Способ биэнергетической фрагментации ядра хрусталика


 


Владельцы патента RU 2544458:

Старостин Владимир Алексеевич (RU)

Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано для биэнергетической фрагментации ядра хрусталика. Для этого формируют тоннельный доступ и роговичный парацентез. Вводят вискоэластик. Затем выполняют капсулорексис. Проводят разрушение ядра хрусталика сочетанным воздействием энергией Nd-YAG лазера с длиной волны 1,44 мкм и ультразвуком. При этом первоначально разрушают корковый слой хрусталика на ограниченном участке. Далее формируют углубление и воздействуют лазерным излучением на самые плотные структуры ядра при сохранении коркового слоя на данном этапе операции. Одновременно осуществляют дезинтеграцию и аспирацию всех структур хрусталика ультразвуковым наконечником. Способ позволяет минимизировать травматизацию тканей глаза за счет фрагментации ядра хрусталика под прикрытием коркового слоя, а также снизить уровни лазерного воздействия при возможности разрушения самых плотных ядер с выполнением тоннельного доступа минимальных размеров и использованием ультразвуковой иглы с манжетой меньших калибров. 1 з.п. ф-лы, 3 пр.

 

Изобретение относится к офтальмологии и может быть использовано при хирургическом лечении катаракты.

Известен способ экстракции катаракты с лазерной и ультразвуковой фрагментацией ядра хрусталика (патент РФ №2387422), заключающийся в сочетанном воздействии на ядро лазерным излучением с длиной волны 1440 нм и ультразвуком.

Однако при выполнении операции в самых сложных случаях, особенно при сочетании мелкой передней камеры с плотным ядром хрусталика, бывает затруднительно добиться исключения энергетической и ирригационной травмы чувствительных структур глаза. Технической задачей изобретения является разработка способа экстракции катаракты с минимизацией воздействия на окружающие ткани глаза при энергетической фрагментации ядра хрусталика.

Указанный технический результат достигается тем, что в способе экстракции катаракты, заключающемся в формировании тоннельного доступа и роговичного парацентеза, введении вискоэластика, проведении капсулорексиса, гидродиссекции, гидроделинеации, фрагментации ядра хрусталика сочетанным воздействием энергией Nd-YAG лазера с длиной волны 1440 нм и ультразвуком, проводят путем первоначального разрушения плотного коркового слоя хрусталика лишь на ограниченном участке с последующим углублением лазерного наконечника и лазерным воздействием на самые плотные структуры ядра по ходу хрусталиковых волокон под прикрытием коркового слоя с одновременной дезинтеграцией и аспирацией образующихся фрагментов ультразвуковым наконечником. Воздействие на ядро хрусталика лазерной энергией 100-150 мДж с длиной волны 1440 нм идеально подходит для разрыва межмолекулярных связей хрусталикового вещества. При таком лазерном воздействии в ограниченном объеме под плотным корковым слоем возникают вторичные акустические колебания, вызванные быстрым нагревом с испарением жидкости и соответствующим скачком давления, что обусловлено феноменом термооптического возбуждения акустических импульсов (Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М., Наука, 1991, стр.14-22). Образующиеся акустические колебания направлены плоским фронтом по оси световода и цилиндрическим фронтом перпендикулярно оси излучения лазера, усиливая дезинтеграцию ядерного вещества и давая возможность достижения эффекта при меньших уровнях (на 10-15%) лазерной энергии. При этом повреждающее действие излучения на наиболее чувствительные клетки заднего эпителия роговицы будет ослаблено не только применяемой средой вискоэластика, но и дополнительно снижено за счет отражения на границе «жидкость - стенка субкортикальной полости» и поглощения энергии самим корковым слоем, находящимся между излучателем и роговицей и выполняющим функцию естественного эндоглайда. Освобождающиеся во время воздействия продукты разрушения ядра сразу захватывают ультразвуковой иглой, дополнительно дезинтегрируют импульсами ультразвуковой энергии и аспирируют. Важно отметить, что при этом требуются относительно невысокие уровни ультразвуковой энергии, вакуума и ирригационных потоков вследствие меньших размеров образующихся фрагментов. После удаления плотной основной части ядра из-за ослабления связей между волокнами хрусталикового вещества на периферии от зоны капсулорексиса легко достижимо последовательное разведение и перемещение образовавшихся фрагментов в центр операционного поля для их окончательного разрушения с разных направлений лазерным и ультразвуковым излучением с еще меньшими уровнями энергии (лазерной энергией 100-120 мДж, мощностью ультразвука до 40%) и аспирацией с невысоким вакуумом. Наиболее выгодно производить данную совокупность действий с помощью лазерного наконечника-манипулятора, снабженного шпателеобразным элементом рабочей части (патент РФ на изобретение №2341239). При этом рабочую часть лазерного наконечника-манипулятора располагают так, чтобы ориентировать положение шпателеобразного элемента со стороны нахождения близлежащих чувствительных структур глаза, например, края капсулорексиса или радужки при узком зрачке. Следовательно, расходящийся пучок лазерного излучения торцевой части световода будет экранирован с указанной стороны и частично отражен на хрусталиковые массы, позволяя работать лазерным наконечником-манипулятором эндокапсулярно даже за краем капсулорексиса без риска его повреждения на минимально необходимом расстоянии от каждого слоя разрушаемого ядра. Следует также отметить, что при фрагментации ядра предлагаемым способом манипулирование в области операции производится по сути энергонасыщенным шпателем, а наличия отдельного наконечника для ирригации-аспирации не требуется. Кроме того, факторы одновременной доставки лазерного и ультразвукового излучения через разные порты позволяют не только добиться с меньшими энергетическими затратами ускоренной дезинтеграции хрусталиковых волокон, но и обеспечить значительное сокращение объема ирригационной жидкости, снижая возможность повреждения заднего эпителия роговицы. При этом области разрезов остаются практически интактными, так как в зоне расположения лазерного световода нагрев тканей отсутствует, а зона тоннельного доступа также не подвержена значительным термическим воздействиям из-за резкого снижения уровня подводимой ультразвуковой энергии даже при разрушении самых плотных ядер. Учитывая сказанное, возможно выполнение тоннельного доступа минимальных размеров и использование ультразвуковой иглы с манжетой меньших калибров. Следовательно, при выполнении операции данным способом отмечается появление нового эффекта дополнительного уменьшения травматизации тканей глаза во время операции за счет выполнения основной энергонасыщенной процедуры - фрагментации наиболее плотной части ядра под прикрытием коркового слоя хрусталика, что особенно важно при наличии мелкой передней камеры с укороченным расстоянием «роговица-хрусталик» и уменьшенным объемом возможного введения вискоэластика соответственно.

