Блок сепарации газа



Блок сепарации газа
Блок сепарации газа
Блок сепарации газа
Блок сепарации газа

 


Владельцы патента RU 2561962:

Открытое акционерное общество "Татнефть" им. В.Д. Шашина (RU)

Изобретение относится к технике тепловой обработки и сепарации газовых и газоконденсатных смесей от влаги и тяжелых углеводородов и может найти применение в установках комплексной подготовки природного газа на газовых промыслах. Блок сепарации газа включает вертикальный цилиндрический сетчатый газосепаратор, кожухотрубный теплообменник, арматурные узлы и силовой каркас. В качестве арматурных узлов использованы трубопроводы, запорная и регулирующая арматура и узлы присоединения контрольно-измерительных приборов. Блок дополнительно снабжен 3S-сепараторами, установленными параллельно на наибольшей высоте размещения элементов блока. Использование изобретения позволяет решить задачу повышения степени очистки сырого природного газа и упростить транспортировку блока сепарации газа по железной дороге. 4 ил.

 

Изобретение относится к технике тепловой обработки и сепарации газовых и газоконденсатных смесей от влаги и тяжелых углеводородов и может найти применение в установках комплексной подготовки природного газа на газовых промыслах.

Известен монтажно-транспортный комплекс газосепаратора промежуточного установки комплексной подготовки газа, сблокированного с опорной платформой, в котором газосепаратор выполнен в виде цилиндрического сосуда высокого давления, снабжен штуцером ввода рабочего тела - сырого газа или газожидкостной смеси, штуцером для выхода осушенного газа в верхней части корпуса и штуцером для отвода отсепарированной жидкой смеси в нижней его части и наделен распределительным устройством с антизавихрителем, сетчатым агломератором, блоком циклонов и кубовым объемом для сбора отсепарированной жидкой смеси. Газосепаратор трансформируемо сблокирован с опорной платформой с возможностью горизонтального и/или параллельного основанию платформы размещения на ней газосепаратора в транспортном положении и последующего перевода и фиксации его в рабочем положении под углом к указанной платформе, преимущественно вертикально. Блок циклонов смонтирован на опорной конструкции и состоит из блок-секций, в которые вмонтированы от одного до восьми трубчатых циклонов с круглоцилиндрическими стенками и внутренним прямоточным полым стволом, открытым для движения сепарируемого рабочего тела. Ствол циклона выполнен с переменным внутренним проходным сечением и содержит три последовательных участка по ходу движения рабочего тела - конфузор, завихритель и диффузор, а также снабжен совмещенным с завихрителем полым сердечником, сообщенным каналом с рециркуляционным устройством и неподвижными спиральными лопастями (Патент РФ №2460023, опубл. 27.08.2012).

Наиболее близким к предложенному изобретению по технической сущности является комплекс блоков промежуточной сепарации газовых или газожидкостных смесей, включающий газосепаратор промежуточный, блок пластинчатых теплообменников и арматурные узлы. Газосепаратор выполнен сблокированным с монтажно-транспортной опорной платформой с возможностью горизонтального и/или параллельного к ней размещения в транспортном положении и последующего перевода и фиксации в вертикальном рабочем положении. Блок теплообменников и разнесенные по обе стороны от него арматурные узлы размещены каждый на автономной монтажно-транспортной опорной конструкции. Опорные конструкции объединены в одну эксплуатационную платформу, которая по обе стороны от арматурных узлов дополнена соосными в плане с проекциями осей теплообменников металлоконструкциями с образованием контурного и промежуточного силового каркаса эксплуатационной платформы. Опорная платформа газосепаратора установлена на условной нулевой отметке объекта. Эксплуатационная платформа установлена с превышением над опорной платформой газосепаратора с соблюдением условия, при котором ось трубопровода, подводящего сырой газ от теплообменников к газосепаратору, пересекает плоскость стыковки с его входным штуцером на высоте не ниже оси последнего и ориентирована с нисходящим уклоном к нему (Патент РФ №2451248 (заявка №2011110589/06), опубл. 20.05.2012 - прототип).

Общим недостатком известных устройств является невысокая эффективность очистки сырого природного газа от воды, примесей и газового конденсата. Кроме того, конструкция известных блоков промежуточной сепарации вызывает сложность транспортировки по железной дороге от места изготовления к месту эксплуатации, возникающая из-за необходимости демонтажа устройства на мелкие части и перевозки отдельно платформ и элементов блока сепараторов.

