетеропереходной структуре, состоящей из подложки арсенида галлия, и расположенных на ней чередующихся слоев GaAs и GaAlAs, предлагается: толщины чередующихся слоев выбираются одинаковыми и лежат в диапазоне 30…100 нм, слои GaAs легируются донорами до концентраций 5·1017…1·1018см-3 а слои Ga1-xAlxAs не легированы, количество периодов пар чередующихся слоев GaAs и Ga1-x Alx As гетероструктуры выбирается от трех до нескольких десятков, мольная доля Х выбирается из диапазона 0,20…0,35, слой Ga1-x Alx As из пары наиболее удаленной от подложки покрыт легированным GaAs слоем толщиной не менее 150 нм, а мольная доля Х в слое Ga1-x Alx As из пары наиболее удаленной от подложки, либо пары наиболее приближенной к ней понижена и составляет значение (0,65…0,75)·Х.

Структуру по п.2 Формулы предлагается выполнить на основе пар из чередующихся полупроводниковых узкозонных GaN и широкозонных Ga1-xAlxN слоев, отличающихся тем что их толщины выбираются в диапазоне 30…100 мкм, мольная доля Х в слоях Ga1-xAlxN выбирается из диапазона 0,35…0,55, слои GaN легируются донорами до концентраций 5·1017…1·1018см-3 а слои Ga1-xAlxN не легированы, количество периодов пар чередующихся GaAs и Ga1-x Alx N слоев гетероструктуры выбирается от трех до нескольких десятков, слой Ga1-x Alx As, из пары наиболее удаленной от подложки, покрыт легированным GaAs слоем толщиной не менее 150 нм, а мольная доля Х в слое Ga1-x Alx N из пары наиболее удаленной от подложки, либо пары наиболее приближенной к ней понижена и составляет значение (0,65…0,75)·Х, при этом подложкой является сапфир либо карбид кремния. Положительный эффект в заявляемых по п.п.1, 2 гетероструктурах для генераторов субтерагерцового и терагерцового диапазона частот достигается благодаря реализации в них термоинжекционной неустойчивости, следствием которой является бистабильность или, что тоже самое, S-образность статических вольтамперных характеристик (ВАХ). Доказательством тому является выполненный нами с использованием методов математического моделирования анализ изменений характера пространственных зависимостей потенциала, концентрации носителей и электронной температуры в рассматриваемой многослойной структуре с изменением приложенного напряжения /3, 4/. Установлено, что:

- в области сравнительно малых и промежуточных значений тока большая часть приложенного напряжения парциально падает на слаболегированных слоях широкозонного материала;

- главным механизмом электропроводности в предлагаемой структуре является термоинжекция электронов из высоколегированных узкозонных слоев в широкозонные не легированные слои, определяемая как электронной температурой на гетеробарьерах так и электрическим полем в широкозонных слоях;

- в процессе высокополевого дрейфа электронов в широкозонных слоях за счет джоулева разогрева увеличивается поток электронной температуры, поступающий в последующий узкозонный слой, где происходит частичное остывание электронов, но определенная часть избыточного теплового потока достигает следующей гетерограницы, стимулируя тем самым термоинжекцию электронов в следующий широкозонный слой, что обусловливает определенное снижение падающего на нем потенциала.

Результаты моделирования также указывают на специфическую особенность электроразогревного процесса в первой (присоединенной к отрицательному полюсу источника питания) элементарной ячейке предлагаемой мультибарьерной структуры. У первой гетерограницы электронная температура (отвечающая термодинамическому равновесию) минимальна и, следовательно, эту гетерограницу отличает пониженная термоинжекция при той же высоте гетеробарьера, как и в последующих элементарных ячейках. Эта пониженная инжекционная способность компенсируется повышенным падением потенциала на первом широкозонном слое и, соответственно, повышенном электроразогреве электронов в нем. Столь сильно разогретые электроны практически беспрепятственно преодолевают последующие гетеробарьеры, что и обусловливает соответствующий переход структуры в сильно токовое состояние через участок с достаточно малым, но положительным дифференциальным сопротивлением. Поэтому для обеспечения S-образной формы ВАХ с участком отрицательного дифференциального сопротивления используются пониженные значения высоты первого энергетического барьера.