Предложенное техническое решение осуществляется следующим образом.

Способ биэнергетической фрагментации ядра хрусталика заключается в формировании тоннельного доступа и роговичного парацентеза, введении вискоэластика, проведении капсулорексиса, гидродиссекции и гидроделинеации. Через роговичный парацентез в полость глаза вводят лазерный наконечник-манипулятор, через расположенный под углом к нему в 90-120 градусов тоннельный разрез - ультразвуковую иглу с манжетой. Начинают разрушать ядро хрусталика посредством воздействия Nd-YAG лазером с длиной волны 1440 нм. Проводят лазерное воздействие энергией 100-170 мДж первоначально у ближнего края капсулорексиса с формированием дефекта в корковом слое ядра. При этом рабочую часть лазерного наконечника-манипулятора располагают так, чтобы ориентировать положение шпателеобразного элемента со стороны нахождения близлежащих чувствительных структур глаза, например, края капсулорексиса или радужки при узком зрачке. Далее через дефект в корковом слое создают углубление в хрусталиковом веществе, затем направляют лазерное излучение по ходу хрусталиковых волокон с энергией, адекватной плотности вещества, продвигаясь наконечником вглубь плотных слоев ядра под поверхностным корковым слоем, не разрушая последнего. Образующиеся фрагменты ядра последовательно захватывают ультразвуковой иглой у места дефекта в корковом слое и на аспирации проводят их разрушение ультразвуковой энергией на мощности до 40-60%. Оставшуюся периферическую часть ядра с ослабленными после первичного воздействия межламинарными связями разрушают путем последовательного направления лазерной энергии на хрусталиковое вещество в несколько точек. В образовавшиеся разломы возможно введение шпателеобразного элемента лазерного наконечника-манипулятора при одновременном лазерном воздействии, направляемом как вглубь щели, так и коаксиально по ходу хрусталиковых волокон со стороны открывающихся стенок разлома. Разделенные подвижные периферические фрагменты также захватывают на аспирации ультразвуковой иглой, дезинтегрируют разнонаправленными импульсами ультразвука и лазерной энергии с одновременной аспирацией. На заключительных этапах операции проводится удаление хрусталиковых масс методом ирригации-аспирации, полировка задней капсулы хрусталика, имплантация эластичной интраокулярной линзы через имеющийся тоннельный разрез.

