Способ роботизированного обеспечения применения высокоточного оружия


 


Владельцы патента RU 2551390:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВОЕННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР СУХОПУТНЫХ ВОЙСК "ОБЩЕВОЙСКОВАЯ АКАДЕМИЯ ВООРУЖЕННЫХ СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ" (RU)
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)

Изобретение относится к области приборостроения и может найти применение в системах управления высокоточным оружием. Технический результат - повышение эффективности стрельбы управляемыми снарядами или ракетами. Для этого осуществляют формирование и совмещение с целью независимой линии прицеливания, отклонение ствола пушки от линии прицеливания на углы прицеливания и бокового упреждения, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемого снаряда или ракеты, и производство выстрела. При стрельбе управляемым снарядом (ракетой) обеспечивают определение направления и скорости продольного ветра, квалификации оператора, оптимального времени ввода управляемого снаряда в контур цели, измерение боковых угловых размеров и скорости перемещения образуемого при выстреле пыледымового облака, определяют время экранирования им цели и сравнивают их значения между собой. Кроме того, дополнительно обеспечивают ввод мобильного телеуправляемого робота и размещение на нем аналогичного высокоточного оружия с возможностями его роботизированных заряжания, определения направления и скорости суммарного поперечного ветра, наведения линии выстрела и дистанционного управления им с боевой машины.

 

Предлагаемый способ роботизированного обеспечения применения высокоточного оружия (ВТО) относится к области обеспечения функционирования военных объектов, а более конкретно - к области обеспечения функционирования автоматизированных комплексов вооружения, устанавливаемых на боевых машинах, танках, БМП, БТР и др., содержащих в своем составе ракетное и ракетно-артиллерийское вооружение с роботизированными системами обеспечения их функционирования и применения (автоматы заряжания, системы слежения и др.). Подобные способы обеспечивают автоматизацию процессов учета условий стрельбы, определения углов прицеливания и бокового упреждения, а также введения поправок в положение вооружения в момент выстрела и др.

Известен способ роботизированного обеспечения применения высокоточного оружия, включающий его размещение на боевой машине, формирование и совмещение с целью зависимой линии прицеливания, отклонение ствола орудия от линии прицеливания на углы прицеливания и бокового упреждения, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемого снаряда или ракеты, и производство выстрела. Этот способ реализован в автоматизированных системах управления вооружением (АСУВ) танков первого послевоенного поколения Т-55 и Т-62 (см., например, "Руководство по материальной части и эксплуатации танка Т-55". Воениздат, М., 1965 г.), каждая из которых содержит пульт управления, автоматизированные приводы наведения орудия в вертикальной и горизонтальной плоскостях с блоком их включения и стабилизатором вооружения, что обеспечивает сравнительно высокую эффективность этих систем за счет роботизированного обеспечения исполнения ряда функций оператора.

Для этого способа характерны недостатки. Совмещение с целью зависимой линии прицеливания, связанной с вооружением, приводит к тому, что ошибки слежения за целью определяются возмущениями, действующими на вооружение, которые велики (в горизонтальной плоскости при стрельбе с ходу достигают 2 т.д.). Кроме того, при стрельбе в пустынной, горно-пустынной и прибрежных местностях точность стрельбы всеми типами снарядов может дополнительно (до 1 т.д. и более) изменяться. Это объясняется тем, что в указанных районах вследствие высокой температуры нагрева (до 60°C) подстилающей поверхности над ней возникают мощные воздушные потоки (см., например, Савкин Л.С., Лебедев Б.Д. Метеорология и стрельба артиллерии. М., Воениздат, 1974, с.10-14), отклоняющие снаряды (ракеты). Кроме того, измерение дальности в этих АСУВ до цели производится с помощью дальномерных шкал, степень роботизации прицеливания, наведения и заряжания орудия не велики. При стрельбе из танков Т-55 и Т-62 вероятность попадания и дальность эффективного огня не соответствуют современным требованиям.

Известен способ роботизированного обеспечения применения ВТО при его стрельбе из орудия боевой машины управляемым снарядом или управляемой ракетой, включающий формирование и совмещение с целью независимой линии прицеливания, отклонение ствола орудия от линии прицеливания на углы прицеливания и бокового упреждения, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемого снаряда или ракеты, и производство выстрела. Этот способ реализован в АСУВ танка Т-80Б (см., например, Танк Т-80Б. ТО и ИЭ. Кн.1. М., Воениздат, 1984, с.46-95). АСУВ танка Т-80Б содержит последовательно соединенные пульт управления, прицел, блок суммирования и привод наведения орудия, баллистический вычислитель, блок ручных поправок, выходы которого по количеству поправок подключены к соответствующим входам баллистического вычислителя, датчик баллистики выстреливаемого боеприпаса, лазерный дальномер и датчик ветра, выход каждого из которых подключен к соответствующим входам баллистического вычислителя.