В предложенном изобретении решается задача повышения степени очистки сырого природного газа и упрощения транспортировки блока сепарации газа по железной дороге.

Задача решается тем, что в блоке сепарации газа, включающем газосепаратор, теплообменник, арматурные узлы и силовой каркас, согласно изобретению в качестве теплообменника использован кожухотрубный теплообменник, установленный на двух опорах, одна из которых скользящая, в качестве газосепаратора использован вертикальный цилиндрический сетчатый газосепаратор, в качестве арматурных узлов использованы трубопроводы, запорная и регулирующая арматура и узлы присоединения контрольно-измерительных приборов, силовой каркас выполнен в виде рамы с отсоединяемой верхней частью и нижней частью высотой порядка 3 м, трубопроводы выполнены разборными с размерами в разобранном состоянии порядка 3 м, блок дополнительно снабжен 3S-сепараторами, установленными параллельно на наибольшей высоте размещения элементов блока, фильтром-распределителем, установленном на трубопроводе сырого газа, по ходу газа входной фланец трубопровода сырого газа, фильтр-распределитель, прямой коллектор кожухотрубного теплообменника, 3S-сепараторы, вертикальный цилиндрический сетчатый газосепаратор, обратный коллектор кожухотрубного теплообменника и выходной фланец осушенного газа размещены последовательно друг за другом и соединены трубопроводами, при этом трубопровод осушенного газа из 3S-сепараторов и трубопровод осушенного газа из вертикального цилиндрического сетчатого газосепаратора соединены до входа в обратный коллектор кожухотрубного теплообменника, трубопровод двухфазного потока из 3S-сепараторов размещен не ниже входного штуцера вертикального цилиндрического сетчатого сепаратора, выходной фланец осушенного газа и входной фланец трубопровода сырого газа расположены на одном уровне вблизи друг от друга.

Сущность изобретения

Предложенный блок сепарации газа (БСГ) предназначен для дополнительной осушки газа на установке комплексной подготовки газа на газовом промысле, в которой низкотемпературная сепарация проводится с использованием дроссельного клапана. Заявленный БСГ устанавливается на установке комплексной подготовки газа вместо дроссельного клапана.

Известные устройства обладают невысокой эффективностью очистки сырого природного газа от воды, примесей и газового конденсата. Кроме того, конструкция известных блоков промежуточной сепарации вызывает сложность транспортировки по железной дороге от места изготовления к месту эксплуатации, возникающая из-за необходимости демонтажа устройства на мелкие части и перевозки отдельно платформ и элементов блока сепараторов. В предложенном изобретении решается задача повышения степени очистки сырого природного газа и упрощения транспортировки блока сепарации газа по железной дороге. Задача решается БСГ, представленном на фиг. 1-4.

На фиг. 1 представлен общий вид БСГ.

На фиг. 1 приняты следующие обозначения: 1 - входной фланец трубопровода сырого газа, 2 - фильтр-распределитель, 3 - кожухотрубный теплообменник, 4-3S-сепараторы, 5 - вертикальный цилиндрический сетчатый газосепаратор, 6 - трубопровод двухфазного потока из 3S-сепараторов к вертикальному цилиндрическому сетчатому газосепаратору, 7 - трубопровод осушенного газа из 3S-сепараторов к обратному коллектору кожухотрубного теплообменника, 8 - трубопровод очищенного и осушенного газа из вертикального цилиндрического сетчатого газосепаратора к обратному коллектору кожухотрубного теплообменника, 9 - входной фланец вертикального цилиндрического сетчатого газосепаратора, 10 - запорная арматура, 11 - регулирующая арматура, 12 - патрубок, 13 - трубопровод, 14 - выходной фланец осушенного газа, 15 - фундамент, 16 - рама, 17 - высота отсоединения верхней и нижней частей рамы.

На фиг. 2 представлен фильтр-распределитель.

На фиг. 2 приняты следующие обозначения: 18 - корпус, 19 - фланцы, 20 - сопла, 21 - трубопроводы.

На фиг. 3 представлен вертикальный цилиндрический сетчатый газосепаратор.