Способ иллюстрируется клиническими примерами.

Пример 1. Больная С., 74 лет.

Поступила с жалобами на снижение зрения на правый глаз.

Острота зрения: правильная светопроекция.

ВГД = 22 мм рт.ст.

Кератометрия: 43,35 Д ах 0 град., 42,9 Д ах 90 град.

Длина глаза 23,52 мм, дополнительных эхосигналов не определяется.

Биомикроскопически роговица прозрачная, передняя камера средней глубины, множественные псевдоэксфолиативные элементы - на передней капсуле хрусталика, узкий ригидный зрачок диаметром 3,5 мм при максимальном мидриазе, диффузное помутнение хрусталика с буроватым оттенком.

Диагноз: зрелая возрастная катаракта правого глаза.

Проведена операция по предложенному способу экстракции катаракты с уровнем максимальной энергии лазерного излучения 150 мДж на этапе первоначального разрушения коркового слоя и формирования углубления в хрусталиковом веществе, снижении лазерной энергии до 125-130 мДж во время работы под поверхностным корковым слоем при мощности ультразвука до 50%. Имплантирована эластичная интраокулярная линза модели «I-soft» через тоннельный разрез 2,0 мм с помощью одноразового инжектора.

При выписке:

острота зрения = 0,6 со сферической коррекцией (-) 1,0 Д = 1,0

ВГД = 21 мм рт.ст.

Кератометрия: 43,3 Д ах 0 град., 42,9 Д ах 90 град.

Биомикроскопически роговица прозрачная, передняя камера глубокая, влага чистая прозрачная, ИОЛ - в капсульном мешке, в правильном положении, на глазном дне диск зрительного нерва бледно-розовый с четкими контурами, ангиосклероз, на периферии - без грубых очаговых изменений.

Пример 2. Больная С., 73 лет.

Поступила с жалобами на снижение зрения на правый глаз.

Острота зрения правого глаза = 0,04 не корр.

ВГД = 21 мм рт.ст.

Кератометрия: 43,5 Д ах 0 град., 43,2 Д ах 90 град.

Длина глаза 22,91 мм, дополнительных эхосигналов не определяется.

Биомикроскопически роговица прозрачная, передняя камера мелкая, на передней капсуле хрусталика псевдоэксфолиативные отложения, помутнение центральных слоев хрусталика с темно-желтым оттенком.

Диагноз: незрелая возрастная катаракта правого глаза.

Проведена операция по предложенному способу экстракции катаракты с уровнем максимальной энергии лазерного излучения 130 мДж на этапе первоначального разрушения коркового слоя и формирования углубления в хрусталиковом веществе, снижении лазерной энергии до 110-115 мДж во время работы под поверхностным корковым слоем и мощностью ультразвука до 40%. Имплантирована безаберрационная асферическая интраокулярная линза модели «MI60» через тоннельный разрез 1,8 мм с помощью одноразового инжектора.

При выписке:

острота зрения = 1,0 без коррекции.

ВГД = 20 мм рт.ст.

Кератометрия: 43,3 Д ах 0 град., 43,2 Д ах 90 град.

Биомикроскопически роговица прозрачная, передняя камера средней глубины, влага чистая прозрачная, ИОЛ в капсульном мешке, в правильном положении, на глазном дне диск зрительного нерва бледно-розовый с четкими границами, в макулярной области рефлекс сохранен, на периферии - без грубых очаговых изменений.

Пример 3. Больная Р., 58 лет.

Поступила с жалобами на снижение зрения на правый глаз в течение пяти лет на фоне сопутствующего ревматоидного артрита.

Острота зрения: правильная проекция света.

ВГД = 22 мм рт.ст.

Кератометрия: 42,3 Д ах 0 град., 42,7 Д ах 90 град.

Длина глаза 24,04 мм, дополнительных эхосигналов не определяется.

Биомикроскопически роговица прозрачная, передняя камера средней глубины, на передней капсуле хрусталика имеются псевдоэксфолиативные отложения, гомогенное помутнение всех слоев хрусталика темно-бурого цвета.

