Способ оценки тяжести гипоксии новорожденных

Изобретение относится к медицине, а именно к педиатрии и неонатологии, и может быть использовано в качестве одного из диагностических критериев определения степени выраженности гипоксии новорожденных. Сущность способа: выполняют исследование крови методом РАМАН-спектроскопии с записью кривых РАМАН-спектра гемоглобина новорожденного, по которым определяют структурно-функциональные свойства гемоглобина. При этом, если относительное количество оксигемоглобина в эритроцитах составляет от 0,589 до 0,680, относительная способность гемоглобина связывать лиганды от 0,446 до 0,645, относительная способность гемоглобина выделять лиганды от 0,598 до 0,786, сродство гемоглобина к лигандам от 0,661 до 1,099, колебания метиновых мостиков от 1,518 до 1,652, то делают заключение о первой степени церебральной ишемии у новорожденного; если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,620 до 0,743, относительная способность гемоглобина связывать лиганды от 0,346 до 0,565, относительная способность гемоглобина выделять лиганды от 0,627 до 0,789, сродство гемоглобина к лигандам от 0,659 до 0,998, колебания метиновых мостиков от 1,553 до 1,874, то делают заключение о второй степени церебральной ишемии у новорожденного; если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,643 до 0,982, относительная способность гемоглобина связывать лиганды от 0,351 до 0,545, относительная способность гемоглобина выделять лиганды от 0,711 до 0,816, сродство гемоглобина к лигандам от 0,614 до 0,894, колебания метиновых мостиков от 1,689 до 1,903, то делают заключение о третьей степени церебральной ишемии у новорожденного. Изобретение обеспечивает высокую точность определения степени выраженности гипоксии новорожденных. 1 табл., 2 ил.

 

Изобретение относится к медицине, а именно к педиатрии и неонатологии, и может быть использовано в качестве одного из диагностических критериев определения степени выраженности гипоксии новорожденных.

Потребность в диагностике и прогнозировании развития последствий перинатальных поражений ЦНС и поиск различных возможностей коррекции дезадаптации у новорожденных детей при течении и проведении лечения данных патологических состояний является актуальной и пока еще полностью нерешенной задачей. Использование способа позволяет с высокой точностью и специфичностью оценить степень тяжести гипоксии в периоде новорожденности, что позволит прогнозировать состояние ребенка в раннем возрасте и даст возможность проводить коррекцию данных состояний.

Известен способ оценки степени тяжести состояния новорожденных детей путем комплексного анализа результатов клинического обследования и способа оценки степени тяжести состояния доношенных новорожденных детей по данным кислотных и осмотических эритрограмм с определением показателей Gmax и G120, выраженных в процентах, при этом, в случае если Gmax больше 96,6% и G120 меньше или равно 1%, делают заключение о легкой степени нарушений состояния новорожденных; если Gmax лежит в диапазоне от 80,25 до 96,59%; G120 от 1,1 до 2,12% делают заключение о умеренной степени нарушений состояния новорожденных; если Gmax менее 80,2% и G120 более 2,1%, делают заключение о тяжелой степени нарушений состояния новорожденных детей, требующей повышенного внимания, назначения и проведения необходимых лечебных манипуляций (RU 2396564, МПК G01N 33/49, опубл. 10.08.2010 г.).

Однако при применении данного способа имеется ряд недостатков, которые состоят в том, что он применим только для доношенных новорожденных и не позволяет оценить состояние и выраженность гипоксии у недоношенных детей. Кроме того, способ достаточно трудоемкий и требует определенных затрат времени (кровь приходится трижды центрифугировать в течение 10-15 минут), а состояние новорожденного ребенка, которое необходимо расценить, требует срочной терапии и порой решения вопроса о транспортировке и госпитализации в отделение реанимации и интенсивной терапии новорожденных. Еще одним из недостатков является отсутствие возможности оценки степени выраженности гипоксии с учетом структурно-функциональных свойств гемоглобина новорожденного. Кроме того, забор крови из вен головы новорожденного является высоко инвазивной процедурой для ребенка.

Технический результат заключается в определении степени выраженности гипоксии новорожденных с высокой точностью.

