Шихта для изготовления огнеупорного материала на основе диоксида гафния

Изобретение относится к производству огнеупорных изделий. Технический результат изобретения заключается в повышении термоциклической устойчивости, прочности на изгиб, стойкости к коррозии и снижении коэффициента теплопроводности. Шихта содержит следующие компоненты, мол.%: Y2O3 - 5-10, Yb2O3 - 10-18, Nd2O3 -3-5, HfO2 - остальное. 3 пр., 2 табл.

 

Изобретение относится к области получения материалов, относящихся к высокотемпературным оксидным керамикам на основе стабилизированного оксида гафния, а именно к составам для их изготовления. Такие материалы предназначены для использования в окислительных средах при высоких температурах, в том числе для изготовления высокотемпературных футеровок индукционных печей, деталей, датчиков и инструментов, работающих при температурах от 1800 до 2200°С.

Известна шихта для изготовления огнеупорных изделий (патент РФ №2412133, МПК С04В 35/185, опубликован 20.02.2011), которая включает муллитосодержащий материал в виде смеси плавленого муллита и боя муллитокорундовых изделий, а также глинозем и отходы формовочной массы муллитокорундового состава при следующем соотношении компонентов, масс. %: муллит плавленый - (20-30), фракции менее 0,2 мм; бой муллитокорундовых изделий - (45-65); глинозем марки Гк - (15-25); отходы формовочной массы муллитокорундовых изделий - (5-20), фракций не более 4,0 мм (сверх 100%). Термоциклическая устойчивость материала достаточно высокая и составляет 69 циклов в условиях охлаждения потоком воздуха от температуры 1100°С.

Недостатками материала, приготовленного из данной шихты, являются:

- предел прочности при осевом сжатии не более 60 МПа;

- огнеупорность не более 1900°С в зависимости от содержания компонентов;

- слабые теплоизолирующие свойства материалов, обусловленные высокими показателями коэффициента теплопроводности на фоне низких рабочих температур, не превышающих 1100°С.

Известна шихта для изготовления огнеупорных изделий (патент РФ №2096386, МПК С04В 35/00, опубликован 20.11.1997), включающая карбид кремния, огнеупорную глину, глинозем, электрокорунд, каолин, оксихлорид алюминия и оксид редкоземельного металла из группы - La2O3, Nd2O3, Gd2O3, при следующих соотношениях компонентов, масс. %: карбид кремния (32-40), огнеупорная глина (13-20), глинозем (15-25), электрокорунд (10-17), каолин (3-15), оксихлорид алюминия (0,5-4,5), оксид редкоземельного металла (0,5-4,5).

Недостатками материала, приготовленного из данной шихты, являются:

- максимальная рабочая температура, не превышающая 1800°С;

- химическая стойкость к различным типам атмосфер при температурах более 1500°С не более нескольких десятков часов, в частности к окислительной атмосфере, содержащей кислород, к воздуху, к водяным парам из-за содержания в исходной шихте большого количества карбида кремния, который заметно распадается с образованием оксида кремния и углекислого газа уже при температурах более 1700°С, что и ведет к разрушению материала.

Известна шихта для изготовления огнеупорных материалов на основе диоксидов циркония, гафния, тория, промотированных диоксидом иттрия в количествах от 0,25 до 2,5 мол. % (патент США 5681784 «Жаростойкий керамический материал», МПК С04В 35/48, опубликован 28.10.1997). Термостойкость керамического материала, синтезируемого с применением данной шихты, в условиях относительно медленного нагрева и охлаждения характеризуется критической разностью температур не более 1900°С. Материал формируют путем смешения компонентов, один из которых представляет собой смесь диоксида циркония, гафния и тория, а второй компонент представляет собой порошковую спеченную смесь диоксида циркония, гафния и тория, стабилизированных диоксидом иттрия Y2O3 от 0,25 до 2,5 мол. %. При этом температура солидуса полученного материала ниже 2500°С.

Недостатками материала, приготовленного из данной шихты, являются:

- термоциклическая устойчивость (не более) от 5 до 13 циклов (сквозные трещины) в условиях охлаждения в воду от температуры 2200°С в зависимости от условий изготовления материала;

- коэффициент теплопроводности больше 3,0 Вт/м×К при температуре 2200°С;

- изгибная прочность материала не более 180 МПа через 110 часов его эксплуатации при 2200°С (недостаточная устойчивость к термостарению - рост зерна не тормозится во времени при максимальной рабочей температуре 2200°С).

