Способ определения ртути катодно-анодной вольтамперометрией



 


Владельцы патента RU 2533337:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государтственный университет" (RU)

Изобретение относится к области аналитической химии и может быть использовано для определения микроконцентраций ртути в водных растворах. Способ определения ртути катодно-анодной вольтамперометрией с использованием электрода и фоновых растворов включает в себя следующую последовательность действий. Вначале выдерживают стеклоуглеродный электрод в фоновом растворе при потенциале от -0,4 до -0,7 В в течение 120 с, затем переключают на потенциал от +0.4 до +0,5 В и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы с линейной разверткой потенциала от 0,4 В при 100 мВ/с и пиком восстановления ртути, наблюдаемым при потенциале в пределах (-0,05-0,05) В и линейно зависящим от концентрации ртути в водных растворах. Сигнал ртути регистрируют и оценивают методом добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода. Изобретение обеспечивает возможность определения малого количества ртути в водных растворах методом катодно-анодной вольтамперометрии. 2 табл.

 

Изобретение относится к области аналитической химии, в частности к способам определения ртути вольтамперометрическим методом.

Известен способ вольтамперометрического определения ртути в количественном химическом анализе пищевых продуктов [Э.А. Захарова, В.М. Пичугина, Н.П. Пикула. Методика количественного химического анализа алкогольных и безалкогольных напитков на содержание ртути методом инверсионной вольтамперометрии. МУ 08-47/037. Томск. ТПУ. 1995. - 25 с.]. Методика (аналог) основана на инверсионно-вольтамперометрическом измерении с линейной разверткой потенциала 30…40 мВ/с в постоянно-токовом режиме регистрации анодного тока в виде пика с максимумом в пределах +0,55…+0,65 В относительно хлоридсеребряного электрода. Перед измерением на рабочий графитовый электрод электроосаждают золото из его 100 мг/дм3 водного раствора HClO4 (1:1) при потенциале 0,00 В в течение 5 мин. Срок службы рабочего золото-графитового электрода ограничен, требуется специальная программа формирования золота на поверхности графита и определенные условия его хранения.

Из известных технических решений наиболее близким прототипом является определение ртути методом катодной вольтамперометрии (Е.А. Лейтес, Е. А. Романова Изучение электрохимического поведения ртути (II) методом катодной вольтамперометрии // Известия АГУ, №3 (41), 2006.)

Определение ртути проводят на фоновых растворах Бриттона-Робинсона (pH=11,20; pH=1,81), NaOH (0,01 М, 0.05 М, 0,1 М, 0,5 М, 1,0 М, 2,6 М), 0,1 М HNO3, 0,1 М HClO4 на стеклографитовом электроде с постояннотоковым режимом с последующей регистрацией катодных поляризационных кривых при линейной развертке потенциалов с использованием двухэлектродной ячейки (электрод сравнения - насыщенный хлоридсеребряный, соединенный с ячейкой электролитическим ключом). Вольтамперометрическое определение ртути проводят при E=(0.4-0.5) В, времени накопления 120 с при скорости развертки V=100 мВ/с. В зависимости от фонового раствора и потенциала накопления потенциал пика ртути находится в пределах от -0,55 до -0,60 В на буферном растворе Бриттона-Робинсона (pH=11,20) и NaOH, пик E=0.0 В регистрируется на фоне универсальной буферной смеси, 0,1 М HNO3, 0,1 М HClO4, не регистрируется на щелочном фоне. Интервал определяемых концентраций составляет 0,0004 мг/мл - 0,004 мг/мл (2·10-6 M-2·10-5 M).

Способ невозможно использовать для определения ртути в водных растворах из-за недостаточной чувствительности.

Сущность предлагаемого изобретения

Предлагаемый катодно-анодный способ определения ртути вольтамперометрией, заключающийся в том что, стеклоуглеродный электрод вначале выдерживают в фоновом растворе при потенциале от -0,4 до -0,7 В (катод) в течение 120 с, затем переключают потенциал на +0.4-+0,5 В (анод) и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы, что изменяет механизм электрохимического процесса и позволяет снизить нижнюю границу определяемых содержаний ртути на 1-2 порядка.

Осуществление изобретения

Способ определения ртути катодно-анодной вольтамперометрией осуществляется следующим образом:

в электролизер со сменными стаканчиками, емкостью 10 мл, помещают 5 мл фонового раствора Бриттона-Робинсона (pH=1,81), в состав которого входят 0.04 М раствора фосфорной, уксусной и борной кислот, а также 0.2 М NaOH, от объема которого в смеси зависит реакция среды или 0,1 М HClO4 или 0,1 М HNO3. Затем в течение 3 мин удаляют из раствора кислород, пропуская через раствор газообразный азот с содержанием кислорода менее 0,001%.