Диагноз: осложненная бурая катаракта правого глаза.

Проведена операция по предложенному способу экстракции катаракты с уровнем максимальной энергии лазерного излучения 170 мДж на этапе первоначального разрушения коркового слоя и формирования углубления в хрусталиковом веществе, снижении лазерной энергии до 150 мДж во время работы под поверхностным корковым слоем при мощности ультразвука до 60%. Имплантирована эластичная интраокулярная линза модели «I-soft» через тоннельный разрез 2,0 мм с помощью одноразового инжектора.

При выписке:

острота зрения = 1,0 без коррекции.

ВГД = 20 мм рт.ст.

Кератометрия: 42,2 Д ах 0 град., 42,7 Д ах 90 град.

Биомикроскопически роговица прозрачная, передняя камера глубокая, влага чистая прозрачная, ИОЛ в капсульном мешке, в правильном положении, на глазном дне диск зрительного нерва бледно-розовый с четкими контурами, в макулярной области рефлекс сохранен, на периферии - без грубых очаговых изменений.

Таким образом, приведенные клинические примеры подтверждают высокую функциональную эффективность предложенного способа, так как данное техническое решение создает появление нового эффекта дополнительного уменьшения травматизации тканей глаза во время операции за счет выполнения основной энергонасыщенной процедуры - фрагментации наиболее плотной части ядра под прикрытием коркового слоя хрусталика с возможностью снижения уровней энергетического воздействия при разрушении самых плотных ядер с выполнением тоннельного доступа минимальных размеров и использованием ультразвуковой иглы с манжетой меньших калибров.

1. Способ биэнергетической фрагментации ядра хрусталика, заключающийся в формировании тоннельного доступа и роговичного парацентеза, введении вискоэластика, выполнения капсулорексиса, разрушения ядра хрусталика сочетанным воздействием лазерной энергией Nd-YAG лазера с длиной волны 1044 нм и ультразвуком, отличающийся тем, что проводят путем первоначального разрушения коркового слоя хрусталика на ограниченном участке с последующим углублением и лазерным воздействием на самые плотные структуры ядра под корковым слоем с одновременной дезинтеграцией и аспирацией образующихся фрагментов ультразвуковым наконечником.

2. Способ по п.1, отличающийся тем, что проводят лазерное воздействие и формирование фрагментов ядра хрусталика лазерным наконечником-манипулятором, снабженным шпателеобразным элементом.



 

Похожие патенты:

Группа изобретений относится к медицинской технике. Лазерная система для офтальмологической хирургии включает лазерное устройство для генерирования импульсного лазерного луча и XY-сканер для приема генерированного импульсного лазерного луча и выпуска сканирующего лазерного луча, причем XY-сканер, включает X-сканер, включающий два зеркала, сканирующих по направлению X, и Y-сканнер, включающий два зеркала, сканирующих по направлению Y.

Изобретение относится к медицинской технике. Лазерная система для офтальмологической хирургии включает источник лазерного излучения для генерирования импульсного лазерного луча; XY-сканер для приема импульсного лазерного луча и для испускания сканирующего по направлениям XY луча, просканированного в двух направлениях, поперечных направлению Z; Z-сканер в корпусе сканера для приема луча, сканирующего по направлениям XY, и для испускания сканирующего по направлениям XYZ луча, сканировавшего дополнительно по направлению Z, зеркало для отклонения сканирующего по направлениям XYZ луча, принятого от Z-сканера; и объектив в корпусе объектива для приема отклоненного сканирующего по направлениям XYZ луча и для фокусировки принятого сканирующего по направлениям XYZ луча на целевую область, где корпус сканера отделен от корпуса объектива.