Эффективность способа, реализованного этой АСУВ, по сравнению с предшествующим существенно возросла. Возросло быстродействие и уменьшились физические нагрузки на экипаж (за счет роботизации заряжания и стабилизации вооружения). Дальность эффективного огня увеличилась до 2200-2500 м, что достигнуто прежде всего за счет реализации независимой линии прицеливания и роботизации прицеливания, определения и ввода поправок, позволивших снизить ошибки слежения в 3-5 раз, и автоматического ввода основных поправок в углы прицеливания и бокового упреждения. Введенные элементы позволили учесть ряд поправок при стрельбе, за исключением некоторых поправок на действие воздушных потоков и пыледымовых помех. Вместе с тем, во время боевых действий в Афганистане и Чечне из-за действия мощных воздушных потоков, характерных для горных и пустынных районов, возникали значительные пыледымовые помехи, увеличивающиеся при стрельбе. Стрельба управляемыми снарядами (ракетами) характеризуется их длительным (более 12 секунд при стрельбе на максимальную дальность) удержанием прицельной линии на цели. При запуске управляемых снарядов (ракет) через ствол орудия в поле зрения прицела наводчика, как правило, возникает пыледымовое облако (особенно на пыльных грунтах), время рассеивания которого в ряде случаев соизмеримо со временем полета управляемого снаряда (ракеты) к цели, что затрудняет наблюдение за целью. Более того, наличие пыледымового облака и неумелые действия оператора могут воспрепятствовать захвату системой наведения управляемого снаряда (ракеты) и привести к его (ее) потери. Технические характеристики современных систем наведения управляемых снарядов (ракет) обеспечивают захват управляемого снаряда (ракеты) и его (ее) последующее наведение в условиях наличия пыледымового облака. Однако ограничивающим фактором в этой ситуации является отсутствие видимости цели оператором в течение некоторого времени после выстрела, что повышает его напряженность из-за неопределенности информации о положении цели. С увеличением времени отсутствия видимости цели напряженность также увеличивается: чем меньше квалификация оператора, тем больше необходимо времени на совмещение линии прицеливания и цели. Отношение математических ожиданий времени последующего (после появления цели) совмещения линии прицеливания и цели в ряде экспериментов для операторов 3-го, 2-го и первого классов соответственно составило 1,3:1,1:1. Ситуация усугубляется при стрельбе с места, когда стреляющие объекты находятся в обороне, в окопах и др., так как в этих условиях значительно медленнее происходит рассеивание пыледымового облака. Кроме того:

- ведение огня из танка, находящегося в окопе, серьезно осложняется из-за низкой линии огня и пыледымового облака;

- облако, образующееся при выстреле из собственной пушки, в ряде случаев не позволяет наблюдать через приборы наблюдения (в том числе и тепловизионные) результаты выстрела, затрудняет слежение за целью и корректировку огня, уменьшает вероятность попадания;

- при ведении интенсивного огня из окопа повышается загазованность воздуха как вокруг, так и внутри танка, что отрицательно влияет на состояние экипажа (особенно командира танка), его морально-психологические качества;

- работа приборов и агрегатов боевого отделения танка в ходе боя требует большой затраты электроэнергии, которая не может в течение длительного времени обеспечиваться аккумуляторными батареями, что в свою очередь требует постоянной работы двигателя и еще более увеличивает степень задымления.

Известен также способ роботизированного обеспечения применения высокоточного оружия, включающий его размещение на боевой машине и оснащение системой управления стрельбой управляемыми снарядами и управляемыми ракетами, формирование и совмещение с целью независимой стабилизированной линии прицеливания прицела боевой машины, отклонение от нее на углы прицеливания и бокового упреждения линии выстрела оружия, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемых управляемого снаряда или управляемой ракеты, определение направления и измерение скорости продольного ветра, определение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели с учетом действия продольного ветра, дальности до цели, квалификации оператора, скорости полета управляемого снаряда или управляемой ракеты, длины активной зоны у цели, в которой управляемый снаряд или управляемая ракета находятся в контуре цели, определение продолжительности экранирования цели пыледымовым облаком и производство выстрела, если значение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели будет превышать значение продолжительности экранирования цели пыледымовым облаком (см., например, RU 2345310 C1, 27.01.2009. Бюл. №3).