Расчеты показывают, что из-за разницы между характерными временами термоинжекции (разогрева) электронов в широкозонных GaAlAs слоях и охлаждения электронов в легированных узкозонных GaAs слоях ячейки гетеродиодной структуры реализуется бистабильный характер ВАХ гетеродиодов. При этом, в случае работы в импульсном режиме (цуги длительностью до 10 мс со скважностью ≥10 мс) предельные частоты генерации могут достигать многих сотен гигагерц (0,6…0,8 ТГц), при токах ~ 100 мА, и выходной мощности достигающей ~0,2…0,5 Вт/ячейка с площадью 20×20 мкм2. Посредством набора совокупности параллельно включенных гетеродиодных ячеек указанной площади можно конструировать генераторы импульсов с характерными частотами, лежащими в области 0,5…0,8 ГГц и суммарной мощностью от 0,5 до 2,0 Вт.

Заявляемая структура по п.2 формулы позволяет увеличить длительность цуга и мощность за счет значительного повышения коэффициента теплопроводности материала многослойной гетероструктуры и подложки, и добротности приборов. Основанием для положительных ожиданий является больший перепад значений токов «пик-долина» на ВАХ резонансно-туннельного диода на основе гетероструктуры GaN/Ga1-xAlyN. Благодаря этому существенно расширяется область применений генераторов и схем на их основе и упрощается интеграция генераторных ячеек в управляющие схемы и электронные радиотехнические устройства.

На фиг.1 изображена многослойная структура по п.1 Формулы изобретения, где: 1-GaAs подложка, 2-GaAs:Si 1018 cm-3 толщиной 7000 A 0 , 3-AlxGa1-xAs x=0.4 нелегированный, толщиной 450 A 0 , 4-GaAs:Si 1018 cm-3 толщиной 450 A 0 , 5-AlxGa1-xAs х=0.4 нелегированный, толщина 450 A 0 , 6-GaAs:Si 1018 cm-3 толщиной 450 A 0 , 7- AlxGa1-xAs х=0.4 нелегированный, толщина 450 A 0 , 8-GaAs-Si 1018 cm-3 толщиной 450 A 0 , 9-AlxGa1-xAs х=0.4 нелегированный, толщина 450 A 0 , 10-GaAs:Si 1018 cm-3 толщиной 450 A 0 , 11-AlxGa1-xAs х=0.4 нелегированный, толщина 450 A 0 , 12-GaAs:Si 1018 cm-3 толщиной 450 A 0 , 13-AlxGa1-xAs x=0.4 нелегированный, толщина 450 A 0 , 14-GaAs:Si 1018 cm-3 толщиной 450, A 0 15-AlxGa1-xAs x=0.4 нелегированный, толщина 450 A 0 , 16-GaAs:Si 1018 cm-3 толщной 450 A 0 , 17-AlxGa1-xAs x=0.4 нелегированный, толщина 450 A 0 , 18-GaAs:Si 1018 cm-3 толщиной 1500 A 0 .

Для указанной гетероструктуры выполнены теоретические расчеты статических ВАХ и получены оценки динамических характеристик генераторов на ее основе. На фиг.2 представлены экспериментально измеренные статические ВАХ генераторных ячеек, выполненных с использованием микроэлектронных технологий на основе многослойной гетероструктуры.

Как показали расчеты, концентрация доноров в GaAs слоях может варьироваться в зависимости от задачи в диапазоне 5·1017…1018 см-3, при изменениях толщин GaAs и GaAlAs слоев в диапазоне 30…100 нм. При концентрациях меньших нижней границы диапазона, толщины областей пространственного заряда (ОПЗ) возникающих в GaAs из за наличия гетерограниц, станут соразмерными толщинам GaAs слоев, что резко изменяет сам механизм транспорта в многослойной структуре. При концентрациях больших 1018см-3 резко подает подвижность электронов (становиться меньшей 1500 см2/Вс) в узкозонных GaAs слоях из-за увеличения рассеяния на легирующей примеси и структурных дефектах. Кроме того, наблюдается «прорастание» структурных дефектов в широкозонные Ga1-x Alx As слои, что способствует развитию подбарьерных механизмов транспорта (прыжковая термоактивированная проводимость по локализованным состояниям). Все это отрицательно сказывается на отношении времени разогрева и релаксации температуры электронного газа. определяющего возможность образования S-образности на ВАХ и характерные частоты генерации. В качестве подложки может использоваться либо подложка сильнолегированного донорами арсенида галлия, либо полуизолирующая подложка арсенида галлия с расположенным между ней и ближайшим по отношению к ней широкозонным слоем GaAlAs, сильнолегированным (5·1017…1018 см-3) слоем арсенида галлия толщиной 0,4…1,0 мкм.