Технический результат достигается тем, что в способе оценки степени тяжести гипоксии у новорожденных исследуют кровь. Исследования выполняют методом РАМАН-спектроскопии с записью кривых РАМАН-спектра гемоглобина новорожденного, по которым определяют структурно-функциональные свойства гемоглобина. При этом, если относительное количество оксигемоглобина в эритроцитах составляет от 0,589 до 0,680, относительная способность гемоглобина связывать лиганды от 0,446 до 0,645, относительная способность гемоглобина выделять лиганды от 0,598 до 0,786, сродство гемоглобина к лигандам от 0,661 до 1,099; колебания метиновых мостиков от 1,518 до 1,652, то делают заключение о первой степени церебральной ишемии у новорожденного. Если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,620 до 0,743, относительная способность гемоглобина связывать лиганды от 0,346 до 0,565, относительная способность гемоглобина выделять лиганды от 0,627 до 0,789, сродство гемоглобина к лигандам от 0,659 до 0,998, колебания метиновых мостиков от 1,553 до 1,874, то делают заключение о второй степени церебральной ишемии у новорожденного. Если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,643 до 0,982, относительная способность гемоглобина связывать лиганды от 0,351 до 0,545, относительная способность гемоглобина выделять лиганды от 0,711 до 0,816, сродство гемоглобина к лигандам от 0,614 до 0,894; колебания метиновых мостиков от 1,689 до 1,903, то делают заключение о третьей степени церебральной ишемии у новорожденного, требующей постоянного наблюдения и назначения необходимой терапии.

Способ осуществляется следующим образом. Делается забор крови у ребенка, причем достаточно 0,1-0,2 мл крови. Делается обычный мазок крови на предметное стекло. Затем с помощью аппарата проводится РАМАН-спектроскопия с записью кривых РАМАН-спектра гемоглобина новорожденного (Фиг.1, на которой изображены кривые РАМАН-спектра гемоглобина новорожденных при церебральных ишемиях: а - здоровый новорожденный, б - церебральная ишемия I степени, в - церебральная ишемия II степени, г - церебральная ишемия III степени). После этого производится расчет следующих показателей (1. Stein P., I.M. Burke, and T.G. Spiro. Structural interpretation of heme protein resonance Raman frequencies. Preliminary normal coordinate analysis results. J. Amer. Chem. Soc. - 1975. - 97. - P. 2304-2305. 2. Kitagawa Т., Y. Kyogoku, and T. Iizuka. Nature of the iron ligand bond in ferrous low spin hemoproteins studied by resonance Raman scattering. J. Amer. Chem. Soc. - 1976. - 98. - P. 5169-5173. 3. Choi S., T.G. Spiro, K.C. Langry, K.M. Smith, D.L. Budd, and G.N. La Mar. Structural correlations and vinyl influences in resonance Raman spectra of protoheme complexes and proteins. J. Amer. Chem. Soc. - 1982. - 104. - P. 4345-4351. 4. Wood B.R., P. Caspers, G.J. Puppels, S. Pandiancherri, and D. Mc-Naughton. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 2007. 387. - P. 1691-1703):

1. относительное количество оксигемоглобина в крови или суспензии эритроцитов рассчитывают по соотношению абсолютных интенсивностей соответственно полосам спектра гемоглобина I1375/(I1355+I1375);

2. относительная способность всего гемоглобина в пробе связывать лиганды определяется по отношению интенсивностей I1355/I1550;

3. относительная способность гемоглобина выделять лиганды устанавливается по отношению интенсивностей I1375/I1580;

4. сродство гемоглобина к лигандам (кислороду) рассчитывают по отношению (I1355/I1550)/(I1375/I1580);

5. колебания метиновых мостиков гемоглобина определяют по отношению I1375/I1172.

В проведенном исследовании новорожденным детям (n=78) с церебральными ишемиями была проведена РАМАН-спектроскопия гемоглобина. Группу контроля составили здоровые дети.

При анализе РАМАН-спектроскопии у этой группы новорожденных, перенесших перинатальное поражение ЦНС ишемически-гипоксического генеза, выявлено, что количество оксигемоглобина в крови растет с увеличением тяжести заболевания (табл.1, фиг.1, фиг.2, на которой изображена РАМАН-спектроскопия гемоглобина новорожденных при церебральных ишемиях (а - здоровый новорожденный, б - церебральная ишемия I степени, в - церебральная ишемия II степени, г - церебральная ишемия III степени)).