Группа изобретений относится к медицинской технике. Офтальмологическая лазерная система включает источник лазерного излучения для генерирования импульсного лазерного луча; XY-сканер для приема импульсного лазерного луча и для испускания сканирующего по направлениям XY луча, производящего сканирование по двум направлениям, по существу поперечным оптической оси; и многофункциональный Z-сканер, предназначенный для приема сканирующего по направлениям XY луча и для испускания сканирующего по направлениям XYZ луча, причем сканер имеет числовую апертуру NA и фокальное пятно в целевой области и предназначен для модификации числовой апертуры NA, по существу независимо от сканирования фокальной глубины Z фокального пятна по оптической оси.
Изобретение относится к медицине, в частности офтальмологии, и может быть использовано для лечения фиброваскулярной мембраны низкой степени активности в макулярной области.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования развития синдрома пигментной дисперсии у пациентов с имплантированной добавочной интраокулярной линзой Sulcoflex.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при лечении катаракты у пациентов с сопутствующими заболеваниями. Через месяц после факоэмульсификации осложненной катаракты и внутрикапсульной имплантации интраокулярной линзы по краю переднего капсулорексиса наносят 3-4 насечки длиной 2 мм.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для лечения открытоугольной глаукомы. Воздействуют лазерным излучением на зону трабекулы в два этапа.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для предотвращения дегидратации роговичного лоскута при проведении LASIK по поводу различных аномалий рефракций.
Изобретение относится к медицине, офтальмологии и предназначено для определения показаний к проведению лазерной коагуляции при миопии различной степени у беременных.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для фотодинамической обработки склерального ложа после эндорезекции внутриглазного новообразования.

Группа изобретений относится к медицине. Лазерная система для офтальмологической хирургии включает источник лазерного излучения для получения хирургического импульсного лазерного луча, XY-сканер для сканирования хирургическим импульсным лазерным лучом по направлениям XY, поперечным оси Z, Z-сканер для сканирования сканированным по направлениям XY лазерным лучом по оси Z, объектив для фокусировки сканировавшего по направлениям XYZ лазерного луча в целевую область и вычислительный контроллер для использования вычислительного процесса с целью регулирования, по меньшей мере, одного из Z-сканера и XY-сканера для устранения оптического искажения сфокусированного лазерного луча. 2 н. и 18 з.п. ф-лы, 19 ил., 13 табл.

Группа изобретений относится к медицине. Офтальмологическая хирургическая лазерная система включает лазерное устройство для генерирования лазерного луча, первый Z-сканер для приема генерированного лазерного луча и для сканирования фокального пятна лазерной системы по первому интервалу в направлении Z вдоль оптической оси лазерной системы, XY-сканер для приема лазерного луча, испускаемого первым Z-сканером, и для сканирования фокального пятна лазерной системы в направлении, по существу поперечном оптической оси лазерной системы, и второй Z-сканер для приема сканированного лазерного луча от XY-сканера и для сканирования фокального пятна лазерной системы по второму интервалу в направлении Z вдоль оптической оси лазерной системы. Группа изобретений позволяет свести к минимуму оптические искажения лазерного луча. 2 н. и 8 з.п. ф-лы, 12 табл., 19 ил.
Изобретение относится к медицине, в частности к детской офтальмологии, и предназначено для лечения терминальной степени рубцовой фазы ретинопатии недоношенных. Проводят витреошвартотомию с помощью фокусированного излучения ИАГ-лазера с энергией в импульсе 1,5-8,0 мДж, количеством импульсов 20-100. При этом рассекают шварту в участке ее минимальной толщины и васкуляризации перпендикулярно направлению натяжения шварты. После чего смещают освобожденные от сращений купола отслоенной сетчатки из центральной зоны к периферии с помощью ударной волны расфокусированного излучения ИАГ-лазера с энергией импульса 1,0-2,0 мДж. Способ обеспечивает превращение закрытой формы воронкообразной отслойки сетчатки в открытую, с получением наиболее оптимальных оптических и функциональных результатов, предупреждением развития гемофтальма, субатрофии глазного яблока, гибели глаза как органа в рамках предельных функциональных возможностей зрительно-нервного аппарата. 2 пр.
Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано для интраоперационного расширения зрачка и стабилизации положения радужки в ходе факоэмульсификации (ФЭ) или лазерной экстракции (ЛЭ) катаракты при невозможности достижения медикаментозного мидриаза. Для этого через корнеосклеральный разрез длиной 2,2 мм и шириной 2,0 мм вводят на переднюю поверхность радужки кольцо. При этом внешний диаметр кольца составляет 6-11 мм, внутренний диаметр 4-6 мм, толщина не более 1 мм. Кольцо снабжено 4-6 опорными элементами, расположенными на его внутренней поверхности, на одинаковом угловом расстоянии друг от друга, перпендикулярно плоскости кольца. Кроме того, кольцо снабжено 5-7 сквозными манипуляционными отверстиями, расположенными равномерно по окружности, концентричной кольцу. При этом количество манипуляционных отверстий на одно превышает количество опорных элементов. Продольные оси этих отверстий параллельны опорным элементам. Причем одно из манипуляционных отверстий расположено на 12 часах. Опорные элементы через манипуляционные отверстия с помощью ротационного крючка последовательно заводят под радужку. Проводят экстракцию катаракты с имплантацией ИОЛ. Затем ротационным крючком через манипуляционное отверстие кольца на 12 часах извлекают его из передней камеры глаза. Герметизируют разрез физиологическим раствором. Способ значительно снижает риск выпадения стекловидного тела, формирования разрывов задней капсулы, повреждения и выпадения радужки за счет ее стабилизации вводимым в переднюю камеру кольцом и более щадящего механического расширения зрачка благодаря опорным элементам, заводимым под радужку, а также послеоперационных осложнений, связанных с возникновением индуцированного астигматизма, что позволяет достичь максимально возможные зрительные функции. 2 пр.

Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано при коррекции сложного неправильного миопического роговичного астигматизма. Для этого снимают кератотопограмму. Затем на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов 30-500 Гц. При этом формируют в оптической зоне регулярную поверхность и поверхности переходной зоны путем последовательного послойного удаления участков роговицы. Регулярную поверхность оптической зоны (03) формируют в виде вогнутого эллипсоида вращения с отрицательной конической константой от минус 0,1 до минус 0,4. Оптическую ось эллипсоида смещают таким образом, чтобы центр оптической зоны соответствовал положению центра участка максимальной иррегулярности на кератотопограмме. Диаметр оптической зоны выбирают в соответствии с диаметром участка максимальной иррегулярности, определяемым по карте высот на кератотопограмме. После этого формируют поверхности переходной зоны. Первую поверхность переходной зоны (ППЗ), прилежащую к зоне, не подлежащей воздействию, формируют в виде части выпуклой наружной поверхности (ЧВНП) кольцевого тороида. Внешний край первой ППЗ сопряжен с участком роговицы, не подлежащим воздействию. Ширина ППЗ составляет 0,04-0,2 диаметра зоны воздействия (ЗВ). Вторую ППЗ формируют в виде части вогнутой внутренней поверхности (ЧВВП) кольцевого тороида, прилежащей к оптической зоне. Причем ширина второй ППЗ равна ширине первой ППЗ. Внутренний край второй ППЗ сопряжен с внешним краем оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ обеспечивает уменьшение времени проведения операции и погрешности при повторной центровке за счет проведения операции в один этап, снижение иррегулярности поверхности роговицы при сохранении физиологической конической константы роговицы и улучшение зрительных функций пациентов, а также минимизацию объема удаляемых тканей. 3 пр., 14 ил.

Изобретение относится к медицине, а именно к офтальмохирургии. Измеряют толщину цилиарного тела оперируемого глаза методом ультразвуковой биомикроскопии. Максимально допустимую Emax и минимально достаточную Еmin суммарную энергию лазерного воздействия определяют по формуле: где H - толщина цилиарного тела оперируемого глаза. где Н - толщина цилиарного тела оперируемого глаза, H1=0,2574*Н+0,2332. Способ обеспечивает снятие болевого синдрома, уменьшение доли тяжелых осложнений контактной транссклеральной диод-лазерной циклофотокоагуляции, предупреждение чрезмерного истончения цилиарного тела за счет дифференцированного подхода к выбору параметров лазерной энергии с учетом состояния цилиарного тела. 1 ил.
Изобретение относится к области медицине, в частности к офтальмохирургии и оториноларингологии, и может быть использовано при трансканаликулярной лазерной эндоскопической дакриоцисториностомии. Производят расширение нижней слезной точки. Проходят зондом по нижнему слезному канальцу до упора в кость. По расширенному нижнему слезному канальцу проводят световод диодного лазера до упора в кость и мануально фиксируют его. Визуализируют полость носа эндоскопом. Прожигают лазерным излучением под эндоскопическим контролем костную ткань латеральной стенки полости носа до появления световода лазера в полости носа. Используют диодный лазер с длиной волны 970 нм, мощность излучения 6-7 Вт, непрерывный режим работы. В сформированное соустье через полость носа под контролем эндоскопа с помощью пластикового инжектора длиной 10,01 мм диаметром 2 мм вводят дренаж. Длина дренажа 8,4 мм. Наружный диаметр цилиндрической части 3 мм, внутренний диаметр 2 мм, длина 6 мм. Для фиксации в полости слезного мешка имплантируемый конец дренажа снабжен деформирующимися элементами по типу «оперение стрелы» диаметром 5 мм, шириной 1 мм с каждой стороны, диаметром при сгибании 3,2-3,5 мм. На противоположном конце дренажа выполнена площадка диаметром 5 мм для фиксации в полости носа. Вдоль всего дренажа размещены желобки шириной 0,25 мм, длиной 8-8,1 мм для дополнительного оттока слезной жидкости. Способ позволяет предотвратить рецидивы заращения сформированного соустья между слезным мешком и полостью носа за счет долгосрочного дренирования сформированного соустья в послеоперационном периоде. 2 пр.