На фиг. 3 приняты следующие обозначения: 9 - входной фланец вертикального цилиндрического сетчатого газосепаратора, 22 - корпус, 23 - опора цилиндрическая, 24 - сетчатый отбойник, 25 - лист защитный, 26 - узел входа, 27 - обечайка, 28 - штуцер входа газа, 29 - штуцер выхода конденсата, 30 - штуцер для уровнемеров, 31 - штуцеры для отбора давления, 32 - штуцер для дренажа, 33 - штуцеры для дифмонометра, 34 - штуцер для монометра, 35 - штуцер для термометра, 36 - штуцер для термопреобразователя сопротивления, 37 - штуцеры указателей уровня, 38 - люк.

На фиг. 4 представлен кожухотрубный теплообменник.

На фиг. 4 приняты следующие обозначения: 39 - корпус, 40 - неподвижная опора, 41 - скользящая опора, 42 - прямой коллектор, 43 - межтрубное пространство - обратный коллектор, 44 - штуцер прямого коллектора, 45 - штуцер обратного коллектора.

БСГ изготавливается из стали СТ09Г2С. Производительность установки 115 тысяч м3/час при давлении на входе 7,5 МПа. Параметры установки: давление рабочее на входе 7,5 МПа, на выходе 5,5 МПа. Давление расчетное 10 МПа. Среда: газ природный неосушенный.

Фильтр-распределитель 2 устанавливается на межфланцевой проставке. Предназначен для распределения общего потока газа на несколько меньших потоков, ввода в мелкие потоки химических веществ. Распределенный на несколько потоков общий поток газа поступает в кожухотрубный теплообменник в прямой коллектор в виде турбулентного потока, способствующего большему контакту газа со стенками коллектора и более полному охлаждению сырого газа.

Кожухотрубный теплообменник 3 представляет собой теплообменный аппарат, по трубному пространству - прямому коллектору - которого проходит сырой природный газ, а в межтрубном пространстве - обратном коллекторе в качестве охладителя проходит очищенный и охлажденный газ после 3S-сепараторов и вертикального цилиндрического сетчатого газосепаратора. Температура газа на входе в теплообменник 18-20°С, температура газа на входе в межтрубное пространство 10-12°С, давление газа на входе в теплообменник 7,5 МПа, потери давления на трубках - не более 0,05 МПа, потери давления в межтрубном пространстве - не более 0,05 МПа. Выходной фланец 14 располагается на расстоянии 1-2 м по горизонтали от входного фланца 1. Теплообменник установлен на опорах, содержащих подвижные и неподвижные опоры для компенсации температурного расширения при работе теплообменника.

Блок 3S-сепараторов содержит два 3S-сепаратора 4.

3S (Super Sonic Separator) сепаратор - низкотемпературный сверхзвуковой сепаратор. Принцип работы 3S-сепаратора базируется на охлаждении природного газа в сверхзвуковом закрученном потоке. Сверхзвуковой поток реализуется с помощью конфузорно-диффузорного сопла Лаваля. В таком сопле газ разгоняется до скоростей, больших скорости распространения звука в газе. При этом за счет перехода части потенциальной энергии потока в кинетическую энергию происходит сильное охлаждение газа. Работа 3S-сепаратора происходит следующим образом. Входной поток закручивается в форкамере и подается в сопло, где падает его давление и температура и резко возрастает скорость. В результате сильного охлаждения образуются капли жидкости, далее эти капли нарастают за счет коагуляции (этому процессу способствует турбулизация потока, вызванная его вращением). Рост капель продолжается в рабочей секции, в которой образуется газожидкостный пограничный слой, обогащенный жидкими компонентами, а центральный поток оказывается очищенным от целевых компонентов. Затем потоки проходят через диффузоры, где их скорость гасится, а давление повышается. Применение диффузоров на выходе из рабочей части 3S-сепаратора позволяет преобразовать часть кинетической энергии потока в потенциальную, что обеспечивает получение более высокого давления газа на выходе из диффузоров, чем статическое давление газа в сверхзвуковом сопле. Таким образом, на вход 3S-сепаратора подается газовый поток (он может содержать до 20% жидкости), а из 3S-сепаратора выходит два потока: один - поток подготовленного товарного газа, а второй - газожидкостный поток, обогащенный жидкими компонентами.

В качестве сепаратора II-ой ступени используется вертикальный цилиндрический сетчатый газосепаратор 5, предназначенный для окончательной очистки газа от жидкости в виде воды и газового конденсата. Вертикальный цилиндрический сетчатый газосепаратор 5 имеет следующие характеристики:

температура рабочей среды от минус 30 до плюс 100°С, содержание жидкости в газе - до 200 см33, унос жидкости из газосепаратора не более 20 см3/1000 м3 газа. Сепаратор вертикальный цилиндрический с корпусным фланцевым разъемом диаметром порядка 600-800 мм на условное давление от 1,6 до 8,8 МПа.