Показатель, отражающий способность гемоглобина связывать лиганды и, в первую очередь, кислород у новорожденных с перинатальными поражениями ЦНС ишемически-гипоксического генеза уменьшается с увеличением степени тяжести данной патологии. Показатель относительной способности гемоглобина выделять лиганды у новорожденных при гипоксически-ишемическом поражении ЦНС растет по мере возрастания тяжести церебральной ишемии. Показатель сродства гемоглобина к лигандам (кислороду) у новорожденных с церебральными ишемиями меньше по сравнению с данным показателем у здоровых новорожденных, причем он уменьшается по мере увеличения тяжести, перенесенной церебральной ишемии.

Показатель, отражающий конформационные изменения пирролов, у детей с церебральной ишемией растет по мере утяжеления патологии (табл. 1).

При точной верификации исследованных показателей доказано, что:

при церебральной ишемии I степени

- относительное количество оксигемоглобина в эритроцитах от 0,589 до 0,680;

- способность гемоглобина связывать лиганды от 0,446 до 0,645;

- относительная способность гемоглобина выделять лиганды от 0,598 до 0,786;

- сродство гемоглобина к лигандам от 0,661 до 1,099;

- колебания метиловых мостиков, отражающие конформационные изменения пирролов, от 1,518 до 1,652.

При церебральной ишемии II степени

- относительное количество оксигемоглобина в эритроцитах от 0,620 до 0,743;

- способность гемоглобина связывать лиганды от 0,346 до 0,565;

- относительная способность гемоглобина выделять лиганды от 0,627 до 0,789;

- сродство гемоглобина к лигандам от 0,659 до 0,998;

- колебания метиновых мостиков, отражающие конформационные изменения пирролов, от 1,553 до 1,874.

При церебральной ишемии III степени

- относительное количество оксигемоглобина в эритроцитах от 0,643 до 0,982;

- способность гемоглобина связывать лиганды от 0,351 до 0,545;

- относительная способность гемоглобина выделять лиганды от 0,711 до 0,816;

- сродство гемоглобина к лигандам от 0,614 до 0,894;

- колебания метиновых мостиков, отражающие конформационные изменения пирролов, от 1,689 до 1,903.

Таким образом, исследования показали, что РАМАН-спектроскопия высоко информативно оценивает степень выраженности гипоксии новорожденного, определяя структурно-функциональные свойства гемоглобина новорожденного, а предложенный способ с помощью РАМАН-спектроскопии гемоглобина новорожденных, которая характеризует его структурно-функциональные свойства, дает возможность на молекулярном уровне оценить тяжесть перенесенной гипоксии в периоде новорожденности.

Таблица 1
РАМАН-спектроскопия гемоглобина новорожденных при ишемически-гипоксических поражениях ЦНС
Показатель Здоровые новорожденные (норма) Новорожденные с гипоксией
ЦИ I степени ЦИ II степени ЦИ III степени
Относительное количество оксигемоглобина в эритроцитах I1375/(I1355+I1375) от 0,523
до 0,580
от 0,589
до 0,680
от 0,620
до 0,743
от 0,643
до 0,982
Относительная способность гемоглобина связывать лиганды I1355/I1550 от 0,423
до 0,440
от 0,446
до 0,645
от 0,346
до 0,565
от 0,351
до 0,545
Относительная способность гемоглобина выделять лиганды I1375/I1580 от 0,578
до 0,590
от 0,598
до 0,786
от 0,627
до 0,789
от 0,711
до 0,816
Сродство гемоглобина к лигандам (O2) (I1355/I1550)/(I1375/I1580) от 0,623
до 0,660
от 0,661
до 1,099
от 0,659
до 0,998
от 0,614
до 0,894
Колебания метиловых мостиков гемоглобина I1375/I1172 от 1,340
до 1,510
от 1,518
до 1,652
от 1,553
до 1,874
от 1,689
до 1,903
Примечание: жирный шрифт достоверность различия по отношению к норме при p<0,05