Группа изобретений относится к области медицины. Лазерная система для офтальмологической хирургии, содержащая: источник лазерного излучения для генерирования импульсного лазерного луча, XY-сканер для приема импульсного лазерного луча и для испускания сканирующего по направлениям XY луча, просканированного в двух направлениях, поперечных оси Z, Z-сканер для приема лазерного луча, сканирующего по направлениям XY, и для испускания луча, сканирующего по направлениям XYZ, просканированного дополнительно по оси Z. Причем Z-сканер содержит первую группу линз для испускания луча, имеющего промежуточную фокальную плоскость, и группу подвижных линз для приема луча через промежуточную фокальную плоскость и для коллимации луча вариабельным образом, и объектив для приема коллимированного луча от Z-сканера и для фокусировки луча в фокальное пятно в целевой области. Применение данной группы изобретений позволит минимизировать оптические искажения лазерного луча во время сканирования и фокусирования лазерного луча в глаз. 2 н. и 20 з.п. ф-лы, 19 ил., 12 табл.
Изобретение относится к медицине, в частности к офтальмологии, и предназначено для факоэмульсификации перезрелой катаракты. Переднюю капсулотомию выполняют с помощью излучения фемтосекундного лазера с мощностью импульсов 6200-6500 наноджоулей, диаметром 4,5-5,0 мм. Перед фрагментацией в центре ядра формируют канал диаметром 1,8-2,2 мм с глубиной 90-95% от толщины хрусталика. Фрагментацию ядра на максимально мелкие фрагменты осуществляют от центра к периферии. Способ обеспечивает создание оптимальных условий для выполнения факоэмульсификации хрусталика, адекватной фиксации ИОЛ в капсульном мешке и предупреждение неконтролируемых разрывов капсульного мешка. 4 пр.

Изобретение относится к офтальмологии и может быть использовано при коррекции сложного неправильного гиперметропического роговичного астигматизма. Воздействуют излучением эксимерного лазера с длиной волны 193-222 нм на роговицу глаза. Энергия в импульсе 0,8-2,1 мДж, диаметр лазерного пятна 0,5-1,5 мм, длительность импульса 5-8 нс, частота следования импульсов 30-500 Гц. Формируют регулярную поверхность в оптической зоне и поверхность переходной зоны путем последовательного послойного удаления участков роговицы. Регулярную поверхность оптической зоны (ОЗ) формируют в виде выпуклого эллипсоида вращения с отрицательной конической константой от минус 0,1 до минус 0,4. Оптическую ось эллипсоида смещают таким образом, чтобы центр ОЗ соответствовал положению центра участка максимальной иррегулярности на кератотопограмме. Диаметр ОЗ выбирают в соответствии с диаметром участка максимальной иррегулярности, определяемым по карте высот на кератотопограмме. Формируют поверхность переходной зоны (ППЗ) в виде части выпуклой наружной поверхности (ЧВНП) кольцевого тороида. Внешний край ППЗ сопряжен с участком роговицы, не подлежащим воздействию. Внутренний край ППЗ сопряжен с внешним краем оптической поверхности. Ширина ППЗ составляет 0,04-0,2 диаметра зоны воздействия. Способ обеспечивает снижение иррегулярности поверхности роговицы при сохранении физиологической конической константы роговицы и улучшение зрительных функций пациентов, а также минимизацию объема удаляемых тканей, отсутствие необходимости повторной центровки эксимерного лазера улучшает точность воздействия и уменьшает время проведения операции. 14 ил., 3 пр.
Наверх