БСГ работает следующим образом.

Сырой газ из магистрального трубопровода через входной фланец трубопровода сырого газа 1 и фильтр-распределитель 2 поступает в прямой коллектор кожухотрубного теплообменника 3, охлаждается и проходит по трубопроводу 13 через запорную арматуру 10 и регулирующую арматуру 11, например, в виде запорных 10 и регулирующих 11 кранов, в 3S-сепараторы 4, где происходит отделение от газа основного объема воды, сопровождающееся снижением температуры газа. В 3S-сепараторах 4 происходит отделение воды, конденсата и примесей, которые вместе с частью газа двухфазным потоком опускаются ниже 3S-сепараторов 4 в трубопровод двухфазного потока из 3S-сепараторов 6 и поступают через входной фланец 9 в вертикальный цилиндрический сетчатый газосепаратор 5, где происходит окончательное разделение двухфазного потока из газа и жидкостей на газ, воду и конденсат с небольшим количеством механических примесей. Воду и конденсат сливают в соответствующие системы сбора через штуцера (не показаны) вертикального цилиндрического сетчатого газосепаратора 5, по мере накопления примеси удаляют.

Осушенный и очищенный газ из вертикального цилиндрического сетчатого газосепаратора 5 по трубопроводу очищенного и осушенного газа из вертикального цилиндрического сетчатого газосепаратора 8 и осушенный газ после 3S-сепараторов 4 по трубопроводу осушенного газа из 3S-сепараторов 7 соединяют в один трубопровод и направляют к обратному коллектору кожухотрубного теплообменника 3 для охлаждения сырого газа. После прохождения обратного коллектора кожухотрубного теплообменника 3 газ через выходной фланец осушенного газа 14 уходит в магистральный трубопровод (не показан).

Размещение 3S-сепараторов 4 в наивысшей точке блока позволяет сливать вниз двухфазный поток из газа и жидкостей из 3S-сепараторов 4, а размещение трубопровода двухфазного потока 6 из 3S-сепараторов 4 не ниже входного фланца 9 вертикального цилиндрического сетчатого сепаратора 5 позволяет самотеком направлять жидкую часть двухфазного потока из 3S-сепараторов 4 в вертикальный цилиндрический сетчатый газосепаратор 5.

Расположение выходного фланца осушенного газа 14 и входного фланца трубопровода сырого газа 1 на одном уровне вблизи друг от друга позволяет минимально снизить разрыв в магистральном трубопроводе и минимизировать потери напора газа.

Фундамент 15 и рама 16 обеспечивают жесткость и взаимное расположение элементов БСГ.

С учетом необходимости сборки и разборки и перевозки БСГ по железной дороге от места изготовления до места эксплуатации и для обеспечения наибольшей надежности БСГ выполнен с минимальным количеством соединяемых деталей, что нашло отражение в максимальной длине используемых трубопроводов, но не более 3 м в соответствии с возможностями размещения на железнодорожных платформах. Максимальная высота расположения трубопроводов выполнена до 3 м. Высота отсоединения верхней и нижней частей рамы 3 м также обусловлена необходимостью перевозки на железнодорожных платформах.

В результате работы БСГ степень очистки сырого природного газа достигает 100%. Кроме того, упрощается транспортировка блока сепарации газа по железной дороге.

Применение предложенного БСГ позволит решить задачу повышения степени очистки сырого природного газа и упрощения транспортировки блока сепарации газа по железной дороге.