Наиболее близким к предлагаемому изобретению по технической сущности является шихта для изготовления огнеупорного керамического материала (патент РФ №2489403 «Огнеупорный керамический материал, способ его получения и элемент конструкции, включающий указанный керамический материал», МПК С04В 35/482, опубликован 10.08.2013). Шихта состоит, в основном, из диоксида гафния, стабилизированного диоксидом иттрия в количестве от 0,5 до 8 моль. %. Огнеупорный керамический материал имеет высокую температуру солидуса в диапазоне (2500-2800)°С, степень уплотнения от теоретической более 85%.

Недостатками материала, приготовленного из данной шихты, являются:

- термоциклическая устойчивость (не более) от 8 до 18 циклов (сквозные трещины) в условиях охлаждения в воду от температуры 2200°С в зависимости от условий изготовления материала;

- коэффициент теплопроводности больше 3,0 Вт/м×К при температуре 2200°С;

- изгибная прочность материала не более 240 МПа через 110 часов его эксплуатации при максимальной рабочей температуре 2200°С.

Задача, решаемая настоящим изобретением, заключается в разработке шихты для огнеупорного керамического материала, устойчивого в воздушной среде при термоциклировании в расширенном интервале рабочих температур (от комнатной до 2200°С) с одновременным повышением высокотемпературной прочности и понижением коэффициента теплопроводности.

Технический результат, достигаемый заявляемым изобретением, заключается в получении материала со следующими техническими характеристиками:

- термоциклическая устойчивость до 26 циклов (сквозные трещины внутри одной партии образцов с пористостью 11,6%) в условиях охлаждения в воду от температуры 2200°С и заданном известном способе изготовления материала;

- изгибная прочность материала не менее 410 МПа через 110 часов его эксплуатации при максимальной рабочей температуре 2200°С;

- коэффициент теплопроводности 0,85Вт/м×К при температуре 2200°С и пористости 11,6%;

- стойкость к коррозии в воздушной среде в присутствии паров воды в течение семи циклов нагрева и охлаждения при выдержке в каждом цикле 150 часов и максимальной рабочей температуре 2200°С (изменение массы не более чем на 0,27% при одновременном сохранении изгибной прочности на уровне до 290 МПа);

- микроструктура материала содержит гранулы диоксида гафния, имеющего моноклинную структуру; гранулы диоксида гафния, имеющего кубическую структуру, которая стабилизирована диоксидами иттрия, иттербия и неодима; закрытые поры и не соединенные между собой открытые поры.

Для решения указанной задачи и достижения технического результата шихта на основе диоксида гафния, содержащая диоксид иттрия, согласно изобретению дополнительно содержит диоксид иттербия и диоксид неодима при следующих соотношениях компонентов (мол. %):

Y2O3 - (5-10)

Yb2O3 - (10-18)

Nd2O3 - (3-5)

HfO2 - остальное.

Температура плавления диоксида гафния составляет 2810°С, кроме того, хорошо известно, что он химически стоек при нагревании. Однако чистый диоксид гафния при использовании в высокотемпературных областях имеет главный недостаток, заключающийся в том, что во время тепловых циклических нагрузок (увеличении/уменьшении температуры) аллотропный переход из его моноклинной фазы в тетрагональную сопровождается 3,4% усадкой (или объемным расширением при обратном переходе) в диапазоне температур от 1500 до 1800°С. Неприемлемым следствием такого значительного изменения объема является растрескивание огнеупорного керамического материала, состоящего из диоксида гафния.

Промотирование диоксида гафния оксидами иттербия, иттрия, неодима хотя и несколько снижает температуру плавления жаростойкого композитного материала, зато позволяет обеспечить микроструктуру материала, содержащую гранулы диоксида гафния, имеющего моноклинную структуру; гранулы диоксида гафния, имеющего кубическую структуру, которая стабилизирована диоксидами иттрия, иттербия и неодима; закрытые поры и не соединенные между собой открытые поры, что и реализует заявленный интегральный технический результат. А именно - повысить термоциклическую устойчивость; подавить склонность к разрушению в условиях газовой коррозии в присутствии кислорода и паров воды в области температур от 200 до 2200°С; повысить низкотемпературную прочность жаростойкого материала, улучшить механические свойства получаемого жаростойкого материала.