Заявляемая гетероструктура изготавливается следующим образом (пример).

На полупроводниковой подложке n - типа проводимости последовательно эпитаксиально выращиваются: узкозонный сильнолегированный (до 1018 см-3) донорами GaAs слой, широкозонный нелегированный Gay Ali.y As слой (выбирается мольная доля в диапазоне у=0,27…0,35), узкозонный легированный (5·1017…1018 см-3) донорами GaAs слой - ((3…20 периодов чередующихся пар указанных широкозонных и узкозонных слоев), широкозонный нелегированный слой Gax Al1-x As (выбирается мольная доля в диапазоне х=0,18…0,20) и узкозонный сильнолегированный донорами (до 1018 см-3) слой GaAs (слои могут быть легированы, например, германием, кремнием, оловом).

При изготовлении генератора на указанной гетероструктуре выполняются следующие технологические процедуры. На тыльной стороне сильнолегированной nGaAs подложки формируется омический контакт.На выращенной гетероструктуре посредством литографических методов (электронная литография, фотолитография, либо наноимпринтинг в зависимости от выбранной геометрии мез) формируются ячейки гетеродиодов, в виде мезаструктур высотою большей суммарной толщины слоев многослойной эпитаксиальной гетероструктуры и площадью каждой мезы в диапазоне 20×20…50×50 мкм2. Поверхность структуры пассивируется (покрывается) диэлектриком и планаризируется, и в диэлектрике посредством литографии вскрываются окна к сильнолегированному nGaAs слою верхней плоскости упомянутой мезы. Затем, во вскрытом в диэлектрике окне к поверхности мезы формируется омический контакт (например, с использованием системы Ge/Ni/Au). В зависимости от требуемых параметров генератора организуются с помощью проводящих ламелей гальванические связи между тем либо иным количеством гетеродиодных ячеек (мез) и формируются контактные площадки.

Структура по пункту 2 является частным решением п.1. Она позволяет дополнительно повысить предельную мощность генератора на многослойной гетероструктуре заявляемого типа. Действительно, в структуре по п.2 Формулы упомянутые слои мультислойной гетероструктуры выполняются на основе твердых растворов материалов системы GaN-AlN из пар чередующихся легированных nGaN и нелегированных Ga1-xAlxN эпитаксиальных слоев; подложкой при этом, из технологических и мощностных соображений, может являться сапфир, либо карбид кремния. В силу общности физических процессов протекающих в гетероструктурах указанных типов, оставаясь в рамках предлагаемой в п.1 Формулы архитектуры мультислойной структуры, можно таким образом увеличить отбираемую (выходную) мощность за счет существенно лучшей, чем у GaAs, теплопроводности твердых растворов GaN-AlN и подложек из SiC, либо сапфира.

Литература

1. Елесин В.Ф. // ЖЭТФ, 1999. T.116, №2. C.704; ЖЭТФ, 2005. Т.127,№1. С.131.

2. Sollner T.C., Goodhue W.D. et al: // Appl.Phys.Lett. 1983, V.43(6). P.588

3. Гергель В.А., Зеленый А.П., Якупов М.Н. Исследование эффекта бистабильности токовых характеристик наноразмерных многослойных сильно легированных гетероструктур методами математического моделирования// Физика и техника полупроводников, 2007, том 41, №3, с.325-330.

