Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла



Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла
Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

 


Владельцы патента RU 2543170:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение обеспечивает повышение эффективности сепарационного материала. 3 з.п. ф-лы, 6 ил., 4 пр.

 

Изобретение относится к области материаловедения, а также к аналитической химии. Изобретение может быть использовано для получения материалов как для разделения рацематов оптически активных соединений в хроматографии, так и для выделения индивидуальных изомеров и контроля энантиомерной чистоты (например, аминокислот, пестицидов и других биологически активных соединений).

Известны функциональные сепарационные материалы для разделения рацемических смесей, получаемые иммобилизацией путем адсорбции гидрофобных производных оптически активных аминокислот на минеральном носителе (патент США №4851382 от 25.07.1989). В качестве носителя используют SiO2. Модифицирование проводят в динамическом режиме производным аминокислоты с последующей координацией ионов металла (меди) на поверхности носителя. Максимальный коэффициент селективности α наблюдался при разделении смеси энантиомеров глутаминовой кислоты и составил 1,64. Такие сорбенты нестабильны в водно-органических и органических подвижных фазах, а способы их получения достаточно сложны.

Известен наногибридный функциональный сепарационный материал (патент США №6824776 от 30.11.2004) на основе силикагеля и наночастиц золота, модифицированных белковыми молекулами. Способ получения наногибридного материала включает предварительную модификацию наночастиц золота цитохромом С, который является органическим лигандом и содержит полипептидную цепь, и последующее закрепление наночастиц на поверхности силикагеля. Тем не менее такой материал может быть использован только для определения узкого класса биомолекул.

Известен наногибридный функциональный сепарационный материал на основе модифицированных наночастиц металлов (патент РФ №2366502 от 10.09.2009), который по совокупности существенных признаков является прототипом заявляемого изобретения. В соответствии с патентом РФ №2366502 наногибридный сорбент для разделения органических веществ содержит носитель с адсорбированными наночастицами металла и ковалентно присоединенные к наночастицам серосодержащие лиганды. Основными недостатками наногибридного функционального сепарационного материала, раскрытого в патенте РФ №2366502, являются недостаточная стабильность и недостаточная эффективность сорбента, что связано с небольшой прочностью связи между носителем и наночастицами металла.

Задачами, на решение которых направлено заявленное изобретение, являются увеличение срока службы и увеличение эффективности сепарационного материала.

При решении поставленной задачи достигаются следующие технические результаты: а) увеличение стабильности сепарационного материала (в процессе работы материал длительно сохраняет свои сорбционные свойства); б) увеличение содержания наночастиц на поверхности носителя.

Указанные технические результаты достигаются при использовании наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла, включающего носитель с ковалентно закрепленными на нем наночастицами металла и серосодержащие органические лиганды, ковалентно закрепленные на поверхности наночастиц металла.

Наиболее стабильные сорбционные свойства наногибридный функциональный сепарационный материал проявляет в том случае, когда в качестве серосодержащих соединений используют тиолы и дисульфиды, а также серосодержащие аминокислоты, например, L-цистеин, их производные и высокомолекулярные соединения - полипептиды и белки.

В качестве носителя могут быть использованы органические и неорганические носители, в том числе полистирол, оксид кремния, оксид алюминия.

В качестве наночастиц металла могут быть использованы наночастицы золота, серебра, меди, палладия.

Наногибридный функциональный сепарационный материал может быть получен с использованием следующего способа: наночастицы металла ковалентно закрепляют на носителе, затем ковалентно закрепляют серосодержащие органические лиганды (например, тиолы, дисульфиды, серосодержащие аминокислоты, производные серосодержащих аминокислот) на поверхности наночастиц металла.

Для обеспечения ковалентного закрепления наночастиц металла носитель предварительно модифицируют кремнийорганическим соединением, например, кремнийорганическим соединением, включающим группу -SH или -NH2.

Наночастицы металла закрепляют на носителе при обработке модифицированного носителя коллоидным раствором наночастиц металла.

Осуществление вышеописанной последовательности операций приводит к образованию ковалентных связей между носителем и наночастицами золота, а также между органическими серосодержащими лигандами и наночастицами золота, что значительно увеличивает стабильность получаемых материалов, эффективность их в качестве сорбентов, а также содержание лигандов в получаемом сепарационном материале. При этом наночастицы металла, предварительно ковалентно закрепленные на поверхности носителя, являются центрами взаимодействия с энантиомерами, что усиливает взаимодействие определяемого вещества с наногибридным функциональным сепарационным материалом.

Сущность изобретения поясняется иллюстративными материалами.

На фиг.1 показана общая схема получения наногибридного функционального сепарационного материала.

На фиг.2 показана хроматограмма разделения смеси аминопиридинов на колонке, заполненной наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином. Цифрами обозначены: 1-2-аминопиридин, 2-3-аминопиридин, 3-4-аминопиридин.

На фиг.3 показана хроматограмма разделения надолола на колонке, заполненной наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком.

На фиг.4 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу-прототипу с использованием оксида кремния, наночастиц золота и L-цистеина, микрофотографии получены методом сканирующей электронной микроскопии (СЭМ).