Подбор для каждой практической задачи оптимального соотношения между основными, включенными в состав материала, тугоплавкими оксидами связан с их различной долей влияния (не всегда аддитивной) на набор конечных свойств получаемого материала. Так, например, повышение концентрации оксида иттербия за счет снижения содержания оксидов неодима и иттрия позволяет получить материал с большей огнестойкостью - до 2600°С. Использование в указанных количествах диоксида неодима позволяет уменьшить коэффициент теплопроводности, непосредственно путем модификации химического состава шихты без изменения его морфологии, при сохранении других свойств материала. Введение диоксида неодима в оксид гафния понижает теплопроводность за счет деформации кристаллической решетки (атомный радиус Hf больше атомного радиуса Nd) и за счет введения кислородных вакансий в решетку из-за различных валентностей неодима и гафния. Вообще, введение точечных дефектов в решетку, которые действуют как центры обратного рассеяния фононов, способствует снижению теплопроводности.

Включение в состав материала в указанных количествах оксида иттербия, активно связывающего кислород, позволяет снижать склонность к разрушению в условиях газовой коррозии в присутствии кислорода и паров воды в течение более чем 110 часов, в области температур от 200 до 2200°С. Технический эффект связан с тем, что в системах HfO2-Yb2O3 имеется соединение Yb2HfO5, сохраняющее тетрагональную структуру в диапазоне температур от 1600 до 2300°С. При превышении температурного порога образуются кубические твердые растворы на основе HfO2, стабильные в диапазоне температур от 2300 до 2500°С.

Введение в состав оксида иттрия в указанных количествах позволяет снизить склонность к разрушению в условиях газовой коррозии в присутствии кислорода и паров воды и повысить низкотемпературную прочность жаростойкого материала. Технический эффект связан с тем, что в системах HfO2-Y2O3 в результате низкотемпературной эвтектоидной реакции тетрагональный твердый раствор HfO2 переходит в моноклинный и кубический ниже 650°С, кубические твердые растворы диоксида гафния, промотированного оксидом иттрия, обладают наибольшей стабильностью свойств в области температур от 650 до 1600°С.

Комплексное промотирование диоксида гафния оксидами иттрия, иттербия, неодима приводит к повышению температуры кристаллизации. Кристаллическая решетка твердых растворов диоксида гафния с оксидами иттрия, иттербия и неодима формируется при температурах выше температуры кристаллизации чистого диоксида гафния, и в достаточном широком диапазоне температур сосуществуют совместно мелкодисперсный тетрагональный и аморфный диоксид гафния. При этом присутствие промоторов оказывает затормаживающее действие на процесс кристаллизации.

Пример 1 конкретного приготовления шихты для получения 100 г керамического компакта номинального состава, мол. % (смотри таблицу 1): 10Yb2O3-5Nd2O3-10Y2O3-75HfO2.

1. Навеску гафнила азотнокислого, 2-водного (HfO(NO3)2×2H2O) смешивают с деионизированной водой при массовом соотношении соли и воды 1:1. Полученный раствор (взвесь) тщательно перемешивают в течение 10 минут.

2. Раствор нагревают при постоянном перемешивании до температуры (90-95)°С, при этом образуется вязкий полупрозрачный раствор. Не прекращая перемешивание, нагрев отключают.

3. При температуре раствора (45-50)°С в него вносят, при непрерывном перемешивании, навески остальных нитратов. Полученную смесь тщательно перемешивают в течение 10 минут.

4. В полученный раствор вносят навеску глицина, тщательно перемешивают 10 минут.

5. Далее вносят навеску лимонной кислоты и перемешивают 5 минут.

6. Далее осуществляется выпаривание раствора до состояния ксерогеля. Полученный раствор выпаривают в открытом реакторе из кислото- и термостойкого материала (кварцевом стакане) в разогретой печи при температуре 200°С до воспламенения в режиме самораспространяющегося высокотемпературного синтеза (СВС).

7. Реализация метода СВС.

В процессе нагревания реакционный раствор формирует желеобразную массу, переходящую в ксерогель, который в какой-то момент времени самовоспламеняется в режиме СВС с выделением летучих компонентов (азота, углекислого газа) и паров воды. В ходе реакции СВС формируется шихта в виде наноразмерного порошка диоксида гафния, стабилизированного оксидами иттрия, скандия и иттербия в количестве 100 грамм.

8. Далее следует стадия гранулирования шихты.