По технической сути и существенным признакам этот способ является наиболее близким к заявляемому и принят за его прототип. Новые признаки, введенные в нем, позволили получить новую информацию об условиях стрельбы (о продольном ветре, размерах и скорости перемещения пыледымового облака и др.), уточнить и скорректировать обеспечение стрельбы управляемыми снарядом и ракетой, что обеспечило повышение ее эффективности путем уточнения установки угла бокового упреждения для различных типов используемых боеприпасов и условий стрельбы, привело к сокращению времени действия пыледымовых помех.

Однако реализация этого способа сложна из-за непрерывных изменений характеристик пыледымовых помех, необходимости их измерений и учета. Стрельба из боевой машины, особенно на пыльных грунтах, демаскирует ее функционирование и местонахождение. Ее живучесть резко снижается, а высокий потенциал высокоточного оружия не используется.

Задачей настоящего изобретения является повышение эффективности способа роботизированного обеспечения высокоточного оружия при стрельбе из управляемым снарядом или управляемой ракетой и устранение вышеперечисленных недостатков.

Указанная цель достигается тем, что в способе роботизированного обеспечения высокоточного оружия, включающем его размещение на боевой машине и оснащение системой управления стрельбой управляемыми снарядами и управляемыми ракетами, формирование и совмещение с целью независимой стабилизированной линии прицеливания, отклонение от нее на углы прицеливания и бокового упреждения линии выстрела оружия, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемых управляемого снаряда или управляемой ракеты, определение направления и измерение скорости продольного ветра, определение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели с учетом действия продольного ветра, дальности до цели, квалификации оператора, скорости полета управляемого снаряда или управляемой ракеты, длины активной зоны у цели, в которой управляемый снаряд или управляемая ракета находятся в контуре цели, определение продолжительности экранирования цели пыледымовым облаком и производство выстрела, если значение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели превышает значение продолжительности экранирования цели пыледымовым облаком, дополнительно обеспечивают ввод мобильного телеуправляемого робота и размещение на нем аналогичного высокоточного оружия с возможностями его роботизированных заряжания, определения относительно его линии выстрела направления и скорости суммарного поперечного ветра, автоматического наведения линии и дистанционного управления производством выстрела по командам с боевой машины, обеспечивают скрытность размещения и перемещения робота на местности и возможность встреливания его управляемых снарядов и управляемых ракет в зону управления стрельбой боевой машины с последующей их интеграцией в систему наведения управляемого снаряда или управляемой ракеты, для чего согласуют их линию выстрела с независимой стабилизированной линией прицеливания прицела боевой машины так, чтобы угол между ними не превышал допустимого угла захвата с учетом действия суммарного поперечного ветра, размещения робота на местности и его превышения относительно боевой машины, измеряют удаление робота от боевой машины и определяют значение вызванного этим удалением приращения дальности до цели, определяют и учитывают суммарную инерционность оператора и его системы связи с роботом, уточняют оптимальное время ввода управляемого снаряда или управляемой ракеты в контур цели в соответствии с математическим выражением

где То - оптимальное время ввода управляемого снаряда или управляемой ракеты в контур цели,

Дц - дальность до цели,

Ко - показатель, равный 1, 1,1 или 1.3, в зависимости от квалификации оператора,

La - длина рациональной активной зоны у цели, в которой управляемый снаряд или управляемая ракета находится в контуре цели,

Lпв - приращение длины рациональной активной зоны за счет действия продольного и суммарного поперечного ветра,

Lp - приращение длины рациональной активной зоны, вызванное удалением робота от боевой машины, Lpрcosδ, Др - удаление робота от боевой машины, δ - угол между линией выстрела орудия робота и стабилизированной линией прицеливания прицела боевой машины,

Lио+Lис - приращение активной зоны, вызванное суммарной инерционностью оператора и системы связи робота с боевой машиной,

Vм - маршевая скорость полета управляемого снаряда или управляемой ракеты.