На фиг.5 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 1, микрофотографии получены методом СЭМ.

На фиг.6 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 2, микрофотографии получены методом СЭМ.

Изобретение иллюстрируется примерами альтернативных вариантов его выполнения.

Пример 1. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение носителя - модифицированного оксида кремния - проводят по схеме, представленной на фиг.1. Навеску оксида кремния (2 г) с диаметром частиц 5 мкм суспензируют в 300 мл свежеперегнанного толуола, доводят до кипения, добавляют 3-меркаптопропилтриэтоксисилан (МПТС) и кипятят в течение 4-х часов в атмосфере аргона, затем фильтруют. Полученный тиолированный силикагель суспензируют в 200 мл коллоидного раствора наночастиц золота со средним размером 10 нм (концентрация раствора 1011 частиц в одном миллилитре) при тщательном перемешивании с помощью механической верхнеприводной мешалки при комнатной температуре. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом, получая тиолированный оксид кремния с ковалентно закрепленными на нем наночастицами золота. Полученный оксид кремния суспензируют в 0,01 М растворе органического серосодержащего лиганда - L цистеина. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным серосодержащим органическим лигандом.

Пример 2. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение наногибридного функционального материала проводят аналогично примеру 1, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Пример 3. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком

Получение тиолированного оксида кремния с ковалентно закрепленными на нем наночастицами золота проводят аналогично примеру 1. Затем полученный модифицированный оксид кремния суспензируют в 0,1 М буферном растворе, содержащем органический высокомолекулярный серосодержащий лиганд - бычий сывороточный белок. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно буферным раствором и водой. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным высокомолекулярным органическим лигандом.

Пример 4. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, стабилизированных бычьим сывороточным белком

Получение наногибридного функционального материала проводят аналогично примеру 3, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Наногибридные функциональные сепарационные материалы могут быть использованы следующим образом: материалом набивают хроматографическую колонку размером 4,6×100 мм под давлением 200-300 бар. Разделение на колонках, заполненных сорбентом, содержащим низкомолекулярные лиганды, осуществляют с использованием как водных, так и неводных подвижных фаз - в обращенно-фазовом, нормально-фазовом или полярно-органическом вариантах хроматографии. Разделение на колонках, заполненных сорбентом, содержащим высокомолекулярные лиганды, осуществляют с использованием водных подвижных фаз - в обращенно-фазовом варианте хроматографии.

Смесь производных аминопиридина разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином, в нормально-фазовом варианте ВЭЖХ с использованием подвижной фазы гексан/изопропанол (90/10 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 230 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.2. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Энантиомеры Р-блокатора надолола разделяли на колонке (4,6x100 мм) с наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком, в обращенно-фазовом варианте ВЭЖХ с использованием подвижной фазы фосфатный буферный раствор (рН 7,5; 20 мМ) / изопропанол (96/4 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 275 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.3. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Таким образом, во всех случаях был достигнут технический результат, заключающийся в увеличении стабильности сепарационного материала.

Использование полученных по заявленному способу стабильных наногибридных функциональных сепарационных материалов позволяет проводить разделение широкого круга соединений, в том числе разделение изомеров оптически активных соединений, в частности, относящихся к классам N-гидроксипропиламинов β-блокаторов) и профенов, широко использующимся в фармакологии и медицине.

Предварительная модификация силикагеля 3-аминопропилтриэтоксисиланом или 3-меркаптопропилтриэтоксисиланом приводит к значительному увеличению степени покрытия силикагеля наночастицами золота за счет образования прочных ковалентных связей Au-S или ковалентных донорно-акцепторных связей Au-N. Данные СЭМ показали значительное увеличение степени покрытия поверхности силикагеля наночастицами золота, при этом максимальное покрытие наблюдалось в случае обработки силикагеля МПТС (фиг.4-6). По данным атомно-абсорбционной спектроскопии на модифицированной поверхности силикагеля при описанных в примерах 1 и 2 условиях обработки закрепляются практически все наночастицы золота, введенные в реакцию. Таким образом, при использовании заявленного способа получения наногибридных функциональных сепарационных материалов достигается технический результат, заключающийся в увеличении содержания наночастиц на поверхности носителя.

1. Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла, включающий носитель с закрепленными на нем наночастицами золота и серосодержащие органические лиганды, ковалентно закрепленные на поверхности наночастиц золота, при этом наночастицы золота закреплены на поверхности носителя ковалентно.

2. Материал по п.1, где серосодержащие органические лиганды выбраны из группы, включающей серосодержащие аминокислоты, их производные и высокомолекулярные соединения - белки.

3. Материал по п.1, где носитель выбран из группы, включающей оксиды кремния.

4. Материал по п.1, где металл выбран из группы, включающей золото.



 

Похожие патенты:

Изобретение относится к способам получения композитных наноматериалов и может быть использовано в приборостроении и других областях при производстве материалов на основе полупроводников, диэлектриков или металлов.