Способ оценки тяжести гипоксии новорожденных путем исследования крови с последующим постоянным наблюдением и назначением необходимой терапии, отличающийся тем, что исследования выполняют методом РАМАН-спектроскопии с записью кривых РАМАН-спектра гемоглобина новорожденного, по которым определяют структурно-функциональные свойства гемоглобина, при этом, если относительное количество оксигемоглобина в эритроцитах составляет от 0,589 до 0,680, относительная способность гемоглобина связывать лиганды от 0,446 до 0,645, относительная способность гемоглобина выделять лиганды от 0,598 до 0,786, сродство гемоглобина к лигандам от 0,661 до 1,099, колебания метиновых мостиков от 1,518 до 1,652, то делают заключение о первой степени церебральной ишемии у новорожденного; если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,620 до 0,743, относительная способность гемоглобина связывать лиганды от 0,346 до 0,565, относительная способность гемоглобина выделять лиганды от 0,627 до 0,789, сродство гемоглобина к лигандам от 0,659 до 0,998, колебания метиновых мостиков от 1,553 до 1,874, то делают заключение о второй степени церебральной ишемии у новорожденного; если относительное количество оксигемоглобина в эритроцитах лежит в диапазоне от 0,643 до 0,982, относительная способность гемоглобина связывать лиганды от 0,351 до 0,545, относительная способность гемоглобина выделять лиганды от 0,711 до 0,816, сродство гемоглобина к лигандам от 0,614 до 0,894, колебания метиновых мостиков от 1,689 до 1,903, то делают заключение о третьей степени церебральной ишемии у новорожденного.



 

Похожие патенты:
Изобретение относится к области медицины и предназначено для индивидуализации лечения больных раком тела матки молодого возраста. В опухолевой ткани эндометрия, полученной после операции у женщин репродуктивного возраста, анализируют плоидность клеток опухоли по фазам клеточного цикла.

Изобретение относится к медицине, а именно к онкологии и радиологии, и может найти применение при лечении больных злокачественными опухолями головного мозга. В способе определения показаний к проведению лучевой терапии у опухоленосителей путем предикции ее эффективности, включающем взятие пробы крови, гамма-облучение части этой пробы in vitro, инкубацию облученной и необлученной частей пробы крови, окрашивание ДНК-компонентов обеих частей крови ДНК-специфичным флуоресцентным красителем, определение количества лейкоцитов в облученной части пробы крови, количества лейкоцитов в необлученной части пробы крови, окрашивание всех ДНК-содержащих компонентов крови, определение ИДо - количества ДНК во всех ДНК-содержащих компонентах крови в расчете на один лейкоцит облученной части пробы и ИДн - количества ДНК во всех ДНК-содержащих компонентах крови в расчете на один лейкоцит необлученной части пробы, вычисление ИДн/ИДо, берут дополнительную пробу крови, в которую вводят водный раствор, содержащий ионы двухвалентного железа в концентрации 50-75 мг/л в объеме 8-14% от объема пробы крови, затем инкубируют дополнительную пробу крови в течение 15-30 минут, после чего осуществляют гамма-облучение части дополнительной пробы, далее инкубируют облученную и необлученную части дополнительной пробы в течение 2,5-3,5 часов, определяют количество лейкоцитов в облученной и необлученной частях дополнительной пробы, окрашивают все ДНК-содержащие компоненты частей дополнительной пробы и определяют ИДо доп - количество ДНК во всех ДНК-содержащих компонентах дополнительной пробы в расчете на один лейкоцит облученной части пробы и ИДн доп - количество ДНК во всех ДНК-содержащих компонентах в расчете на один лейкоцит необлученной части дополнительной пробы, после чего вычисляют соотношение ИДн доп/ИДо доп и при ИДн доп/ИДо доп>ИДн/ИДо на 20-35% и ИДН/ИД0>1 считают показанным проведение лучевой терапии.

Группа изобретений относится к составу реагента датчика-анализатора, адаптированного для содействия определению концентрации анализируемого вещества в жидкой пробе, к способам определения концентрации анализируемого вещества в жидкой пробе и к способу нанесения состава реагента датчика анализатора на подложку способом трафаретной печати.
Изобретение относится к медицине, а именно к неврологии, в частности к способу прогнозирования тяжести течения эпилепсии. Сущность способа состоит в том, что определяют спектр молекул средней массы в сыворотке крови пациента до начала терапии.

Изобретение относится к области биотехнологии, а именно к способу снижения предела обнаружения иммунохроматографических методов контроля содержания низкомолекулярных соединений.

Изобретение относится к медицине, в частности к онкологии, и может быть применено для определения содержания пероксида водорода (H2O2) в опухолевых клетках при воздействии на них противоопухолевого препарата, в частности цисплатина.

Изобретение относится к области биотехнологии, а именно к способу определения рода возбудителей бактериемий. Изобретение может быть использовано в бактериологических лабораториях клиник для идентификации рода возбудителей бактериемии.