Блок сепарации газа, включающий газосепаратор, теплообменник, арматурные узлы и силовой каркас, отличающийся тем, что в качестве теплообменника использован кожухотрубный теплообменник, установленный на двух опорах, одна из которых скользящая, в качестве газосепаратора использован вертикальный цилиндрический сетчатый газосепаратор, в качестве арматурных узлов использованы трубопроводы, запорная и регулирующая арматура и узлы присоединения контрольно-измерительных приборов, силовой каркас выполнен в виде рамы с отсоединяемой верхней частью и нижней частью высотой порядка 3 м, трубопроводы выполнены разборными с размерами в разобранном состоянии порядка 3 м, блок дополнительно снабжен 3S-сепараторами, установленными параллельно на наибольшей высоте размещения элементов блока, фильтром-распределителем, установленным на трубопроводе сырого газа, по ходу газа входной фланец трубопровода сырого газа, фильтр-распределитель, прямой коллектор кожухотрубного теплообменника, 3S-сепараторы, вертикальный цилиндрический сетчатый газосепаратор, обратный коллектор кожухотрубного теплообменника и выходной фланец осушенного газа размещены последовательно друг за другом и соединены трубопроводами, при этом трубопровод осушенного газа из 3S-сепараторов и трубопровод осушенного газа из вертикального цилиндрического сетчатого газосепаратора соединены до входа в обратный коллектор кожухотрубного теплообменника, трубопровод двухфазного потока из 3-сепараторов размещен не ниже входного штуцера вертикального цилиндрического сетчатого сепаратора, выходной фланец осушенного газа и входной фланец трубопровода сырого газа расположены на одном уровне вблизи друг от друга.



 

Похожие патенты:

Изобретение относится к способу и соответствующему оборудованию для получения кондиционного синтез-газа для производства аммиака с криогенной очисткой. Способ включает конверсию углеводородного исходного сырья с последующими стадиями конверсии СО, удаления СО2 и метанирования с получением потока сырого кондиционного синтез-газа, содержащего водород и азот, обработку сырого синтез-газа в секции криогенной очистки с получением потока очищенного синтез-газа, подачу жидкого потока, обогащенного азотом, при криогенной температуре в секцию криогенной очистки, обеспечение косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем поток, обогащенный азотом, частично испаряют для обеспечения охлаждения криогенной секции, и обработку воздушного потока в устройстве разделения воздуха с получением жидкого потока, обогащенного азотом, и потока, обогащенного кислородом.

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.

Изобретение относится к способам низкотемпературного разделения газовых смесей. Способ разделения газовой смеси осуществляют при поточном движении газовой смеси.

Изобретение относится к способу подготовки природного и попутного нефтяного газа к транспорту или переработке методом низкотемпературной сепарации. Способ включает сепарацию сырого газа на первой ступени с получением водного и углеводородного конденсатов, а также газа первой ступени сепарации, который подвергают дефлегмации за счет противоточного охлаждения газом и конденсатом третьей ступени сепарации с получением газа и конденсата второй ступени сепарации, а также нагретого конденсата третьей ступени сепарации и товарного газа.

Изобретение относится к способу подготовки природного и попутного нефтяного газа к транспорту или переработке методом низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности.

Изобретение относится к криогенной технике, а именно к устройству для сепарации многокомпонентной среды, а также к сопловому каналу для данного устройства, и может быть использовано для сжижения газов, их очистки или выделения из потока многокомпонентной среды одного или нескольких целевых компонентов.

Изобретение относится к способу сжижения обогащенной углеводородами, содержащей азот исходной фракции, предпочтительно природного газа. Способ содержит стадии: a) сырьевую фракцию (1) сжижают (E1, E2), b) разделяют ректификацией (T1) на обогащенную азотом фракцию (9), содержание метана в которой составляет макс.

Изобретение относится к области газохимии, предназначено для получения инертных газов. Способ выделения инертных газов из газов, содержащих в своем составе как минимум аргон, ксенон, криптон, азот и водород, включает охлаждение исходного потока газа, ожижение и разделение посредством одноступенчатой ректификации.

Изобретение относится к нефтеперерабатывающей и газоперерабатывающей промышленности и может быть использовано при разделении газа. Способ разделения газа включает ввод газа в абсорбер, на верх которого подают охлажденный абсорбент, с отбором с верха абсорбера сухого газа и выводом насыщенного абсорбента с низа абсорбера в ректификационную колонну, с верха которой отбирают пропан-бутановую фракцию, которую также используют в качестве флегмы, боковым погоном через отпарную секцию выводят газовый бензин и с низа колонны выводят абсорбент, который после охлаждения возвращают на верх абсорбера, с подачей в низ абсорбера, ректификационной колонны и отпарной секции тепла.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию.