Введение новых признаков, в частности обеспечение системы управления телеуправляемым мобильным роботом, интегрированным в систему управления стрельбой боевой машины, позволяет резко уменьшить пыледымовые помехи, благодаря производству выстрела с робота, а не боевой машины, повысить скрытность функционирования и робота, и боевой машины, обеспечить возможность стрельбы с закрытых огневых позиций и снабжение боеприпасами боевой машины без их непосредственного подвоза и перезагрузки в условиях непроходимой местности.

Реализация способа происходит следующим образом. В зависимости от боевой обстановки и характера местности принимается решение на место установки телеуправляемого робота в укрытии (например, в обороне при стрельбе с места). Определяются значения его координат относительно боевой машины и вводятся в ее систему управления стрельбой посредством дополнительного вычислительного устройства. Телеуправляемый мобильный робот может быть выполнен на различной базе: колесной, гусеничной, рельсовой и др. Для его движения на местности готовится, как правило, специальная трасса, что значительно уменьшает возможность его обнаружения и поражения (особенно в обороне) со стороны противника. Направление и величина участков перемещений определяются его тактико-техническими характеристиками, а также характеристиками боевой машины, ее системы управления стрельбой и системы наведения управляемых снарядов (ракет). С помощью этих же систем (как радио-, так и лучевых) при необходимости управляют и перемещением робота на местности.

Вводят (как и в прототипе) значения отклонений условий стрельбы от табличных в штатный блок ручных поправок баллистического вычислителя системы управления стрельбой боевой машины: - на изменение температуры заряда, - на изменение температуры воздуха, - на изменение атмосферного давления, - на износ канала ствола. Сигналы, соответствующие действию продольного и поперечного (бокового и вертикального) ветра, вводятся в баллистический вычислитель автоматически. В результате наблюдения за полем боя через прицел системы управления стрельбой боевой машины, обнаруживают цель, ее тип, определяют тип боеприпаса для ее уничтожения и устанавливают их значения на соответствующих датчиках (например, баллистики) в соответствующее положение, информация о чем поступает на входы баллистического вычислителя. Затем совмещают с целью при помощи органов управления на пульте управления прицельную марку (независимую стабилизированную линию прицеливания) прицела и измеряют дальности до цели и робота. При этом срабатывает лазерный дальномер и информация о дальности до цели Дц и робота Др поступает на входы баллистического вычислителя и других введенных блоков, реализующих алгоритм (1), в котором показатель квалификации оператора Ко применительно к комплексу вооружения прототипа соответствует 1, 2 и 3 классам. Поправка Lпв на приращение длины активной зоны у цели за счет действия продольного ветра берется со знаком «+» при встречном ветре и со знаком «-» - при попутном. Поправка Lp для рассматриваемых систем управления стрельбой определяется выражением

Lррcosδ,

где Др - удаление робота от боевой машины;

δ - угол между линией выстрела орудия робота и стабилизированной линией прицеливания прицела боевой машины.

При этом значение Lp целесообразно принимать равным Др (из-за малости угла δ). Поправка Lио определяется инерционностью оператора (0,2-0,7 с), а поправка Lис - скоростью управляемого снаряда (ракеты) и запаздыванием команды на производство выстрела исполнительной системы робота для конкретной системы управления стрельбой боевой машины и составляет, как правило, 0,01-0,10 с. При стрельбе управляемым снарядом (управляемой ракетой) в режиме с превышением и в условиях отсутствия пыледымовых помех длина активной зоны цели, на которой управляемый снаряд находится в ее контуре La, определяется моментом снижения управляемого снаряда с траектории превышения (3-5 м над линией прицеливания) и его вхождением в контур цели (снижением на линию прицеливания). В прототипе La=600-800 м и обеспечивается оптимальность То, так как для автоматических систем в силу известности их характеристик, как правило, выполняется требование обеспечения оптимальности То, чтобы ракета точно «встреливалась» в активную зону у цели, что при равных условиях повышает вероятность попадания. В иных случаях целесообразно учитывать и ряд других обстоятельств, например, характеристик неровностей местности, то есть определять рациональную величину La.

Образование пыледымового облака может существенно изменить ситуацию. Из-за продолжительного времени экранирования цели пыледымовым облаком оптимальность времени ввода управляемого снаряда в контур цели может быть нарушена (в том числе из-за низкой квалификации оператора, действия продольного ветра, производства выстрела с телеуправляемого робота, а не боевой машины и др.). Поэтому алгоритм определения То необходимо уточнять в соответствии с выражением (1).