Изобретение относится к медицине, а именно к иммунологии и аллергологии, и может быть использовано для диагностики реактивного изменения специфического иммунитета у детей в условиях химической контаминации.
Изобретение относится к медицине, в частности, к экспериментальной гематологии, а именно к способу оценки развития сингенного перевивного миелобластного лейкоза у мышей линии AKR/JY.
Изобретение относится к медицине, а именно к урологии, и может быть использовано при оценке степени тяжести течения мочекислого уролитиаза. Способ предусматривает следующие стадии: больному мочекислым уролитиазом предварительно в течение 3 суток определяют исходные показатели уровня pH мочи и при условии, что во всех порциях мочи pH<6,2 с помощью цитрата натрия у больного доводят pH мочи до уровня 7,8 с последующим ожиданием самостоятельного снижения pH мочи до исходного уровня; затем при условии дозировки цитрата натрия до 0,06 мг/кг массы тела больного и последующем самостоятельном снижении pH мочи до исходного уровня более чем через 48 часов определяют легкую степень течения мочекислого уролитиаза; при дозировке в пределах 0,07-0,15 мг/кг массы больного и самостоятельном снижении pH мочи до исходного уровня в промежутке от 30 до 48 часов включительно определяют среднюю степень течения мочекислого уролитиаза; а при дозировке от 0,16 мг/кг массы больного и самостоятельном снижении pH мочи до исходного уровня менее чем за 30 часов - тяжелую степень течения мочекислого уролитиаза. Способ позволяет обеспечить обоснованную тактику лечения мочекаменной болезни; повысить информативность показателей, отражающих метаболическое состояние больного мочекислым уролитиазом, которые позволят определить сроки медико-социальной реабилитации и сроки ремиссии. 1 табл.
Изобретение относится к медицине, а именно к биохимическим исследованиям в онкогинекологии, и описывает способ прогнозирования возникновения рецидива рака вульвы, включающий биохимическое исследование крови, причем при контрольных осмотрах больных раком вульвы в эритроцитах крови определяют погруженность белков в липидный матрикс мембран эритроцитов, и при ее значении в пределах 0,21-0,35 прогнозируют появление рецидивов, а при 0,08-0,2 - продолжительное нахождение больных в состоянии ремиссии. Способ обеспечивает возможность индивидуально для каждой больной прогнозировать возникновение рецидива рака вульвы до его клинического проявления на основе биохимического исследования крови, что дает возможность своевременного проведения противоопухолевого лечения и способствует увеличению продолжительности и улучшению качества жизни больных раком вульвы. 1 табл., 3 пр.

Изобретение относится к биологии, экологии, токсикологической и санитарной химии, а именно к способам определения 4-нитроанилина в биологическом материале, и может быть использовано в практике санэпидстанций, химико-токсикологических и экологических лабораторий. Биологический объект, содержащий 4-нитроанилин, двукратно настаивают с органическим изолирующим агентом, которым является 1,4-диоксан, полученные извлечения объединяют, объединенное органическое извлечение упаривают до полного удаления растворителя, остаток неоднократно обрабатывают ацетоном, ацетоновые извлечения отделяют, объединяют, растворитель из объединенного извлечения испаряют, остаток растворяют в ацетонитриле, ацетонитрильный раствор разбавляют буферным раствором с рН 9-10 в соотношении 1:4 по объему, раствор обрабатывают хлоридом калия, экстрагируют этилацетатом, насыщенным водой, полученный экстракт упаривают в токе воздуха при температуре 18-22°С до получения сухого остатка, остаток растворяют в смеси тетрахлорметана и ацетона, взятых в соотношении 9:1 по объему, хроматографируют в колонке с силикагелем L 40/100 мкм с использованием подвижной фазы тетрахлорметан-ацетон в соотношении 9:1 по объему, фракции элюата, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С до полного удаления растворителя, остаток растворяют в дихлорметане, обрабатывают в течение 20 минут дериватообразующим реагентом, которым является N-трет-бутил-диметилсилил-N-метилтрифторацетамид, в условиях нагревания при температуре 60°С и проводят определение хромато-масс-спектрометрическим методом с применением капиллярной колонки DB-5 MS EVIDEX с неподвижной фазой, представляющей собой 5%-фенил-95%-метилполисилоксан, используя масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 70°С, данная температура выдерживается в течение 3 минут, в дальнейшем температура повышается от 70°С до 290°С со скоростью 20°С в минуту, конечная температура колонки выдерживается в течение 16 минут, температура инжектора составляет 250°С, температура квадруполя 150°С, температура интерфейса детектора 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току и вычисляют количество 4-нитроанилина по площади хроматографического пика его триметилсилильного производного. Способ обеспечивает повышение чувствительности. 3 табл., 2 пр.