4. Гергель В.А., Якупов М.Н., Верховцева А.В., Горшкова Н.М. Механизм электрической неустойчивости в мультибарьерных гетероструктурах. Особенности высокочастотного импеданса. //Радиотехника и электроника, 2012, том 57, №4, с.1-4.

1. Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотных диапазонов, состоящая из подложки арсенида галлия и расположенных на ней чередующихся слоев GaAs и Ga1-x Alx As, отличающаяся тем, что толщины чередующихся слоев выбираются одинаковыми и лежат в диапазоне 30…100 нм, слои GaAs легируются донорами до концентраций 5·1017…1·1018см-3, а слои Ga1-xAlxAs не легированы, количество периодов пар чередующихся слоев GaAs и Ga1-x Alx As гетероструктуры выбирается от трех до нескольких десятков, мольная доля Х выбирается из диапазона 0,20…0,35, слой Ga1-x Alx As из пары, наиболее удаленной от подложки, покрыт легированным GaAs слоем толщиной не менее 150 нм, а мольная доля Х в слое Ga1-x Alx As из пары наиболее удаленной от подложки, либо пары, наиболее приближенной к ней, понижена и составляет значение (0,65…0,75)·Х.

2. Структура для генерации электромагнитного излучения субтерагерцового и терагерцового частотных диапазонов, состоящая из подложки и расположенных на ней чередующихся полупроводниковых узкозонных и широкозонных слоев, отличающаяся тем что толщины пар чередующихся слоев GaN и Ga1-xAlxN выбираются в диапазоне 30…100 мкм, мольная доля Х в слоях Ga1-xAlxN выбирается из диапазона 0,35…0,55, слои GaN легируются донорами до концентраций 5·1017…1·1018см-3, а слои Ga1-xAlxN не легированы, количество периодов пар, чередующихся GaAs и Ga1-x Alx N слоев гетероструктуры, выбирается от трех до нескольких десятков, слой Ga1-x Alx As из пары, наиболее удаленной от подложки, покрыт легированным GaAs слоем толщиной не менее 150 нм, а мольная доля Х в слое Ga1-x Alx N из пары, наиболее удаленной от подложки, либо пары, наиболее приближенной к ней, понижена и составляет значение (0,65…0,75)·Х, при этом подложкой является сапфир либо карбид кремния.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является воспроизведение света практически равномерного цвета.

Способ изготовления светоизлучающего устройства согласно изобретению содержит следующие этапы: обеспечение кристалла светоизлучающего диода (СИД) на опоре (22), причем между кристаллом СИД и опорой существует зазор, причем кристалл СИД имеет нижнюю поверхность, обращенную к опоре, и верхнюю поверхность, противоположную нижней поверхности, формование материала (54) прокладки поверх кристалла СИД так, что материал прокладки запечатывает кристалл СИД и, по существу, полностью заполняет зазор между кристаллом СИД и опорой, и удаление материала (54) прокладки, но меньшей мере, с верхней поверхности кристалла СИД, причем кристалл СИД содержит эпитаксиальные слои (10), выращенные на ростовой подложке, причем поверхность ростовой подложки является верхней поверхностью кристалла СИД, при этом способ дополнительно содержит этап удаления ростовой подложки с эпитаксиальных слоев после формования материала (54) прокладки поверх кристалла СИД.

Изобретение относится к твердотельным источникам света на основе органических светоизлучающих диодов (ОСИД), которые используются для создания цветных информационных экранов и цветовых индикаторных устройств с высокими потребительскими свойствами, а также экономичных и эффективных источников света.

Согласно изобретению предложен способ изготовления светоизлучающего устройства (СИД). Данный способ содержит этапы: обеспечения подложки, на которой установлен, по меньшей мере, один светоизлучающий диод и; установки коллиматора, по меньшей мере, частично окружающего сбоку упомянутый, по меньшей мере, один светоизлучающий диод, и сформированный с помощью, по меньшей мере, одного самонесущего элемента стены из материала толщиной в диапазоне от 100 до 500 мкм.

