Система дистанционного контроля состояния зерна при хранении

Изобретение относится к хранению зерна и может быть использовано для оперативного комплексного контроля текущих значений параметров состояния зерновой массы при хранении. Система дистанционного контроля состояния зерна при хранении содержит измерители параметров зерновой массы. Измерители параметров снабжены механизмами подъема и соединительными коробками с размещенными в них измерительными цифровыми блоками. Блоки соединены между собой параллельно и подключены к блоку питания и компьютеру. Каждый измеритель параметров зерновой массы представляет собой зонд. Корпус зонда состоит из двух продольных каналов с верхней и нижней перфорированными секциями. В одном канале в верхней перфорированной секции установлены датчик температуры и датчик относительной влажности воздуха. В нижней перфорированной секции упомянутого канала установлены датчик температуры, датчик относительной влажности воздуха и акустический датчик-анализатор двигательной активности насекомых. В нижней перфорированной секции другого канала установлен датчик подсчета насекомых. Обеспечивается повышение эффективности контроля текущих значений параметров состояния зерна. 2 ил.

 

Изобретение относится к хранению зерна и может быть использовано для оперативного комплексного контроля текущих значений параметров состояния зерновой массы при хранении на крупных и мелких сельскохозяйственных и зерноперерабатывающих предприятиях.

В климатических условиях России при хранении зерна из-за суточных перепадов температуры в металлических силосах, сопровождающихся процессом естественного тепловлагопереноса в зерновой массе, происходит отпотевание поверхностного и пристенного слоев зерна. В них зерно гниет, прорастает, в массе развиваются насекомые. Поскольку многие хранилища не имеют систем должного слежения за состоянием хранящегося зерна и устройств для защиты его от поражения плесенями и насекомыми, происходит массовая порча зерна. Снижается его масса и качество, теряются технологические свойства, нередко зерно становится ядовитым из-за накопления вредных продуктов жизнедеятельности насекомых и микроорганизмов (микотоксинов).

Указанных потерь можно избежать при трех условиях: высушить зерно до 12-13%, охладить его до 12-13°C, вести постоянный контроль за появлением в зерне насекомых и принимать меры по их уничтожению.

Оценку состояния чаще всего ведут по трем показателям: температура зерна, влажность зерна, зараженность насекомыми.

Для определения влажности и зараженности от партии зерна обычно отбирают среднюю пробу зерна и в ней измеряют влажность и присутствие насекомых. Отобрать представительную пробу от зерна в металлическом хранилище (диаметр 10-20 м и высота 15-25 м) практически невозможно. Поэтому определение не позволяет оценить фактическое состояние зерновой массы.

На сегодняшний день проблема контроля текущих значений параметров состояния зерновой массы при хранении в металлических элеваторах является актуальной задачей.

Известно устройство контроля и оценки состояния хранящегося насыпью сыпучего материала, защищенное патентом РФ №2105457, кл. A01F 25/00, опубл. 27.02.1998 г.

Устройство содержит штанги с размещенными на их концах термодатчиками и блоком индексации и снабжено датчиками влажности и зараженности насекомыми-вредителями, дополнительными блоками индексации и пороговым блоком, входы которого подключены к датчикам, а выход к соответствующим блокам индексации.

Возможность точечной сигнализации о состоянии насыпи позволяет осуществлять постоянный контроль хранящегося сыпучего материала в условиях небольших хозяйств и перерабатывающих предприятий.

При возникновении очага сыпучий материал выбирают на обработку или охлаждают местными вентиляторами до температуры 10°С.

Недостатком известного устройства является его недостаточная эффективность.

Наиболее близким к заявляемой системе по технической сущности и достигаемому результату, выбранным в качестве прототипа является устройство для контроля состояния хранящегося сыпучего материала, защищенное патентом РФ №2038784, кл. A01M 5/00, опубл. 09.07.1995 г.

Устройство содержит корпус с крышкой и воронкообразным улавливателем. В корпус вмонтированы чувствительные элементы температуры и относительной влажности воздуха. Под улавливателем в канале размещены чувствительные элементы счета насекомых, проходящих через ловушку и выходящих из нее. В корпусе ловушки выполнены наклонно вверх перфорации разными диаметрами отверстий.

Недостатком известного устройства является недостаточная эффективность. Задача, решаемая предлагаемым решением, - создание системы для автоматизированного оперативного комплексного контроля текущих значений параметров состояния зерна.