Для проверки чистоты фона проводят предварительное электрохимическое концентрирование на рабочем стеклоуглеродном электроде при потенциале (-0,4…-0,7) В (катод) относительно насыщенного хлоридсеребряного электрода в течение 120 с. Затем переключают потенциал на +0,4…+0,5 В (анод), выдерживают в течение 10 с, после чего фиксируют вольтамперограмму с линейной разверткой потенциала от +0,4 до +0,5 В при скорости развертки потенциала 100 мВ/с. Отсутствие тока пика, т.е. аналитического сигнала, свидетельствует о чистоте фона.

Затем вводят пробу, содержащую ртуть, и проводят электрохимическое концентрирование на рабочем стеклоуглеродном электроде при потенциале от -0,4 до -0,7) В в течение 120 с. При потенциалах выше -0,4 В аналитические сигналы не значительны, что затрудняет регистрацию. Выбирая более отрицательные потенциалы накопления, при Eнак от -0,7 В до -1,0 В не удается получить воспроизводимые сигналы, а при потенциалах отрицательнее -1,1 В происходит восстановление водорода из воды и величина тока уменьшается. (Таблица 1).

Затем переключают потенциал на +0,4…+0,5 В (анод), выдерживают в течение 10 с, что изменяет механизм электрохимического процесса и позволяет снизить нижнюю границу определяемых содержаний ртути на 1-2 порядка, после чего фиксируют вольтамперограмму с линейной разверткой потенциала от +0,4 до +0,5 В при скорости развертки потенциала 100 мВ/с и пиком восстановления ртути, при потенциале в пределах (-0,05…+0,05) В, линейно зависящим от концентрации ртути в водных растворах (Таблица 2). Сигнал ртути регистрируют и оценивают методом стандартных добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода.

Способ катодно-анодного определения ртути вольтамперометрией позволяет снизить нижнюю границу определяемых содержаний на 1-2 порядка и использовать более дешевый стеклоуглеродный электрод.

Таблица 1.
Величина тока восстановления ртути при различных потенциалах электроконцентрирования.
Eнак, В hx, мм I, мкА
-0,1 0,4 0,04
-0,2 2,1 0,21
-0,3 4 0,40
-0,4 47 0,94
-0,5 41 0,82
-0,6 43 0,86
-0,7 52 1,04
-0,8 62 1,24
-0,9 71 1,42
-1,0 88 1,76
-1,1 71 2,84
-1,2 66 2,64
-1,3 57 2,28
-1,4 48 1,92
Таблица 2.
Результаты определения ртути (II) на стеклоуглеродном электроде методом стандартных добавок
Фоновый раствор Введено
C H g + 2 10 7
(моль/л)
Найдено
C H g + 2 10 7
(моль/л)
Sr
Буферный раствор Бриттона-Робинсона 0,8 0,86±0,04 0,03
Буферный раствор Бриттона-Робинсона 5,0 5,20±0,09 0,02
0.1 М HClO4, 0,3 0,32±0,03 0.01
0.1 М HClO4, 2,0 2,10±0,05 0.02
0.1 М HNO3, 4,0 3,90±0,20 0.04
0.1 М HNO3, 6,0 6,20±0,10 0.03

Способ определения ртути катодно-анодной вольтамперометрией, включающий в себя определение ртути вольтамперометрией с использованием электрода и фоновых растворов, отличающийся тем, что стеклоуглеродный электрод вначале выдерживают в фоновом растворе при потенциале от -0,4 до -0,7 В в течение 120 с, затем переключают на потенциал от +0.4 до +0,5 В и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы и пиком восстановления ртути.



 

Похожие патенты:

Изобретение относится к области аналитической химии. Способ определения молибдена включает в себя определение комплексного соединения молибдена с диэтилдитиокарбаминатом катодной вольтамперометрией.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека.

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития.

Изобретение относится к области количественного определения аскорбата кальция в БАД с целью контроля качества выпускаемых на рынок биологически активных добавок.

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц Fe2O3 на угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц Fe2O3 на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм3 раствор трилон Б (рН 3 - 4) при потенциале электролиза (-0,12±0,01)В, относительно хлоридсеребряного электрода, с последующей регистрацией анодного пика в постояннотоковом режиме регистрации вольтамперограмм при скорости развертки потенциала 80 - 90 мВ/с, при этом концентрацию Fe2O3 определяют по высоте анодного пика в диапазоне потенциалов (-0,12±0,01)В.