Изобретение относится к технологии переработки нефтяных газов на основе низкотемпературной конденсации. Способ переработки нефтяных газов включает в себя компримирование исходного газа, низкотемпературную сепарацию, деэтанизацию и получение пропановой, бутановой, пентановой фракций. Конденсат, полученный при низкотемпературном разделении, используют в качестве хладагента, образуя холодильный цикл, при этом часть конденсата дросселируют, полученный холод используют для охлаждения сжатого газожидкостного потока, выделившуюся газовую фазу сжимают и смешивают со сжатым газожидкостным потоком, а жидкую фазу, оставшуюся после испарения, смешивают, повышая давление, с другой частью конденсата и низкотемпературную смесь направляют на газофракционирование. Использование изобретения позволит повысить эффективность технологических процессов, обеспечить квалифицированную переработку нефтяного газа в промысловых условиях и получить качественные целевые продукты для конечного применения в производстве. 1 ил., 1 табл.

Изобретение относится к газоперерабатывающему и газохимическому комплексу, включающему газоперерабатывающий сектор, в котором в качестве сырья звена подготовки сырья 1.1 подается природный углеводородный газ с получением очищенного и осушенного газа и кислого газа, направляемых, соответственно, в звено низкотемпературного фракционирования сырья 1.2 и в звено получения элементарной серы при присутствии сероводорода в исходном сырье 1.5, звена получения товарной метановой фракции (товарного газа) 1.3 подается метановая фракция со звена 1.2 с получением азота, гелиевого концентрата, направляемого на звено получения товарного гелия 1.6, и метановой фракции, звена получения суммы сжиженных углеводородных газов (СУГ) и пентан-гексановой фракции 1.4 подается ШФЛУ со звена 1.2 с получением пропановой, бутановой, изобутановой и пентан-гексановой фракции, пропан-бутана технического и автомобильного, сектор по сжижению природных газов, состоящий из звена сжижения товарной метановой фракции (товарного газа) 1.12, соединяющегося потоком метановой фракции из звена 1.3, и звена сжижения этановой фракции 1.13, соединяющегося потоком этановой фракции из звена 1.2 с получением товарного газа, газохимический сектор, в котором в качестве сырья звена получения этилена 1.7 подается со звена 1.2 этановая фракция с получением этилена и водорода, звена получения пропилена 1.8 подается со звена 1.4 пропановая фракция, звена получения синтез-газа, метанола и высших спиртов, аммиака 1.10 подается со звеньев 1.12, 1.1 и 1.7-1.8, соответственно, товарный газ, кислый газ и водород с получением метанола и аммиака, звена получения полимеров, сополимеров 1.9 подается из звеньев 1.8 и 1.7, соответственно, пропилен и частично этилен с получением полиэтилена, сополимера и полипропилена, звена получения этиленгликолей 1.11 подается со звена 1.7 оставшаяся часть этилена с получением моно-, ди- и триэтиленгликолей, сектор подготовки конденсата, в котором в качестве сырья звена стабилизации конденсата 1.14 подается нестабильный газоконденсат, звена получения моторных топлив 1.15 подается стабильный газоконденсат, пентан-гексановая фракция и водород, соответственно, со звеньев 1.14, 1.4 и 1.7-1.8 с получением высокооктанового автобензина, керосиновой и дизельной фракций, при этом отводимые предельные углеводородные газы со звена 1.15 и газ стабилизации со звена 1.14 направляются в звено 1.1, с учетом того, что перемещение технологических потоков между смежными секторами обеспечивается дополнительными перекачивающими станциями. Предлагаемый комплекс позволяет высокоэффективно перерабатывать природные углеводородные газы одного или нескольких месторождений с выработкой максимально разнообразного ассортимента конечной продукции. 45 з.п. ф-лы, 1 пр., 1 табл., 1 ил.

Изобретение относится к установке подготовки сжатого топливного газа, в частности для газотурбинных энергетических установок, и может быть использовано в нефтегазовой промышленности и энергетике. Установка подготовки топливного газа включает компрессор с линией подачи газа и линией вывода компрессата, на которой размещен дефлегматор, оснащенный линией вывода топливного газа. В качестве дефлегматора установлен узел абсорбции, на линии вывода компрессата размещен узел сепарации и охлаждения, оснащенный линией вывода конденсата. На линии подачи газа в компрессор размещен узел контактирования, связанный с узлом абсорбции линиями подачи абсорбента высокого давления и вывода абсорбента низкого давления, на которой последовательно расположены холодильник и ответвление для подачи балансового абсорбента низкого давления в линию подачи газа в компрессор. Техническим результатом является снижение объемной теплотворной способности топливного газа и уменьшение потерь углеводородов С5+. 3 з.п. ф-лы, 4 ил.