Технический результат от использования изобретения заключается в повышении эффективности контроля текущих значений параметров состояния зерна.

Указанный результат достигается тем, что система дистанционного контроля состояния зерна при хранении, включающая датчики температуры, датчики относительной влажности воздуха и датчик подсчета насекомых, содержит измерители параметров зерновой массы, снабженные механизмами подъема и соединительными коробками с размещенными в них измерительными цифровыми блоками, соединенными между собой параллельно и подключенными к блоку питания и компьютеру, при этом каждый измеритель параметров зерновой массы представляет собой зонд, корпус которого состоит из двух продольных каналов с верхней и нижней перфорированными секциями, причем в одном канале в верхней перфорированной секции установлены датчик температуры и датчик относительной влажности воздуха, в нижней перфорированной секции упомянутого канала установлены датчик температуры, датчик относительной влажности воздуха и акустический датчик-анализатор двигательной активности насекомых, а в нижней перфорированной секции другого канала установлен датчик подсчета насекомых.

На фиг.1 изображена функциональная схема системы контроля состояния зерна при хранении, на фиг.2 - схема измерителя параметров зерновой массы.

Система дистанционного контроля состояния зерна при хранении содержит, по меньшей мере, четыре измерителя 1 параметров зерновой массы, снабженных механизмами подъема 2. В верхней части каждый измеритель параметров зерновой массы подключен к соединительной коробке 3, в которой размещается измерительный цифровой блок (на фиг. не показан). Все устанавливаемые в зерновую насыпь измерители 1 параметров зерновой массы соединены между собой параллельно шиной 4 и подключены к блоку 5 питания и компьютеру 6.

Измеритель 1 параметров зерновой массы представляет собой зонд длиной около 1 м. Корпус зонда состоит из двух продольных каналов: канала 7 и канала 8.

В каждом из каналов 7, 8 имеются верхняя перфорированная секция 9 и нижняя перфорированная секция 10. В верхней перфорированной секции 9 канала 7 установлены датчик 11 температуры и датчик 12 относительной влажности воздуха. В нижней перфорированной секции 10 канала 7 установлены датчик 13 температуры, датчик 14 относительной влажности воздуха и акустический датчик-анализатор 15 двигательной активности насекомых.

В нижней перфорированной секции 10 канала 8 установлен датчик 16 подсчета насекомых.

Система дистанционного контроля состояния зерна при хранении работает следующим образом.

Измерители 1 параметров устанавливают с помощью механизмов подъема 2 в зерновую насыпь таким образом, чтобы соединительная коробка 3 находилась над поверхностью зерна. Остальная часть зонда находится в зерновой массе. С помощью датчиков 11, 13 температуры, датчиков 12, 14 относительной влажности воздуха измеряют текущие показатели температуры и относительной влажности воздуха, с помощью акустического датчика-анализатора - показатели двигательной активности насекомых и передают их через измерительные цифровые блоки в соединительных коробках 3 на компьютер 6, на котором осуществляется отображение мгновенных значений измеряемых параметров.

Насекомые, проникающие через отверстия перфорированных секций 9, 10 канала 8, свободно падают по каналу вниз к датчику 16 подсчета насекомых, данные с которого поступают на компьютер 6. Измеряемые данные отображаются на компьютере 6 в виде численных значений и графиков.

Систему дистанционного контроля состояния зерна при хранении изготавливают следующим образом.

Соединительную коробку, измерители изготавливают из алюминия. В качестве датчиков температуры могут быть применены преобразователи температуры типа DS18S20 производства фирмы Dallas Semiconductor, США.

В качестве датчиков относительной влажности воздуха могут быть применены гигрометры типа HIH-4000-004 производства фирмы HONEYWELL, США.

Датчик подсчета насекомых может быть выполнен в виде инфракрасного открытого оптического канала щелевого типа, в котором используются ИК светодиод KM-4457F3C (производитель - фирма Kingbright) и ИК фототранзистор L-610MP4B17BD (производитель - фирма Kingbright).

Акустические измерения осуществляются с использованием активного микрофона ШОРОХ-8.

В электронной плате измерительного блока применены микроконтроллеры ATMega-8, интерфейсная микросхема ADM-485, стабилизаторы, вспомогательные элементы.