Производят заряжание (на прототипе) орудия, нажимая на кнопку механизма (автомата) заряжания «МЗ», при этом срабатывает датчик ветра, и информация о скорости бокового ветра в районе огневой позиции комплекса вооружения (танка, БМП, БТР и др.) и других условиях стрельбы и показателях поступает в штатный баллистический вычислитель и дополнительное счетно-решающее устройство, где преобразуется по известным алгоритмам (см., например, «Основы автоматики и танковые автоматические системы». М., ВАБТВ, 1976, с.508-519) в сигналы, соответствующие углам прицеливания (возвышения) и бокового упреждения для данных условий стрельбы, которые затем подаются в блок суммирования и приводы наведения соответственно орудия и башни.

Включают в работу блоки, с помощью которых измеряют боковые угловые размеры и скорость перемещения образуемого при выстреле (с боевой машины или телеуправляемого робота) пыледымового облака, определяют время экранирования им цели в соответствии с выражением

Тэ=(ψпдолп)/ψ/пдо,

где Тэ - время экранирования цели пыледымовым облаком,

ψпдо - боковой угловой размер пыледымового облака,

ψлп - боковое угловое положение линии прицеливания,

ψ/пдо - боковая угловая скорость пыледымового облака.

В качестве бокового углового размера пыледымового облака принимают боковое отклонение того его края, который противоположен направлению движения пыледымового облака. Информация о скорости перемещения пыледымового облака, а также о направлении и скорости продольного ветра может быть получена на основании данных, содержащихся в метеорологических бюллетенях (см., например, Савкин Л.С., Лебедев Б.Д. Метеорология и стрельба артиллерии. М., Воениздат, 1974, с.129-142). Эти данные принимаются одинаковыми и для боевой машины и для телеуправляемого робота. Эта же информация более оперативно может быть получена на основании непосредственного измерения боковой угловой скорости перемещения того же края пыледымового облака относительно шкалы боковых поправок прицела (см., например. Танк Т-80Б. ТО и ИЭ. Кн.1. М., Воениздат, 1984, с.59-63, рис.19 и 20). Сравнивают между собой значения оптимального времени ввода управляемого снаряда (ракеты) в контур цели и продолжительности экранирования цели пыледымовым облаком. Если значение первого превышает значение второго, что свидетельствует о том, что экранирование цели прекратится раньше подлета к ней снаряда, то в прототипе, то есть при стрельбе непосредственно из боевой машины, отклоняют перед производством выстрела ствол орудия в сторону бокового перемещения пыледымового облака на дополнительный угол в соответствии с выражением

Δψ≤ψscosφ±ψбу,

где Δψ - дополнительный угол бокового отклонения ствола орудия;

ψs - угол максимального бокового захвата системой наведения управляемого снаряда;

φ - угол прицеливания;

ψбу - угол бокового упреждения.

«+» или «-» устанавливают соответственно при разностороннем или одностороннем отклонении от линии прицеливания дополнительного угла и угла бокового упреждения. Отклонение ствола орудия в сторону бокового перемещения пыледымового облака приводит к сокращению действия пыледымовых помех, то есть к повышению эффективности стрельбы на 10-15%.

В предлагаемом же способе определение дополнительного угла бокового отклонения ствола орудия и его перемещения становятся роботизированными (из-за стрельбы с робота, а управления - с боевой машины). Выстрел производят, если значение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели будет превышать значение продолжительности экранирования цели пыледымовым облаком.

Введение новых признаков, в частности обеспечение ввода телеуправляемого мобильного робота и размещение на нем высокоточного оружия, аналогичного боевой машине, позволяет резко уменьшить пыледымовые помехи (вплоть до их полного исключения), благодаря производству выстрела с робота, а не боевой машины, повысить скрытность функционирования и робота, и боевой машины, обеспечить возможность стрельбы с закрытых огневых позиций и снабжение боеприпасами боевой машины без их непосредственного подвоза и перезагрузки. Эффективность стрельбы управляемыми снарядами (ракетами) в условиях действия пыледымовых помех и отсутствия прямой видимости между роботом и целью повышается на 5-10%.