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов.

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале электронакопления -1,0 В с последующей регистрацией обратных максимумов электроокисления глутатиона на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, концентрацию глутатиона определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ).

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtxCuy методом инверсионной вольтамперометрии заключается в том, что платину (IV или II) переводят из пробы в раствор, проводят накопление платины на сажевом или углеситалловом электроде в перемешиваемом растворе в присутствии ионов меди (II) в течение 50-100 с при потенциалах электролиза - 0,62 B с последующей регистрацией пиков селективного электроокисления меди из интерметаллического соединения PtxCuy при скорости развертки потенциала 50-150 мВ/с на фоновом электролите 0,1-1 М HCl, концентрацию ионов платины определяют по высоте пика меди на вольтамперной кривой в диапазоне потенциалов от -0,3 до -0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное соединение и проводят хронопотенциометрическое определение, при этом проводят определение ионов таллия (I) на импрегнированном графитовом электроде в перемешиваемом растворе при контролируемом потенциале плюс 0,8 B и регистрации отклика на фоновом электролите 0,1М NaOH относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин B1 переводят из пробы в раствор и проводят вольтамперометрическое накопление микотоксина в перемешиваемом растворе в течение 30 с при потенциале электролиза (0,0±0,05)B относительно насыщенного хлоридсеребряного электрода на фоне хлората аммония (NH4ClO4), pH 2,0÷3,0 с последующей регистрацией анодных пиков при скорости развертки 30 мВ/с, а концентрацию афлатоксина B1 определяли по высоте пика в диапазоне En=(0,625±0,045)В методом добавок аттестованных смесей. Изобретение обеспечивает возможность применения электродов из нетоксичного материала и определения афлатоксина B1 методом анодной инверсионной вольтамперометрии в присутствии растворенного кислорода без дополнительного введения в фоновый электролит восстановителя, а также расширение диапазона определяемых концентраций и разработки экспресс-технологии оценки афлатоксина B1 в течение 30-40 мин. 2 табл., 2 пр., 1 ил.
Изобретение относится к электроаналитической химии и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения фенола в воде и водных объектах с помощью трехэлектродной системы, включающий предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, проведение измерений концентрации фенола в воде, включающих электрохимическое осаждение фенола на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление фенола при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика фенола на вольтамперной кривой и определение концентрации фенола по величине пика фенола, характеризующийся тем, что предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,2 М сульфата аммония с добавлением ацетона в соотношении объемных частей 19:1, соответственно. Способ, в котором в качестве электродов измерительной системы: индикаторного, сравнения и вспомогательного электродов используют идентичные стеклоуглеродные стержневые электроды, и в котором при предварительной модифицирующей электрохимической обработке индикаторного электрода проводят также обработку поверхности электрода сравнения и вспомогательного электрода в водном растворе 0,1 М гидроксида калия с добавлением ацетона в соотношении объемных частей 19:1, соответственно. 2 з.п. ф-лы.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения RhxIny заключается в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, при этом накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов индия (III) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления индия из интерметаллического соединения RhxIny при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 1,2 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика индия на вольтамперной кривой в диапазоне потенциалов от минус 0,2 до плюс 0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает возможность снизить предел и нижнюю границу определяемых содержаний родия (III) методом инверсионной вольтамперометрии. 2 табл., 2 ил., 2 пр.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции. Дополнительный технический результат - надежное обеспечение герметизации электролитической камеры и экономия материала мембраны Сущность: электрохимический газоанализатор по первому варианту (фиг. 1) содержит электролитическую камеру 1 с капилляром 2, выходящим на прикатодную поверхность газоанализатора. Камера и капилляр заполнены электролитом. Устройство содержит анод 3, непосредственно контактирующий с электролитом камеры, и катод 4, который установлен на поверхности газоанализатора в зоне выхода капилляра. От внешней среды катод и капилляр отделяет селективно-проницаемая мембрана 5 в форме круга, которая притянута к катоду и капилляру и зафиксирована на прикатодной поверхности газоанализатора. Мембрана притянута и зафиксирована крышкой 6 в виде перевернутого стакана с осевым отверстием в дне, которая соединена с накидной гайкой 7. Мембрана притянута посредством своей краевой части, которая зажата между дном крышки и уплотнительным кольцом 8, которое расположено в полости крышки и имеет заданные модуль упругости и толщину. Фиксирование мембраны обеспечивается крышкой по замкнутой линии ребром в форме неострого угла. Проводники 9, 10 предназначены для съема выходного сигнала с анода 3 и катода 4. Проводники подключены к регистратору 11 выходного сигнала газоанализатора. Второй вариант изобретения (фиг. 2) отличается от первого тем, что функции притягивания мембраны и ее фиксации выполняют разные элементы. Как и по - первому варианту, электрохимический газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии ребром. При этом в месте взаимодействия с мембраной крышка имеет низкий коэффициент трения. Устройство содержит накидную гайку 7. В полости крышки б размещен притягивающий элемент 8 в виде перевернутого стакана с осевым отверстием в дне. Крышка 6 и притягивающий элемент 8 соединены подвижно. Накидная гайка 7 соединена с притягивающим элементом 8. В полости элемента 8 расположено уплотнительное кольцо 9 с заданными модулем упругости и высотой. Мембрана 5 притянута к катоду и капилляру элементом 8 посредством гайки 7 за счет того, что краевая часть мембраны зажата между дном притягивающего элемента и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. В третьем варианте изобретения (фиг. 3) функции притягивания мембраны и е£ фиксации также выполняют разные элементы. Отличия этого устройства от двух предыдущих заключаются в следующем: газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии. Устройство содержит накидную гайку 7, которая размещена в полости крышки 6 и соединена с ней подвижно. В полости накидной гайки 7 размещены притягивающий элемент 8 в виде шайбы, которая установлена на дне накидной гайки, и уплотнительное кольцо 9 с заданными модулем упругости и высотой. При этом элемент 8 в месте взаимодействия с гайкой 7 имеет низкий коэффициент трения. Мембрана притянута элементом 8, при этом краевая часть мембраны зажата между элементом 8 и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. 3 н. и 2 з. п. ф-лы, 3 ил.