Были проведены испытания опытных образцов предлагаемой системы на АНО «Воронежская МИС», подтвердившие ее высокую эффективность.

Таким образом, в предлагаемой системе для контроля состояния зерна при хранении по сравнению с прототипом осуществляется автоматический контроль с отображением на экране монитора характеристик зернового материала одновременно по температуре, влажности и наличию вредителей.

Система дистанционного контроля состояния зерна при хранении, включающая датчики температуры, датчики относительной влажности воздуха и датчик подсчета насекомых, отличающаяся тем, что она содержит измерители параметров зерновой массы, снабженные механизмами подъема и соединительными коробками с размещенными в них измерительными цифровыми блоками, соединенными между собой параллельно и подключенными к блоку питания и компьютеру, при этом каждый измеритель параметров зерновой массы представляет собой зонд, корпус которого состоит из двух продольных каналов с верхней и нижней перфорированными секциями, причем в одном канале в верхней перфорированной секции установлены датчик температуры и датчик относительной влажности воздуха, в нижней перфорированной секции упомянутого канала установлены датчик температуры, датчик относительной влажности воздуха и акустический датчик-анализатор двигательной активности насекомых, а в нижней перфорированной секции другого канала установлен датчик подсчета насекомых.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства. Комплексная система дистанционного мониторинга и диагностики состояния зерна при хранении содержит систему дистанционного контроля состояния зерна при хранении, систему рециркуляционной фумигации зерна и систему консервации зерна от поражения вредителями.

Изобретение относится к сахарной промышленности и может быть использовано сахарными заводами и свеклосеющими хозяйствами. Способ предусматривает укладку корнеплодов сахарной свеклы в кагаты, укрытие их трехслойной полиэтиленовой пленкой со светоотражающей поверхностью, модифицированной антимикробным препаратом фунгицидного действия, синтезированного при температуре не менее 300°C.
Способ транспортировки и хранения растительных продуктов в герметично закрытых помещениях или закрытой таре включает обработку их озоновоздушной смесью, имеющей концентрацию озона 25-35 мг/м3, при экспозиции 2,85-3,15 ч, температурном режиме 12-16°С и относительной влажности 40-60%.
Способ торможения прорастания клубней картофеля заключается в том, что клубни обрабатывают водным раствором пероксида водорода в концентрации 1·10-2-5·10-2 М (0,34-1,70 г/л), подсушивают и затем обрабатывают 10-15%-ным водным раствором окисленного крахмалсодержащего продукта.

Устройство для транспортировки плодоовощной продукции содержит контейнер с крышкой, выполненной из нежесткого материала, обладающего демпфирующими свойствами. Внутренняя и внешняя поверхности крышки имеют ячеистую форму.

Группа изобретений относится к области сельского хозяйства и может быть использована при уборке зерна с закладкой его на хранение в пластиковые рукава. Устройство для закладки зерна на хранение, выполненное в составе самосвальных автопоездов и одиночных автомобилей на технологической операции доставки зерна от комбайнов к местам его хранения, содержит ориентированные параллельно между собой и агрегатируемые с тракторами-тягачами основное приемное устройство и упаковочную машину.
Способ хранения сельскохозяйственной продукции включает выдержку сельскохозяйственной продукции перед закладкой на хранение в атмосфере, содержащей газообразный 1-метилциклопропен, при температуре от 0 до 20°C в течение 1,0-11,5 ч.

Способ сушки семян и зерна заключается в том, что материал загружают, циркулируют, периодически отлеживают, воздействуют подогретым и неподогретым агентом сушки, охлаждают и разгружают.
Изобретение относится к сельскому хозяйству, в частности к хранению клубней топинамбура. Листостебельную массу культуры скашивают за 2-3 недели до уборки клубней на высоте 30-50 см.

Изобретение относится к устройствам контроля температуры сыпучих материалов при их длительном хранении и может быть использовано в устройствах, контролирующих температурный режим в складах силосного типа.