Способ роботизированного обеспечения применения высокоточного оружия, включающий его размещение на боевой машине и оснащение системой управления стрельбой управляемыми снарядами и управляемыми ракетами, формирование и совмещение с целью независимой стабилизированной линии прицеливания прицела боевой машины, отклонение от нее на углы прицеливания и бокового упреждения линии выстрела оружия, определяемые в зависимости от условий стрельбы и баллистических характеристик выстреливаемых управляемого снаряда или управляемой ракеты, определение направления и измерение скорости продольного ветра, определение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели с учетом действия продольного ветра, дальности до цели, квалификации оператора, скорости полета управляемого снаряда или управляемой ракеты, длины активной зоны у цели, в которой управляемый снаряд или управляемая ракета находятся в контуре цели, определение продолжительности экранирования цели пыледымовым облаком и производство выстрела, если значение оптимального времени ввода управляемого снаряда или управляемой ракеты в контур цели превышает значение продолжительности экранирования цели пыледымовым облаком, отличающийся тем, что дополнительно обеспечивают ввод мобильного телеуправляемого робота и размещение на нем аналогичного высокоточного оружия с возможностями его роботизированных заряжания, определения относительно его линии выстрела направления и скорости суммарного поперечного ветра, автоматического наведения линии и дистанционного управления производством выстрела по командам с боевой машины, обеспечивают скрытность размещения и перемещения робота на местности и возможность встреливания его управляемых снарядов и управляемых ракет в зону управления стрельбой боевой машины с последующей их интеграцией в систему наведения управляемого снаряда или управляемой ракеты, для чего согласуют их линию выстрела с независимой стабилизированной линией прицеливания прицела боевой машины так, чтобы угол между ними не превышал допустимого угла захвата с учетом действия суммарного поперечного ветра, размещения робота на местности и его превышения относительно боевой машины, измеряют удаление робота от боевой машины и определяют значение вызванного этим удалением приращения дальности до цели, определяют и учитывают суммарную инерционность оператора и его системы связи с роботом, уточняют оптимальное время ввода управляемого снаряда или управляемой ракеты в контур цели в соответствии с математическим выражением
То=[Дц-Ko(La±Lпв±Lp+Lио+Lис)]/Vм,
где То - оптимальное время ввода управляемого снаряда или управляемой ракеты в контур цели,
Дц - дальность до цели,
Ко - показатель, равный 1, 1,1 или 1.3, в зависимости от квалификации оператора,
La - длина рациональной активной зоны у цели, в которой управляемый снаряд или управляемая ракета находится в контуре цели,
Lпв - приращение длины рациональной активной зоны за счет действия продольного и суммарного поперечного ветра,
Lp - приращение длины рациональной активной зоны, вызванное удалением робота от боевой машины, Lpрcosδ, Др - удаление робота от боевой машины, δ - угол между линией выстрела орудия робота и стабилизированной линией прицеливания прицела боевой машины,
Lио+Lис - приращение активной зоны, вызванное суммарной инерционностью оператора и системы связи робота с боевой машиной,
Vм - маршевая скорость полета управляемого снаряда или управляемой ракеты.



 

Похожие патенты:

Изобретение относится к области вооружения и военной техники, в частности к системам управления и стабилизации вооружения (далее - СУСВ) боевых модулей машин типа танков, БМП, БТР, БРДМ и т.п.

Изобретение относится к области вооружения и военной техники, в частности к системам управления и стабилизации вооружения (СУСВ) боевых машин типа танков, БМП, БТР, БРДМ и т.п., работающим совместно со стабилизатором вооружения.

Изобретение относится к системам автоматического управления и регулирования, в частности к приводам горизонтального наведения стабилизатора вооружения объекта военного назначения (ОВН) боевой машины поддержки танков.

Изобретение относится к системам автоматического управления и регулирования, в частности к приводам вертикального наведения и стабилизации стабилизатора танкового вооружения (далее - стабилизатор).

Изобретение относится к системам стабилизации танкового вооружения (далее - стабилизатор). В устройство дополнительно введены второе панорамное задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по ГН и ВН, второй пульт управления, преобразователь напряжения, усилитель мощности, датчик положения башни по ГН, датчик положения пушки по ВН, прицел с зависимой линией стабилизации по ВН и ГН, устройства настройки и диагностики, кроме того, в блок управления дополнительно введены: первое ключевое устройство, второе ключевое устройство, интегратор привода ГН, интегратор привода ВН, модуль настройки и диагностики стабилизатора, первое корректирующее звено, второе корректирующее звено.

Изобретение относится к области военной техники и может быть использовано в танковом вооружении. Из неподвижного и в движении танка производят поиск, обнаружение, опознавание, слежение цели с помощью совокупности взаимодействующих электронно-оптических приборов и автоматических систем, автоматически заряжают пушку выбранным типом боеприпаса, автоматически вычисляют, вводят поправки на температуру воздуха, износ канала ствола, атмосферное давление, боковой ветер, производят анализ сигналов от лазерного дальномера и блока переключения баллистик с помощью блока оценки эффективности стрельбы.