Предлагаемое изобретение относится к области медицины, а именно к способам дифференциальной диагностики, и может использоваться для дифференциальной диагностики новообразований головного мозга. Способ осуществляют путем исследования методом ИК-спектроскопии образца сыворотки крови пациента в области спектров поглощения 1200-1000 см-1, для этого предварительно готовят образец сыворотки крови пациента, путем высушивания сыворотки крови, измельчения сухого осадка и суспензирования в вазелиновом масле, определяют высоту пика полос поглощения с максимумами 1170; 1165; 1160; 1150; 1140; 1130; 1125; 1100; 1070; 1050 и 1025 см-1 и вычисляют значение отношения высот пиков: отношение высоты пика с максимумом при 1170 см-1 к высоте пика с максимумом при 1150 см-1; отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом при 1160 см-1; отношение высоты пика с максимумом 1165 см-1 к высоте пика с максимумом 1130 см-1, отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом 1070 см-1, отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом 1150 см-1, отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом 1140 см-1, отношение высоты пика с максимумом при 1040 см-1 к высоте пика с максимумом 1070 см-1, отношение высоты пика с максимумом при 1070 см-1 к высоте пика с максимумом 1025 см-1, отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом 1050 см-1, отношение высоты пика с максимумом при 1165 см-1 к высоте пика с максимумом 1025 см-1, отношение высоты пика с максимумом при 1100 см-1 к высоте пика с максимумом 1050 см-1, отношение высоты пика с максимумом при 1170 см-1 к высоте пика с максимумом 1160 см-1, отношение высоты пика с максимумом при 1125 см-1 к высоте пика с максимумом 1165 см-1, и на основании полученных значений отношений строят дифференциально-диагностический профиль образца сыворотки крови пациента, для этого на 13 радиальных лучах, исходящих из центра (в системе координат 0:0) с углом между собой 30°, каждый из которых соответствует определенному отношению высот пиков полос поглощения, так: луч 1 соответствует отношению полос поглощения 1165/1160, луч 2 - отношению полос поглощения 1165/1070, луч 3 - отношению полос поглощения 1165/1150, луч 4 - отношению полос поглощения 1165/1140, луч 5 - отношению полос поглощения 1040/1070, луч 6 - отношению полос поглощения 1165/1130, луч 7 - отношению полос поглощения 1070/1025, луч 8 - отношению полос поглощения 1165/1050, луч 9 - отношению полос поглощения 1165/1025, луч 10 - отношению полос поглощения 1100/1050, луч 11 - отношению полос поглощения 1170/1150, луч 12 - отношению полос поглощения 1170/1160, луч 13 - отношению полос поглощения 1125/1165, откладывают вычисленные значения отношений на соответствующем каждому отношению лучу, и, соединяя между собой концы отрезков, получают плоский многоугольник, который сравнивают с многоугольниками, являющимися эталонными дифференциально-диагностическими профилями злокачественных новообразований головного мозга, такими как: анапластическая астроцитома, глиобластома, анапластическая олигодендроастроцитома, и доброкачественных новообразований, такими как: эпендимома, менингиома, аденома гипофиза, невринома, при этом для дифференциально-диагностического профиля анапластической астроцитомы значения 13 отношений составляют: 1 (0,56±0,07), 2 (0,54±0,06), 3 (0,42±0,05), 4 (0,39±0,02), 5 (1,34±0,16), 6 (0,73±0,17), 7 (0,72±0,12), 8 (0,44±0,01), 9 (0,38±0,08), 10 (0,27±0,12), 11 (0,15±0,05), 12 (0,20±0,07), 13 (0,97±0,17), для глиобластомы: 1 (0,83±0,04), 2 (1,16±0,12), 3 (0,62±0,01), 4 (0,63±0,04), 5 (1,26±0,21), 6 (1,26±0,13), 7 (0,73±0,12), 8 (0,96±0,13), 9 (1,13±0,01), 10 (0,27±0,13), 11 (0,34±0,04), 12 (0,34±0,14), 13 (0,57±0,18), для анапластической олигодендроастроцитомы: 1 (0,50±0,02), 2 (0,50±0,05), 3 (0,50±0,02), 4 (0,50±0,02), 5 (1,14±0,03), 6 (1,44±0,04), 7 (0,75±0,01), 8 (0,41±0,06), 9 (0,37±0,03), 10 (0,33±0,04), 11 (0,17±0,04), 12 (0,16±0,03), 13 (0,46±0,03), для эпендимомы: 1 (0,38±0,03), 2 (0,15±0,04), 3 (0,26±0,09), 4 (0,25±0,07), 5 (1,16±0,07), 6 (0,30±0,03), 7 (0,86±0,01), 8 (0,12±0,03), 9 (0,12±0,02), 10 (0,41±0,01), 11 (0,14±0,02), 12 (0,20±0,01), 13 (2,50±0,70), менингиомы: 1 (0,40±0,03), 2 (0,35±0,03), 3 (0,37±0,01), 4 (0,35±0,01), 5 (1,07±0,01), 6 (0,54±0,01), 7 (0,93±0,03), 8 (0,34±0,01), 9 (0,32±0,01), 10 (0,40±0,01), 11 (0,12±0,02), 12 (0,13±0,01), 13 (1,13±0,05), для аденомы гипофиза: 1 (0,45±0,05), 2 (0,34±0,04), 3 (0,41±0,03), 4 (0,56±0,03), 5 (1,05±0,02), 6 (0,60±0,05), 7 (0,94±0,04), 8 (0,30±0,03), 9 (0,32±0,03), 10 (0,48±0,01), 11 (0,12±0,04), 12 (0,13±0,05), 13 (1,05±0,03), для невриномы: 1 (0,53±0,01), 2 (0,35±0,05), 3 (0,48±0,01), 4 (0,53±0,01), 5 (0,85±0,07), 6 (0,90±0,08), 7 (1,28±0,09), 8 (0,40±0,01), 9 (0,45±0,02), 10 (0,52±0,03), 11 (0,05±0,01), 12 (0,04±0,01), 13 (0,73±0,09), и при наличии сходства полученного дифференциально-диагностического профиля пациента с эталонным профилем и совпадении всех 13 значений отношений образца сыворотки крови пациента со значениями отношений сходного эталонного профиля диагностируют у пациента новообразование головного мозга и его морфологический характер. Как видно из полученных результатов, предлагаемый способ позволяет с высокой точностью и информативностью определять не только наличие и вид новообразования головного мозга, но и морфологический характер новообразования. 14 ил.