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л. Изобретение обеспечивает увеличение чувствительности и экспрессности способа определения липоевой кислоты в таблетированной форме БАД методом катодной вольтамперометрии. 1 табл., 1 пр., 3 ил.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность. Дополнительный технический результат - экономия материала мембраны. Сущность: согласно первому варианту исполнения (фиг. 1) барокомпенсированный электрохимический измерительный газоанализатор содержит корпус (1), герметичную камеру (12), которая имеет капилляр (13) и заполнена электролитом, катод (16) и анод (17), или анодную систему, контактирующие с электролитом и подключенные к регистратору (18) в виде преобразователя катодного тока в выходной сигнал. Катод (16) расположен на выходе капилляра (13) во внешнюю среду. Катод (16) и капилляр (13) отделены от внешней среды селективно-проницаемой мембраной (6) в форме круга. Мембрана (6) притянута к прикатодной поверхности газоанализатора и зафиксирована на ней по замкнутой линии крышкой (7), соединенной с накидной гайкой (10). Газоанализатор содержит барокомпенсатор (11) в виде эластичного элемента, отделяющего электролит в камере (12) от внешней среды. При этом капилляр (13) выполнен в проходном элементе (3). Один конец проходного элемента (3) с уплотнением (2) жестко или с возможностью перемещения установлен в корпусе (1). Другой конец проходного элемента (3) с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) по резьбе установлена в крышке (7), установленной с уплотнением (9) в накидной гайке (10). Накидная гайка (10) по резьбе установлена на проходном элементе (3). Краевая часть мембраны (6) зажата между заплечиком крышки (7) и торцевой поверхностью втулки (5). Анод (17) или анодная система расположены в капилляре (13) или в камере (12). Камерой (12) является пространство, образованное проходным элементом (3) и корпусом (1). Это пространство отделено от внешней среды барокомпенсатором (11) в виде эластичной стенки, например резинового чулка, закрепленного на корпусе (1) и проходном элементе (3). Пространство, образованное проходным элементом (3), втулкой (5), крышкой (7) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15), например маслом. Это пространство по резьбе накидная гайка (10) - проходной элемент (3) сообщается с пространством, которое образовано барокомпенсатором (11), корпусом (1) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15) и отделено от внешней среды дополнительным барокомпенсатором (14) в виде эластичной стенки, например, резинового чулка, закрепленного на корпусе (1) и накидной гайке (10). Второй вариант изобретения (фиг. 2) отличается от первого тем, что проходной элемент (3) с уплотнением (2) и с возможностью перемещения установлен в корпусе (1) и с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) имеет радиальные отверстия. Втулка (5) одним концом с уплотнением (6) установлена с возможностью перемещения на корпусе (1), а другим концом по резьбе установлена в крышке (8). Крышка (8) установлена с уплотнением (10) в накидной гайке (11), которая по резьбе установлена на корпусе (1). Краевая часть мембраны (7) зажата между заплечиком крышки (8) и торцевой поверхностью втулки (5). Анод (18) или анодная система расположены в капилляре (14) или в камере (13). Камерой (13) является пространство, образованное проходным элементом (3), втулкой (5) с ее радиальными отверстиями и корпусом (1). Камера (13) отделена от внешней среды барокомпенсатором (12) в виде эластичной стенки, герметизирующей радиальные отверстия втулки (5), например в виде резинового чулка, закрепленного на втулке (5). Накидная гайка (11) имеет радиальные отверстия, расположенные вблизи радиальных отверстий втулки (5). Пространство, образованное барокомпенсатором (12), втулкой (5), крышкой (8), накидной гайкой (11) с ее радиальными отверстиями и корпусом (1), заполнено электроизолирующей жидкостью (16), например маслом. Это пространство отделено от внешней среды дополнительным барокомпенсатором (15) в виде эластичной стенки, герметизирующей радиальные отверстия накидной гайки (11) и резьбовое соединение корпус (1) - накидная гайка (11), например, в виде резинового чулка, закрепленного на корпусе (1) и накидной гайке (11).