Изобретение относится к стабилизаторам танкового вооружения. Стабилизатор танкового вооружения содержит блок датчиков обработки сигналов, включающий усилительно-преобразующее устройство и модуль автоматической компенсации, датчик скорости переносного движения, размещенный на башне танка.

Изобретение относится к области военной техники. .

Изобретение относится к военной технике, а более конкретно к способам наведения управляемых ракет, в частности, устанавливаемых в составе противотанковых ракетных комплексов (ПТРК) управляемого ракетного вооружения как на наземных установках, так и на различных объектах, таких, например, как танки, боевые машины пехоты, самоходные пусковые установки и др.

Изобретение относится к области вооружения и военной техники и может найти применение в системах стабилизации вооружения боевых модулей (СВ БМ) машин типа танков, БМП, БТР, БРДМ и т.п. Технический результат - расширение функциональных возможностей. Для этого в стабилизатор вооружения боевого модуля дополнительно введены: первая последовательная шина (ПШ1); в датчик линейных ускорений введены: модуль питания датчика линейных ускорений (МП); акселерометр твердотельный ГН (АТ-ГН); акселерометр твердотельный ВН (АТ-ВН); контроллер (К), включающий в себя: модуль аналого-цифрового преобразования ГН (АЦП-ГН); модуль аналого-цифрового преобразования ВН (АЦП-ВН); тактовый генератор (ТГ); модуль вычисления ускорений (MB); блок компенсации неточности измерения ускорения (БК); постоянное запоминающее устройство (ПЗУ); модуль базового адреса датчика линейных ускорений (БА); формирователь сигналов последовательной шины канала типа CAN (ФСПШ CAN) и соответственно их связи с другими компонентами СВ БМ. 2 ил.

Изобретение относится к области вооружения и военной техники, в частности к стабилизаторам вооружения боевых модулей (далее - СВ БМ) систем управления и стабилизации вооружения боевых модулей машин типа танков, БМП, БТР, БРДМ и т.п., а также дистанционно-управляемых боевых модулей систем вооружения объектов военного назначения (ОВН), имеющих в своем составе стабилизатор вооружения (далее по тексту - СВ) с необходимым набором датчиковой аппаратуры, в том числе, и датчиком положения боевого модуля (далее по тексту - ДПБМ). Целями заявляемого изобретения являются: - повышение точности стабилизации установленного вооружения по ГН (снижение ошибки не менее чем на 20%); - введение возможности точного приведения боевого модуля (БМ) по ГН в походное положение для удобства выхода механика водителя. Указанная цель достигается тем, что в стабилизатор вооружения боевого модуля дополнительно введены с соответствующими связями с другими элементами ОВН новые компоненты, а именно датчик абсолютной угловой скорости по ГН, датчик положения боевого модуля, содержащий редуктор датчика положения боевого модуля, датчик положения БМ в плоскости ГН, а в блок управления (БУ) дополнительно введены блок логики, сумматор, первое звено коррекции, второе звено коррекции, третье звено коррекции. Предлагаемое изобретение позволяет улучшить технические и эксплуатационные характеристики стабилизатора вооружения боевых модулей указанных выше боевых машин и боевых модулей дистанционно-управляемых систем вооружения. 2 ил.

Изобретение относится к области вооружения и военной техники и может найти применение в системах наведения, стабилизации и управления вооружением боевых машин типа БМП, БМД, танков, БТР, БРДМ и т.п. Технический результат - повышение эксплуатационных характеристик стабилизатора, расширение возможности его применения и диагностики. Для этого дополнительно введены с соответствующими связями: задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по горизонтали и вертикали наведения (ГН и ВН), аппаратура системы управления боевым отделением, датчик крена и тангажа, датчики положения по ВН, датчик положения башни, электродвигатели дополнительного вооружения по ВН, редукторы дополнительного вооружения по ВН, установки пусковые дополнительного вооружения по ВН, последовательные шины данных, модули вычисления скорости вала электродвигателей (ЭД) усилителей мощности по ГН и ВН, формирователи сигналов последовательной шины усилителей мощности по ГН и ВН, блоки вычисления ШИМ усилителей мощности по ГН и ВН, кроме того, в блок управления дополнительно введены формирователи сигналов последовательной шины, блок вычисления сигналов управления, блок вычисления баллистических поправок. 2 ил.