Изобретение относится к медицине, а именно к судебной медицине, и может быть использовано для определения давности пятна крови. Способ включает измерение оптической плотности вытяжки из пятна крови и дополнительное определение вида ткани предмета-носителя. При расположении пятна крови на предмете-носителе из хлопчатобумажной ткани измерение оптической плотности вытяжки из пятна крови производят на длинах волн 400 нм и 410 нм, а при расположении пятна крови на предмете-носителе из шерстяной, джинсовой ткани или трикотаже, измерение оптической плотности вытяжки из пятна крови производят на длинах волн 380 нм и 410 нм. Давность пятна крови определяют по соответствующим формулам. Способ позволяет повысить точность определения давности пятна крови на текстильном материале при простоте выполнения. 2 пр.

Изобретение относится к области медицины, а именно к судебной медицине, и может быть использовано для определения вероятности образования пятна крови от живого лица. Способ включает определение биофизического параметра вытяжки из сухого пятна крови. В качестве биофизического параметра используют величину оптической плотности вытяжки из сухого пятна крови на длинах волн 400, 410, 420 нм. Дополнительно определяют давность пятна крови. Рассчитывают вероятность образования пятна крови от живого лица (Р) и при значении Р≥0,95 утверждают об образовании пятна крови от живого лица, а при Р<0,95 утверждают об образовании пятна крови от трупа. Способ позволяет повысить точность и объективность определения вероятности образования пятна крови от живого лица при простоте исполнения. 2 пр.

(57) Изобретение относится к области ветеринарии и предназначено для оценки воздействия на организм животных низкоинтенсивного лазерного облучения крови. У животного проводят забор венозной крови до, во время и после низкоинтенсивного лазерного облучения крови, получают из нее плазму. В термостате готовят фацию при температуре равной температуре тела животного и исследуют ее методом световой микроскопии. В случае деструкции - считают воздействие чрезмерным, а в случае упорядочивания структуры - положительным. Заявленный способ позволяет быстро и точно оценить воздействие на организм животных низкоинтенсивного лазерного облучения крови. 9 ил., 1 табл., 1 пр.