Изобретение относится к способам подготовки скважинной продукции газоконденсатных месторождений, а именно к способу низкотемпературной сепарации газа, и может быть использовано в газовой промышленности. Способ низкотемпературной сепарации газа включает входную сепарацию сырого газа с получением конденсата и газа, который охлаждают газом низкотемпературной сепарации и подвергают промежуточной сепарации с получением конденсата, разделяемого на газ отдувки и нестабильный конденсат после смешения с конденсатом входной сепарации, и газа, который смешивают с газом отдувки, редуцируют и подвергают низкотемпературной сепарации с получением газа, выводимого с установки после нагрева в качестве товарного, и конденсата, который редуцируют и выводят на стабилизацию. Охлаждение и промежуточную сепарацию газа входной сепарации осуществляют в условиях его дефлегмации путем охлаждения газом и конденсатом низкотемпературной сепарации, редуцированным до давления стабилизации. При необходимости, для снижения выхода газов дегазации, конденсат низкотемпературной сепарации предварительно нагревают газом входной сепарации и сепарируют с получением газа, направляемого на смешение с газом отдувки, и конденсата, направляемого на редуцирование. Технический результат: снижение температуры товарного газа и повышение его качества. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Устройство для низкотемпературной сепарации газа содержит предварительный, промежуточный и низкотемпературный сепараторы и устройство редуцирования газа. В качестве промежуточного сепаратора установлен двухсекционный дефлегматор-стабилизатор, включающий верхнюю дефлегмационную и нижнюю стабилизационную секции, оборудованные блоками тепломассообменных элементов с внутренним пространством для прохода теплоносителя или хладагента и внешним массообменным пространством. При этом блок тепломассообменных элементов дефлегмационной секции состоит из двух частей, одна из которых оснащена линией подачи конденсата низкотемпературной сепарации и соединена с зоной питания линией подачи нагретого конденсата, к которой примыкает линия подачи охлажденного газа предварительной сепарации, а другая оснащена линией подачи газа низкотемпературной сепарации и линией вывода товарного газа. Кроме того, блок тепломассообменных элементов стабилизационной секции оснащен линиями ввода и вывода газа предварительной сепарации, низ стабилизационной секции оснащен линией вывода стабилизированного конденсата, а верх дефлегмационной секции оснащен линией вывода газа промежуточной сепарации. Способ низкотемпературной сепарации газа включает охлаждение газа предварительной сепарации, его промежуточную сепарацию с получением конденсата и газа, который охлаждают газом низкотемпературной сепарации, дросселируют и подвергают низкотемпературной сепарации на газ, выводимый с установки после нагрева, и конденсат. Для низкотемпературной сепарации используют предлагаемое устройство, при этом газ предварительной сепарации сначала охлаждают во внутреннем пространстве блока тепломассообменных элементов стабилизационной секции, затем смешивают с нагретым конденсатом низкотемпературной сепарации и сепарируют в средней части дефлегматора-стабилизатора на конденсат, который направляют в стабилизационную секцию, где стабилизируют за счет нагрева газом предварительной сепарации, и газ, который направляют в дефлегмационную секцию, где в условиях дефлегмации осуществляют его дальнейшее охлаждение газом и конденсатом низкотемпературной сепарации. Кроме того, с низа стабилизационной секции выводят стабилизированный конденсат, а с верха дефлегмационной секции выводят охлажденный газ промежуточной сепарации. Техническим результатом является повышение выхода товарного газа и снижение температуры точки росы товарного газа. 2 н. и 2 з.п. ф-лы, 1 пр., 1 ил.