Cпособ определения метионина в комбикормах методом катодной вольтамперометрии согласно изобретению включает следующие операции. Метионин переводят из комбикормового сырья в раствор. Метионин определяют, используя аналитический сигнал восстановления метионина при потенциале - 0.315 В в боратном буферном растворе pH 9.18 на ртутно-пленочном электроде (РПЭ). Зависимость прироста предельного тока восстановления метионина от увеличения его концентрации в модельном растворе линейна от 2.6·10-4 моль/л до 2.0·10-3 моль/л. Скорость развертки потенциала составила 0.06 В/с. Предел обнаружения метионина 2.0·10-4 моль/л достаточен для применения его в оценке количественного содержания в комбикормах. Изобретение обеспечивает увеличение чувствительности и экспрессности способа определения метионина в комбикормах методом катодной вольтамперометрии. 1 пр., 1 табл., 3 ил.

Изобретение направлено на определение золота (III) в водных растворах методом дифференциально-импульсной вольтамперометрии и может быть использовано в различных отраслях народного хозяйства. Способ определения золота дифференциально-импульсным вольтамперометрическим методом в водных растворах включает электрохимическое концентрирование ионов золота (III) на поверхности различных типов графитовых электродов в форме золота с последующим растворением и регистрацией катодных вольтамперных кривых, при этом проводят накопление ионов золота (III) на поверхности графитового электрода в перемешиваемом растворе в течение 60 с при потенциале электролиза минус 0,8 В, измерения проводят на фоне 0,1 M NaOH с последующей регистрацией катодных пиков и съемкой вольтамперных кривых в дифференциально-импульсном режиме при скорости развертки 80 мВ/с, концентрацию ионов золота (III) определяют по высоте катодного пика в диапазоне потенциалов от минус 0,2 до минус 0,5 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение дает возможность снизить предел и нижнюю границу определяемых содержаний золота (III) по катодному пику, полученному после электроокисления Au на графитовом электроде методом дифференциально-импульсной вольтамперометрии. 1 ил., 2 табл., 2 пр.

Изобретение относится к аналитической химии и может быть использовано в исследовательской и производственной практике. Согласно изобретению предлагается определять флуоресцеин натрия вольтамперометрически на стационарном электроде из стеклоуглерода по волне восстановления указанного соединения в кислой среде на фоне 0,1 н. раствора серной кислоты в классическом режиме. Техническим результатом предлагаемого изобретения является возможность упрощения способа количественного определения флуоресцеина натрия в субстанции и лекарственном препарате на ее основе по сравнению с известными методами и реализации его в производственных условиях. 2 ил.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля продуктов сельскохозяйственного производства растительного происхождения. Согласно изобретению Т-2 токсин переводят из пробы в раствор и проводят вольтамперометрическое накопление микотоксина в перемешиваемом растворе в течение 30 с при потенциале электролиза (-0,5±0,05) В относительно насыщенного хлоридсеребряного электрода на фоне нитрата калия (KNO3), рН 4,0÷5,0, с последующей регистрацией катодных пиков при скорости развертки 30 мВ/с. Концентрацию Т-2 токсина определяли по высоте пика в диапазоне Еn=(-1,25±0,35) В методом добавок аттестованных смесей. Изобретение обеспечивает расширение диапазона определяемых концентраций Т-2 токсина и разработки экспресс-технологии оценки Т-2 токсина в течение 30-40 мин и возможность использования электродов из нетоксичного материала. 1 ил., 2 табл., 2 пр.
Наверх