Изобретение относится к области вооружения и военной техники, а именно к системам автоматического управления и регулирования, в частности к системам наведения, стабилизации и управления вооружением ОВН (боевых машин типа БМП, БМД, танков, БТР, БРДМ и т.п.), работающих с комплексом управления вооружением этих объектов. Основной целью изобретения является повышение эксплутационных характеристик системы управления и стабилизации вооружения, расширение возможности ее применения и диагностики, а также обеспечение дистанционного наведения установленного на ОВН вооружения. Для достижения цели в известную систему управления и стабилизации вооружения ОВН дополнительно введены с соответствующими связями: второе панорамное задающее устройство стабилизации с датчиками положения независимо стабилизированного в пространстве инерциального объекта по ГН и ВН, второй пульт управления, первая и вторая панели видеосмотрового устройства (ВСУ), информационно-управляющая система вооружения (ИУСВ), усилитель мощности ГН, включающий в себя: преобразователь напряжения, контроллер широтно-импульсного модулятора (ШИМ) усилителя ГН, широтно-импульсный модулятор ГН, усилитель ГН, датчик тока усилителя ГН, датчик скорости вала электродвигателя ГН, блок силовых ключей, формирователь сигналов последовательной шины усилителя ГН; электромагнит механизма поворота боевого модуля, корпус ОВН, датчик абсолютной угловой скорости корпуса (ДУС-К), включающий в себя: датчик абсолютной угловой скорости (ДУС), формирователь сигналов последовательной шины ДУС-К; датчик положения боевого модуля по ГН, датчик положения установленного вооружения по ВН, датчик угловых ускорений (ДУУ), включающий в себя: измеритель угловых ускорений в плоскости ГН, измеритель угловых ускорений в плоскости ВН, формирователь сигналов последовательной шины ДУУ; первая последовательная шина, вторая последовательная шина, третья последовательная шина, кроме того, в блок управления дополнительно введены: первый формирователь сигналов последовательной шины, второй формирователь сигналов последовательной шины, третий формирователь сигналов последовательной шины, контроллер вычисления сигналов управления, усилитель механизма управления цилиндра исполнительного; в блок датчиков дополнительно введен: формирователь сигналов последовательной шины блока датчиков; в гидропривод дополнительно введены: усилитель мощности ВН, датчик скорости вала электродвигателя ВН, контроллер вычисления ШИМ усилителя ВН, широтно-импульсный модулятор ВН, усилитель ВН, датчик тока усилителя ВН, формирователь сигналов последовательной шины усилителя ВН. 2 ил.

Изобретение относится к военной технике и может быть использовано в танковом вооружении. Определяют отклонения от нормальных условий стрельбы, определяют дальность до цели и фланговую скорость цели, выбирают тип боеприпаса, заряжают автоматом заряжания пушку боеприпасом с последующей разгерметизацией заряда, увеличивают исходное давление в зарядной каморе с пороховым зарядом до 120 атмосфер сжатым воздухом системы гидропневмоочистки с обеспечением герметичности пушки, измеряют датчиком давления фактическое значение давления в зарядной каморе, рассчитывают баллистическим вычислителем углы прицеливания и бокового упреждения в зависимости от поправки на начальную скорость выбранного типа снаряда и от фактического давления в зарядной каморе, производят прицельный выстрел. Изобретение позволяет повысить начальную скорость снаряда и дальность стрельбы. 1 з.п. ф-лы, 1 табл.
Изобретение относится к военной технике и может быть использовано в танковом вооружении. Выбирают и устанавливают блоком переключателей в баллистическом вычислителе (БВ) тип боеприпаса для поражения цели, считывают автоматической системой со штрихкода информацию о фактической массе снаряда, вводят данные в БВ, измеряют дальность до цели лазерным дальномером, автоматически учитывают изменения дальности за счет движения танка и цели, угловой скорости цели по вертикали и горизонтали, угла крена и наклона оси цапф пушки, скорости ветра, индивидуального угла вылета боеприпаса из канала ствола пушки при производстве выстрела, температуры и давления воздуха, усредненной массы снаряда, температуры заряда, износа канала ствола, рассчитывают углы прицеливания и бокового упреждения для прицельного выстрела с учетом информации фактической массы каждого осколочно-фугасного и кумулятивного снаряда. Изобретение позволяет повысить точность стрельбы из танковых пушек. 2 з.п. ф-лы.
Наверх