Изобретение относится к люминисцентным материалам и их применению в светоизлучающих диодных устройствах. Предложен материал желтого послесвечения, имеющий химическую формулу aY2O3·bAl2O3·cSiO2:mCe·nB·xNa·yP, где a, b, c, m, n, x и y являются коэффициентами, причем a не меньше 1, но не больше 2, b не меньше 2, но не больше 3, c не меньше 0,001, но не больше 1, m не меньше 0,0001, но не больше 0,6, n не меньше 0,0001, но не больше 0,5, x не меньше 0,0001, но не больше 0,2, и y не меньше 0,0001, но не больше 0,5, причем Y, Al и Si являются основными элементами, а Ce, B, Na и P являются активаторами.

Изобретение относится к светотехнике и может быть использовано при изготовлении устройств общего и местного освещения. Люминесцентный композитный материал содержит полимерную основу 1 из оптически прозрачного полимерного материала и многослойную полимерную пленку, содержащую люминофоры, из трех слоев: оптически прозрачная полимерная пленка 2; полимерная композиция 3, включающая неорганический люминофор - иттрий-алюминиевый гранат, допированный церием, или галлий-гадолиниевый гранат, допированный церием; полимерная композиция 4 с диспергированными полупроводниковыми нанокристаллами, выполненными из полупроводникового ядра, первого и второго полупроводниковых слоев, и испускающими флуоресцентный сигнал с максимумами пиков флуоресценции в диапазоне длин волн 580-650 нм.
Изобретение может быть использовано при детектировании ионизирующего излучения и для создания источников белого света на основе нитридных гетеропереходов. Предложена гибкая (самонесущая) поликарбонатная пленка, наполненная неорганическими люминофорами из твердых растворов алюминатов и силикатов редкоземельных элементов.

Изобретение относится к полупроводниковым приборам. Светотрназистор белого света представляет собой полупроводниковое устройство, предназначенное для светового излучения на основе транзисторной структуры с чередующимся типом проводимости, образующей активную область, генерирующую синее свечение.

Описываются новые полициклические азотсодержащие гетероароматические соединения - тетрацианозамещенные 1,4,9b-триазафеналены общей формулы 1 где R означает - фенил, замещенный NO2, галогеном, С1-4алкилом или группой -OR1, где R1 - метил, - нафтил или - гетероарил состава C4H3S, и способ их получения исходя из соответствующих R-замещенных 1,1,2,2-тетрацианоциклопропанов при их кипячении в 1,2-дихлорбензоле.

Способ изготовления светоизлучающего устройства с преобразованной длиной волны содержит: светоизлучающий диод для эмитирования светового излучения с первой длиной волны, имеющего светоизлучающую поверхность, на данной поверхности расположен материал, преобразующий длину волны, который приспособлен для приема светового излучения, эмитируемого указанным светоизлучающим диодом, и преобразования по меньшей мере части указанного воспринятого светового излучения в световое излучение со второй длиной волны; размещение, по меньшей мере на части внешней поверхности указанного светоизлучающего устройства с преобразованной длиной волны, светоотверждаемого покровного материала, облучение которого световым излучением с указанной первой длиной волны эффективной интенсивности вызывает отверждение указанного светоотверждаемого покровного материала; и отверждение по меньшей мере части указанного светоотверждаемого покровного материала облучением указанного материала посредством указанного светоизлучающего диода, чтобы образовать отвержденный материал, блокирующий световое излучение.

Светоизлучающее устройство (1) содержит светоизлучающий диод (2), размещенный на монтажной подложке (3), причем упомянутое устройство имеет боковую периферийную поверхность (6) и верхнюю поверхность (8) и оптически активный слой покрытия (7), причем упомянутый слой покрытия (7) покрывает по меньшей мере часть упомянутой периферийной поверхности (6), простирается от монтажной подложки (3) до упомянутой верхней поверхности (8) и по существу не покрывает верхнюю поверхность (8). При этом по меньшей мере часть упомянутой боковой периферийной поверхности была предварительно обработана, чтобы она стала одной из полярной и аполярной, и при этом композиция покрытия, которая была использована для образования по меньшей мере части упомянутого слоя покрытия, является одной из полярной и аполярной. Также раскрыт способ получения такого устройства и предложен массив светоизлучающих устройств, состоящий из упомянутых выше светоизлучающих устройств. Изобретение обеспечивает возможность снижения потерь эффективности из-за рассеяния света через боковые поверхности светоизлучающего устройства. 3 н. и 12 з.п. ф-лы, 9 ил.