Изобретение относится к области микробиологии, а именно к использованию бактериальной бета-лактамазы для диагностики in vitro и визуализации, диагностики и лечения in vivo. Способ обнаружения патогенных бактерий в режиме реального времени у субъекта заключается в том, что осуществляют введение субъекту или взятие у субъекта образца флуорогенного субстрата для бета-лактамазы патогенных бактерий; визуализацию субъекта или образца на наличие флуоресцентного продукта бета-лактамазной активности на субстрате; получение сигналов на длине волны, испускаемой флуоресцентным бета-лактамазным продуктом, и обнаружение патогенных бактерий у субъекта в режиме реального времени. При этом флуорогенный субстрат представляет собой CNIR5, CNIR5-QSY22, CNIR7, CNIR7-TAT, CNIR9 или CNIR10. Способ мониторинга развития патофизиологического состояния, связанного с патогенными бактериями у субъекта. Способ скрининга соединений, обладающих терапевтическим эффектом против патогенной Mycobacterium у субъекта. Способ визуализации патогенных бактерий c флуорогенным субстратом для бактериальной бета-лактамазы. Использование заявленного изобретения позволяет улучшить визуализацию патогенных бактерий и мониторинг эффективности терапевтических соединений. 5 н. и 15 з.п. ф-лы, 26 ил., 1 табл., 14 пр.

Изобретение относится к области медицины, а именно к педиатрии, и может быть использовано для скрининга детей дошкольного возраста с целью раннего выявления у них возможности инфекции мочевыводящих путей. Способ основан на методике подготовки проб мочи в лунках микропланшета, включающей термостатирование, и заключается в количественном определении уреазной активности мочи на микропланшетном ридере при длине волны 620 нм, построении калибровочной кривой и вычислении уреазной активности мочи в Е/л по формуле: УА=ΔD*11655, где УА (Е/л) - уреазная активность в (Е/л); ΔD - изменение оптической плотности проб мочи пациента после термостатирования; 11655 - коэффициент перевода на уреазную активность. При значении уреазной активности мочи выше 1621,73 Е/л ребенка относят к группе риска формирования инфекции мочевыводящих путей. Использование способа позволяет увеличить пропускную способность лаборатории. 1 табл., 2 пр., 2 ил.
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для экспресс-диагностики злокачественных опухолей в условиях больницы на интраоперационном этапе. Изобретение заключается в том, что из удаленной во время операции пораженной доли щитовидной железы вырезают образец ткани опухоли и образец визуально неизмененной прилежащей к опухоли ткани, гомогенизируют образцы тканей в буфере, содержащем 50 мМ Tris-HCl (pH 7,5), 100 мМ NaCl, 1 мМ EDTA, 1 мМ дитиотреитол, 1 мМ АТР, 10 мМ Na2S2O5 в соотношении веса ткани, мг, к объему буфера, мкл, 1:6, центрифугируют полученные гомогенаты в течение, по меньшей мере, 5 сек с получением надосадочных жидкостей образцов тканей, содержащих протеасомы ткани опухоли или протеасомы визуально неизмененной прилежащей к опухоли ткани. Затем каждую надосадочную жидкость в количестве 2, 4 и 6 мкл помещают в 100 мкл раствора, содержащего 30 мкМ флуорогенного субстрата Suc-LLVY-AMC химотрипсинпобных центров протеасом и 20 мМ Tris-HCl (pH 7.5), 1 мМ дитиотреитол, 5 мМ MgCl2, 1 мМ АТР, проводят реакцию гидролиза Suc-LLVY-AMC протеасомами при 37°С в течение, по меньшей мере, 5 мин, затем добавляют по 250 мкл 1,4% раствора SDS для прекращения реакции гидролиза. Оценивают химотрипсинподобную активность протеасом по интенсивности флуоресценции гидролизованного субстрата в единицах показаний флуориметра. При превышении величины интенсивности флуоресценции гидролизованного субстрата в образце ткани опухоли, по меньшей мере, в 3 раза величины интенсивности флуоресценции гидролизованного субстрата в образце визуально неизмененной прилежащей к опухоли ткани диагностируют рак щитовидной железы. Применение предлагаемого способа обеспечивает повышение точности и сокращение времени интраоперационной диагностики рака щитовидной железы для выбора адекватного объема оперативного вмешательства. 5 з. п. ф-лы, 3 табл., 2 пр.
Наверх