Изобретение относится к области биотехнологии, конкретно к созданию конъюгатов магнитная частица - нуклеиновая кислота, и может быть использовано для молекулярно-генетической диагностики.

Изобретение относится к области молекулярной биологии и биохимии. Предложена димерная наноструктура, способ её конструирования, способ детектирования аналита и набор для детектирования аналита.

Изобретение относится к способу получения антимикробных полимерных водорастворимых пленочных покрытий с наноразмерными структурами из серебра. Способ получения пленок на основе поливинилового спирта с наноструктурированным серебром включает получение наночастиц серебра, их совмещение с поливиниловым спиртом и формирование пленки.

Изобретение относится к области технологии создания композиционных полимерных материалов, технологии повышения эксплуатационных свойств полимеров с использованием дисперсных наполнителей.

Изобретение относится к формованным частицам переходных металлов, в частности в виде дисперсии в водной и/или органической среде, к их получению и их применению в качестве агента, поглощающего инфракрасное излучение (ИК), ИК-отверждающего агента для покрытий, добавки в проводящих композициях, печатных красках и покрывающих композициях, противомикробного средства или для обнаружения органических и/или неорганических соединений.

Изобретение относится к способу получения наноструктурированных покрытий для защиты поверхностей изделий. Способ включает формирование в камере сгорания распылителя высокотемпературного газового потока путем сжигания топлива в окислителе, подачу в камеру сгорания исходного материала, являющегося источником образования наночастиц, образование и перенос высокотемпературным газовым потоком наночастиц и осаждение их на подложке.

Изобретение относится к вакуумно-плазменной обработке композитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса.

Изобретение относится к режущему инструменту с покрытием и способу нанесения на основу инструмента покрытия. Покрытие включает, по меньшей мере, один мультинанослой, имеющий нанокомпозитный нанослой, образованный кристаллическим (TixAlyCrz)N и аморфным Si3N4, при этом 0,25≤x≤0,75, 0,25≤y<0,75, 0,05≤z≤0,2, 0,85≤x+y+z≤0,97.

Изобретение относится к технологии производства сорбентов, иммобилизованных на полимерных волокнистых носителях, и может быть использовано для термической и термохимической обработки листовых материалов в различных отраслях промышленности.

Группа изобретений относится к адсорбентам для удаления углеводородов из выхлопных газов автомобиля в период холодного запуска двигателя внутреннего сгорания. Адсорбент представляет собой цеолит типа ZSM-5 или типа BETA, в который введен щелочной металл, выбранный из группы К, Na, Li или их смесь при определённом соотношении компонентов.

Изобретение относится к технологии производства сорбентов, иммобилизованных на полимерных волокнистых носителях, и может быть использовано для термической и термохимической обработки листовых материалов в различных отраслях промышленности.

Изобретение относится к способу получения тонкослойных хиральных пластин для планарной хроматографии стереоизомеров и их рацемических смесей, который включает нековалентное связывание гликопептидного антибиотика эремомицина с кремнезёмным адсорбентом с силикагелевым связующим методом импрегнирования в щелочном водном растворе при рН 8,0÷10,0 при комнатной температуре в одну стадию.

Изобретение относится к ВаKХ цеолитовым адсорбентам без связующего, используемым для жидкофазного разделения ароматических ксилолов. Адсорбент включает часть цеолита, конвертированного из связующего, образованную из х% масс.

Изобретение относится к получению сорбентов для выделения и детекции рекомбинантных белков, содержащих полигистидиновые последовательности. Предложен способ получения магнитного аффинного сорбента для выделения рекомбинантных белков.

Изобретение относится к области получения силикатных материалов. Предложен способ получения обращенно-фазовых гидрофобизированных полисиликатных сорбентов, включающий взаимодействие в водной среде гидрофильного силикатного компонента с амфифильным силикатным компонентом.
Изобретение относится к получению сорбентов. Предложен способ получения сорбента на основе полистирола для извлечения бора из водных растворов.

Изобретение относится к сорбентам для очистки объектов окружающей среды. Сорбент содержит торф и гидрофобизирующий агент.

Изобретение относится к способу получения сорбента для селективного извлечения ионов скандия. Способ включает стадию ацилирования сополимера стирола с дивинилбензолом хлористым ацетилом в растворе дихлорэтана в присутствии безводного хлористого алюминия, промывку, сушку, стадию фосфорилирования продукта ацилирования треххлористым фосфором, стадию гидролиза ледяной водой, заключительную промывку целевого продукта.
Изобретение относится к области получения углеродминеральных сорбционных материалов. Способ включает нанесение углеродсодержащих соединений на поверхность оксида алюминия с мезо-, макропористой структурой, сушку и пиролиз в токе инертного газа с образованием на поверхности оксида алюминия слоя пиролитического углерода.

Изобретение относится к способу получения тонкослойных хиральных пластин для планарной хроматографии стереоизомеров и их рацемических смесей, который включает нековалентное связывание гликопептидного антибиотика эремомицина с кремнезёмным адсорбентом с силикагелевым связующим методом импрегнирования в щелочном водном растворе при рН 8,0÷10,0 при комнатной температуре в одну стадию.
Наверх