Сид-модуль // 2503093
Согласно изобретению предложен источник света, который содержит СИД-кристалл и люминесцентный преобразователь длины волны, смонтированные бок о бок на основании, причем СИД-кристалл выполнен с возможностью излучения света возбуждения в первом диапазоне длин волн, а люминесцентный преобразователь длины волны выполнен с возможностью преобразования света возбуждения в преобразованный свет во втором диапазоне длин волн; отражатель со встроенным поглощающим слоем, причем отражатель выполнен с возможностью пропускания преобразованного света от люминесцентного преобразователя длины волны, причем встроенный поглощающий слой выполнен с возможностью снижения пропускания отражателем любого света возбуждения, падающего на отражатель под, по существу, непрямыми углами; и отдельный полусферический поглотитель, расположенный вокруг люминесцентного преобразователя длины волны таким образом, что преобразованный свет от люминесцентного преобразователя длины волны проходит через отдельный полусферический поглотитель при нормальном угле падения, а свет возбуждения, пропущенный через отражатель, проходит через отдельный полусферический поглотитель под непрямым углом. Также предложен модуль светоизлучающего диода. Изобретение обеспечивает менее сложный способ удаления света возбуждения из света, выходящего из источника. 2 н. и 7 з.п. ф-лы, 12 ил., 2 табл.

Предложенный способ изготовления полупроводниковых излучателей применяется в технологии квантовой электроники. Получаемые полупроводниковые излучатели предназначены для использования в аппаратуре медицинской диагностики, экологической аппаратуре контроля газовых сред, волоконно-оптических датчиках давления, температуры, вибрации, химического анализа веществ, скорости потока жидкости и газов, в системах связи, контрольно-измерительной аппаратуре. Способ заключается в изготовлении полупроводникового излучателя, в котором торцевую грань, противоположную выводной, активного элемента соединяют с внешним спектрально-селективным отражателем на основе кристаллической брэгговской решетки, имеющей последовательность чередующихся параллельных слоев двух видов полупроводниковых материалов. Излучатель может быть суперлюминесцентный, лазерный одноэлементный, многоэлементный. Способ изготовления полупроводникового излучателя согласно изобретению обеспечивает упрощение технологии изготовления за счет упрощения и ускорения сборки элементов излучателя, увеличение мощности излучения при сохранении стабилизации длины волны и ширины спектра выходного излучения при изменении температуры окружающей среды и тока накачки через активный кристалл, увеличение долговечности и надежности, уменьшение габаритов излучателя, снижение его себестоимости. 8 з.п. ф-лы, 1 ил., 5 пр.

Изобретение относится к светотехнике, в частности к световым приборам на светодиодах. Сущность изобретения заключается в том, что рабочая поверхность формирующей оптической системы, через которую выводится излучение светодиода, представляет собой в общем случае асимметричную асферическую поверхность. Оптический модуль согласно изобретению содержит светодиод (светодиодный кристалл) и примыкающую к нему формирующую оптическую систему (ФОС), через которую выводится излучение светодиода. Рабочая световыводящая поверхность ФОС представляет собой асимметричную асферическую поверхность, при этом форма рабочей поверхности ФОС определена из решения предложенной системы уравнений. Задача изобретения заключается в создании оптического модуля, обеспечивающего формирование требуемой индикатрисы излучения. 1 табл., 3 ил.

Изобретение относится к области светотехники. Техническим результатом является уменьшение неравномерности яркости и оттенков. Блок (49) задней подсветки устройства отображения (69) отображения, включающего в себя жидкокристаллическую панель отображения (59), включает в себя основание (41), рассеивающую пластину (43), которая поддерживается посредством основания, и точечный источник света для облучения светом рассеивающей пластины. Точечный источник света включает в себя светодиод (22), установленный на монтажной подложке (21). Предоставляется множество светодиодов, и соответственно они покрываются рассеивающими линзами (24). Оптические оси (OA) рассеивающих линз наклонены относительно рассеивающей пластины, и рассеивающие линзы, имеющие различные наклоны оптических осей, располагаются на основании смешанным образом. Рассеивающие линзы, имеющие оптические оси, наклонные в противоположных направлениях, спариваются, и пары размещаются в матрице. 6 н. и 19 з.п. ф-лы, 12 ил.