Изобретение относится к животноводству. Предложенный упаковщик влажного корма в полиэтиленовый рукав состоит из рамы, установленной на шасси с тормозами с гидравлическим устройством регулировки усилия торможения. На раме смонтированы прицепное устройство для агрегатирования с трактором, плющилка зерна, донный шнек, механизм привода рабочих органов упаковщика влажного корма, упаковочный выход для установки на него полиэтиленового рукава. В упаковочном выходе смонтировано следящее устройство. Следящее устройство состоит из закрепленных на корпусе упаковочного выхода гидроцилиндра и рычага. Один конец рычага неподвижен, второй конец рычага приводится в движение изменением высоты слоя уложенного в рукав корма и связан со штоком гидроцилиндра для передачи ему своего движения. Гидроцилиндр через гидропривод осуществляет непрерывный контроль и регулировку усилия торможения шасси упаковщика. Изобретение обеспечивает стабильность и непрерывность протекания технологического процесса укладки плющеного зерна в рукав, улучшение качества получаемого готового корма. 2 ил.

Изобретение относится к средствам для борьбы с заболеваниями картофеля. Средство используют для обработки картофеля при закладке на хранение. Средство содержит экстракт пихтовой зелени и экстракты смеси лишайников рода Usnea или Cladonia при следующем соотношении компонентов, %: Экстракт пихтовой зелени,   обработанный N,N′-   тетраметилдиаминометаном 98.75 Экстракт смеси лишайников   рода Usnea 1.25 Экстракт пихтовой зелени,   обработанный N,N′-   тетраметилдиаминометаном 98.75 Экстракт смеси лишайников   рода Cladonia 1.25 Экстракт пихтовой зелени получают при кипячении с метилтретбутиловым эфиром и обрабатывают N,N′-тетраметилдиаминометаном. Экстракты смеси лишайников рода Usnea и Cladonia получают кипячением воздушно-сухого сырья в изопропиловом спирте. Обеспечивается подавление развития болезней и повышение урожайности картофеля. 3 табл.

Изобретение относится к устройству контроля уровня зерна и емкостям для зерна, таким как зерносушилки и зернохранилища, снабженные такими устройствами. Датчик уровня зерна на эффекте Холла расположен вблизи отверстия для засыпки зерна в верхней части зернового бункера. Корпус датчика включает генератор напряжения Холла и магнит. Генератор напряжения Холла или магнит закреплены в корпусе в фиксированном положении. Удлиненный элемент шарнирно соединен с корпусом, при этом один из генератора напряжения Холла или магнита, который не прикреплен к корпусу, смонтирован у проксимального конца удлиненного элемента. Контактный элемент связан с удлиненным элементом у дистального конца удлиненного элемента. Генератор напряжения Холла и магнит расположены рядом друг с другом, чтобы обеспечить первый выходной сигнал, когда удлиненный элемент расположен вертикально в исходном положении. Генератор напряжения Холла и магнит отводятся друг от друга, чтобы обеспечить второе состояние выходного сигнала, когда удлиненный элемент поворачивается от вертикали в положение переключения в ответ на соприкосновение зерна с контактным элементом. Изобретение обеспечивает повышение качества контроля уровня зерна в зерновом бункере. 3 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к области сельского хозяйства и системам автоматизации. Электророботизированное кормохранилище содержит погрузчик-электрокару, блок управления погрузчиком, автоматизированную систему управления, блок мониторинга хода выполнения задания при помощи веб-камеры, блок датчиков меток, систему обнаружения препятствий, стационарное зарядное устройство, сменный аккумулятор, ячейки для хранения тюков корма, базу данных заполнения ячеек, приемный лоток тюков корма. Блок базы данных заполнения ячеек подключен к микроконтроллеру и параллельно к блоку управления рабочими органами, который в свою очередь соединен через накалывающее устройство с ячейками хранения тюков, которые соединены с датчиками отцентровки накалывающего устройства, а датчики в свою очередь соединены с накалывающим устройством через микроконтроллер. Изобретение обеспечивает повышение точности и надежности режимов загрузки и выгрузки кормов в автоматическом режиме. 2 ил.

Группа изобретений относится к сельскому хозяйству и может быть использовано для длительного хранения зерна и других сыпучих продуктов. Зерновой элеватор включает емкости для зерна, вращающуюся конструкцию типа ротора и систему вентиляции. Вращающаяся конструкция имеет на внутренней стороне спиральные наклонные желоба для свободного перемещения с верхней отметки на нижнюю с последующим раскручиванием ротора. Вращающаяся конструкция типа ротора подвешена на подшипнике и соединена с генератором. Использование группы изобретений обеспечивает получение кондиционного товарного зерна. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технологии хранения овощей и может быть использовано для длительного хранения корнеплодов моркови свежей столовой. Способ хранения моркови включает обработку моркови перед закладкой на хранение электромагнитным полем крайне низких частот при частоте 26-30 Гц и магнитной индукции 3-9 мТл в течение 25-35 мин. Изобретение обеспечивает снижение убыли массы моркови, а также сокращение потерь витамина C и β-каротина. 1 табл., 3 пр.