Изобретение относится к способу подготовки сжатого топливного газа, для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ перед сжатием повергают абсорбции циркулирующим абсорбентом высокого давления с получением абсорбента низкого давления. Смешивают с газом выветривания и балансовым абсорбентом высокого давления. Сжимают, полученный компрессат охлаждают и сепарируют с получением конденсата, который редуцируют и сепарируют с получением газа выветривания и стабильного конденсата, а также сжатого газа, который подвергают абсорбции охлажденным абсорбентом низкого давления с получением топливного газа и абсорбента высокого давления, разделяемого на циркулирующий и балансовый. Изобретение позволяет снизить потери углеводородов С5+ с топливным газом и получать стабильный конденсат. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии дополнительного максимально полного извлечения ценных компонентов из природного углеводородного газа и может быть использовано на предприятиях газоперерабатывающей промышленности. Способ комплексной переработки природного углеводородного газа с повышенным содержанием азота осуществляют в трех блоках: в блоке выделения этана и ШФЛУ из углеводородного газа, где очищенный и осушенный природный газ разделяется на метановую фракцию высокого и среднего давления, этановую фракцию, широкую фракцию лёгких углеводородов и метан-азотную смесь; в блоке удаления азота и выделения гелиевого концентрата из метан-азотной смеси, где метан-азотная смесь разделяется на метановую фракцию низкого давления, азот низкого и среднего давления, сбрасываемые в атмосферу, жидкий азот, используемый в блоке тонкой очистки и сжижения гелия, и гелиевый концентрат, перерабатываемый с выделением гелия или отводимый в качестве товарного продукта; в блоке тонкой очистки и сжижения гелия, где из гелиевого концентрата выделяется чистый гелий, также в процессе образуются газообразные сдувки, содержащие в основном азот и сбрасываемые в атмосферу, жидкий азот, используемый в качестве товарной продукции. Технический результат: максимальная рекуперация тепла, снижение энергозатрат. 16 з.п. ф-лы, 1 ил., 5 табл.

Изобретение относится к установкам подготовки природного газа, а именно к конструкции устройств низкотемпературной сепарации и рекуперации холода установок низкотемпературной сепарации газа и может быть использовано в газовой промышленности. Блок низкотемпературной сепарации и рекуперации холода оснащен линиями ввода газа входной сепарации и газа отдувки, линиями вывода товарного газа и нагретого выветренного редуцированного конденсата низкотемпературной сепарации, включает узел низкотемпературной сепарации, устройство редуцирования конденсата низкотемпературной сепарации и сепаратор редуцированного конденсата низкотемпературной сепарации. Блок оборудован дефлегматором газа входной сепарации, оснащенным тремя тепломассообменными секциями для дефлегмации газа входной сепарации за счет охлаждения газом и конденсатом низкотемпературной сепарации, а также конденсатом низкотемпературной сепарации, редуцированным до давления стабилизации. Технический результат: повышение качества товарного газа. 2 з.п. ф-лы, 1 ил.

Изобретение относится к конструкции устройств для подготовки газа путем низкотемпературной конденсации и может быть использовано в нефтегазовой промышленности для подготовки углеводородных газов. Устройство состоит из аппарата с расположенной внизу сепарационной зоной, линиями ввода сырого газа и вывода углеводородного и водного конденсатов и двумя вышерасположенными узлами охлаждения газа с контактно-сепарационными устройствами, оснащенными одно - линиями ввода/вывода подготовленного газа, а другое - линиями ввода/вывода хладоагента. Устройство дополнительно оборудовано холодильной машиной и стабилизатором конденсата. В качестве узлов охлаждения газа установлены дефлегматорные секции. Холодильная машина соединена с верхней дефлегматорной секцией линиями ввода/вывода хладоагента, а со стабилизатором конденсата - линиями ввода/вывода теплоносителя. Стабилизатор конденсата соединен линией подачи газа стабилизации с линией подачи сырого газа, линией подачи конденсата с низом аппарата низкотемпературной конденсации и оснащен линией вывода стабилизированного конденсата. Технический результат: повышение выхода подготовленного газа. 2 з.п. ф-лы, 1 ил.

Изобретение относится к газонефтяной промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых месторождений. Способ подготовки углеводородного газа к транспорту включает сепарацию газа дальних кустов скважин, введение регенерированного абсорбента в газовый поток после сепарации, выведение насыщенного влагой абсорбента из газового потока, транспортировку газа для дальнейшей подготовки совместно с газом ближних кустов скважин, сепарацию газа ближних кустов скважин, введение регенерированного абсорбента в газовый поток после сепарации, выведение насыщенного влагой абсорбента из газового потока, введение в газовый поток предварительно отсепарированного газа с дальних кустов скважин, сепарацию смесевого газа, компримирование и охлаждение в две ступени смесевого газа, введение в газовый поток регенерированного абсорбента, выведение из газового потока насыщенного абсорбента на регенерацию, охлаждение смесевого газа и вывод его из установки, при этом температуру точки росы транспортируемого газа обеспечивают ниже температуры транспортируемого газа на 7-12°C. Изобретение обеспечивает однофазную транспортировку газа и сокращение расхода метанола. 1 ил., 1 табл.
Наверх