Источник света, в котором используют светоиспускающий диод с элементом, преобразующим длину волны, выполнен с возможностью получения неравномерного углового распределения цвета, которое можно использовать с конкретным оптическим устройством, которое трансформирует угловое распределение цвета в равномерное распределение цвета. Соотношение высоты и ширины элемента, преобразующего длину волны, выбирают для получения желаемого неравномерного углового распределения цвета. Использование управляемой угловой неравномерности цвета в источнике света и его использование в применениях, которые трансформируют неравномерность в равномерное распределение цвета, увеличивает эффективность системы по сравнению со стандартными системами, в которых используют равномерный угловой светоиспускающий диод. 2 н. и 10 з.п. ф-лы, 10 ил.
Изобретение к полупроводниковым электролюминесцентным излучателям с управляемыми цветовыми характеристиками. Полупроводниковый электролюминесцентный излучатель включает соединенный с источником электропитания полупроводниковый светоизлучающий кристалл, генерирующий световой поток при протекании через него питающего тока, при этом использован кристалл, излучающий свет, по меньшей мере, в двух различных спектральных диапазонах с регулируемым путем изменения параметров электропитания соотношением интенсивностей излучений различного спектрального диапазона. Согласно изобретению использован источник электропитания, снабженный схемой амплитудно-широтной импульсной модуляции питающего тока, обуславливающей изменение величины амплитуды и длительности импульсов питающего тока при обеспечении постоянства силы света генерируемого кристаллом светового потока. Изобретение обеспечивает повышение комфортности зрительного восприятия света, генерируемого излучателем с изменяемыми цветовыми характеристиками. 1 з.п. ф-лы.

Способ изготовления относится к области полупроводниковых светоизлучающих приборов и может использоваться для производства светодиодов. Сущность способа заключается в том, что на световыводящей поверхности GaN-n или GaN-p типов осаждается просветляющее оптическое покрытие SiO2 и в нем формируется микрорельеф в виде наноострий с плотностью 107-108 шт/см2. Данный способ позволяет создавать микрорельефную рассеивающую свет световыводящую поверхность как на GaN n-типа, так и на GaN р-типа без ухудшения параметров гетероструктуры, кроме того, способ предназначен для повышения внешней квантовой эффективности светодиодов на основе GaN. 2 ил., 1 пр.

Изобретение относится к светотехнике, а именно к полупроводниковым источникам света на основе светодиодов. Светодиод содержит по меньшей мере один светоизлучающий кристалл со сверхузкой диаграммой направленности, который установлен в корпусе из оптически прозрачного материала, световыводящая поверхность которого выполнена сферической формы, причем размер сферы и высота оптического элемента связаны определенным соотношением, зависящим от угла расходимости потока излучения светодиода; высоты оптического элемента; радиуса сферы оптического элемента; угловой величины диаграммы направленности светового потока излучающего кристалла и показателя преломления материала оптического элемента. Изобретение обеспечивает возможность создания светодиода, обеспечивающего формирование требуемой диаграммы направленности излучения светового потока. 1 ил.

Изобретение относится к способу изготовления шаровидной светодиодной лампы (10), имеющей прозрачную колбу (14) и основание (12) для присоединения к ламповому патрону. Путем обертывания основания (12) расширяющейся лентой (38) из пеноматериала типа Compriband или подобной, до вставки в участок (16) горловины колбы (14), может быть достигнуто автоматическое выравнивание основания (12) в горловине (16) колбы. Дополнительно, полосы (36) из мягкого металла могут быть обернуты вокруг ленты (38) до обертывания ленты (38) вокруг основания (12). Лента (38) выполняет функцию воздушной подушки, которая прижимает металлические полосы (36) к основанию (12) и колбе (14). Технический результат - повышение теплоотвода за счет улучшение передачи тепла от основания к колбе. 2 н. и 9 з.п. ф-лы, 9 ил.
Наверх