Изобретение относится к технологии хранения овощей. Способ хранения столовой свеклы включает обработку столовой свеклы перед закладкой на хранение электромагнитным полем крайне низких частот последовательно в три этапа. На первом этапе обработку осуществляют при частоте электромагнитного поля 13-15 Гц и силе тока 10 А в течение 5-15 минут. На втором этапе - при частоте электромагнитного поля 23-25 Гц и силе тока 15 А в течение 5-15 минут. На третьем этапе - при частоте электромагнитного поля 28-30 Гц и силе тока 15 А в течение 5-15 минут. Изобретение обеспечивает снижение потерь массы столовой свеклы, а также сокращение потерь витамина C и фолиевой кислоты в процессе хранения. 1 табл., 3 пр.

Изобретение относится к сельскому хозяйству, а именно к хранению плодов для определения предрасположенности яблок к возникновению горькой ямчатости. Для этого определяют содержание калия и кальция и их соотношение в кожице яблок в период роста плодов и перед закладкой их на хранение. Способ определения предрасположенности яблок к возникновению горькой ямчатости при хранении отличается тем, что определяют содержание К и Са, мг/100 г в наружном эпидермисе яблок; оптимальное отношение содержания К и Са находится в пределах 10,2-13,0; при увеличении отношения К/Са прогнозируют возникновение горькой ямчатости. О необходимости проведения некорневых обработок плодовых деревьев кальцийсодержащими препаратами судят по соотношению К/Са в процессе роста плодов. Оптимальное соотношение К и Са должно находиться в пределах 10,2-13,0. Использование заявленного способа позволяет упростить прогнозирование сроков хранения яблок, обеспечить возможность проведения прогнозирования заболевания до закладки плодов на хранение, а также объективно определять срок съема плодов по уровню содержания калия и кальция в кожице яблок и их соотношения, способствуя уменьшению потерь при хранении. 1 з.п. ф-лы, 1 табл., 3 пр.
Способ транспортировки и хранения растительных продуктов в герметично закрытых помещениях или закрытой таре заключается в обработке их озоновоздушной смесью, имеющей концентрацию озона 25-35 мг/м3 при экспозиции 2,85-3,15 ч при температурном режиме 12-16°C и относительной влажности 40-60%. При обработке обеспечивают концентрацию аэроионов «n+» в озоновоздушной смеси от 40000 до 50000 ион/см3. Помещение или тару на 90-99% объема заполняют продуктами. После обработки озоновоздушной смесью в закрытое помещение или закрытую тару с продуктами подают газ гелий. Обеспечивают избыточное давление в диапазоне от 1.2 до 1.5·104 Па. В процессе транспортировки или хранения продуктов через газовую среду помещения с продуктами или тары с продуктами пропускают электрический ток и визуально контролируют цвет свечения. Отмечают изменение цвета от ярко-желтого до зеленого, что идентифицируется как уменьшение концентрации гелия и увеличение концентрации воздуха в помещении или таре, после чего в помещение или тару дополнительно подают газ гелий и доводят избыточное давление до указанной выше величины. Изобретение обеспечивает повышение сохранности продуктов растениеводства, а также возможность оперативной проверки газовой смеси на содержание гелия и воздуха. 3 табл.

Изобретение относится к сельскому хозяйству, а именно к способам обработки растениеводческой продукции при хранении. Cпособ обработки сахарной свеклы перед закладкой на хранение включает обработку корнеплодов свеклы в момент их укладки в кагаты жидким антисептиком. В качестве жидкого антисептика используют раствор натриевой соли дихлоризоциануровой кислоты с массовой долей 0,075 %, взятый в количестве 2 % к массе свеклы. Изобретение обеспечивает снижение потерь сахарозы, уменьшение накопления растворимых несахаров, повышение эффективности обработки сахарной свеклы и сохранение качества корнеплодов в процессе хранения. 1 табл., 1 пр.
Наверх