Процесс гранулирования реализуют путем окатывания сухого пресс-порошка при перемешивании на вращающемся столе путем распыления в сухой порошок водного раствора, содержащего поливиниловый спирт с молярной массой от 50000 до 90000 г/моль в количестве до 25 масс. % от общей массы сухого порошка.

9. Далее последовательно проводят высушивание гранулированного пресс-порошка, заполнение им пресс-формы и, например, двустороннее прессование заготовки в цилиндрической пресс-форме при соответствующих временах выдержек на фоне пошагового подъема усилий прессования в интервале от 20 до 50 МПа, а также контролируемой скорости снятия усилия с заготовки.

Аналогичным способом синтезированы еще две композиции шихты конкретного номинального состава.

Пример 2: 14Yb2O3-4Nd2O3-7Y2O3-75HfO2.

Пример 3: 16Yb2O3-3Nd2O3-6Y2O3-75HfO2.

Спекание прессованных заготовок реализовано в интервале температур от 1750 до 1900°С в течение (5-13) часов с получением конечного изделия в виде цилиндров диаметром 25 1,0 0,5 мм и соотношением высоты к диаметру от 0,8 до 1,5.

В таблице 2 приведены технические характеристики керамических компактов, полученных из шихт номинального состава по примерам 1, 2 и 3.

Синтезированные после высокотемпературной обработки в открытой печи материалы по примерам 1, 2 и 3 характеризуются микроструктурой композиционного материала с температурой солидуса до 2710°С, закрытыми порами и не соединенными между собой открытыми порами; содержат включения диоксида гафния, имеющего моноклинную структуру от 0,25 до 1,5%; а также диоксида гафния, имеющего кубическую структуру, стабилизированную оксидом иттрия, неодима и иттербия.

Подбирая для каждой практической задачи как оптимальные соотношения между компонентами, входящими в состав шихты, так и варьируя известными способами их компактирования, можно синтезировать огнестойкую керамику с широким интервалом механических характеристик для различных применений.

Шихта для изготовления огнеупорного материала на основе диоксида гафния, содержащая диоксид иттрия, отличающаяся тем, что она дополнительно содержит диоксид иттербия и диоксид неодима при следующих соотношениях компонентов (мол.%):

Y2O3 5-10
Yb2O3 10-18
Nd2O3 3-5
HfO2 остальное



 

Похожие патенты:

Изобретение относится к композиционному материалу, состоящему из матрицы оксида алюминия и диспергированного в ней оксида циркония, и может быть использовано для изготовления искусственных протезов.
Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака.

Настоящее изобретение относится к монолитному керамическому телу с периферийной областью из смешанного оксида и металлической поверхностью и может быть использовано в качестве имплантата или защитного средства для людей, транспортных средств, зданий или космических аппаратов.

Изобретение относится к способам изготовления керамических изделий из нанопорошков диоксида циркония и может быть использовано в машиностроении, химической промышленности и медицине для получения конструкционных и функциональных материалов.

Способ получения керамики на основе диоксида циркония может быть использован в реставрационной стоматологии. Из исходных реагентов в виде водных растворов оксинитрата циркония (ZrO(NO3)2·2H2O), нитратов иттрия (Y(NO3)3·6H2O), алюминия (Al(NO3)3·9H2O) и водного раствора аммиака обеспечивают совместное осаждение гидроксидов циркония, иттрия и алюминия, гелеобразные осадки которых фильтруют и замораживают при температуре минус 20-25°С с образованием ксерогелей, которые подвергают процессу кристаллизации при температуре от 400°С до 500°С.

Изобретение относится к производству огнеупорной смеси частиц на основе диоксида циркония, предназначенной для производства спеченных продуктов, используемых в установках металлургической промышленности, стекловаренных печах, нефтехимических реакторах и цементных печах.
Изобретение относится к способам получения огнеупорных материалов и изделий из оксидов циркония и кремния и найдет применение при изготовлении высокотермостойких теплозащитных материалов, таких как нити, ткани, нетканые материалы, оплетки и шнуры, а также в качестве упрочнителей композиционных материалов в авиакосмической и других отраслях.
Настоящее изобретение относится к плавленым огнеупорным продуктам на основе оксида алюминия - оксида кремния - оксида циркония и может быть использовано в стеклоплавильных печах в контакте с расплавленным стеклом.
Изобретение относится к области технической керамики на основе диоксида циркония с трансформируемой тетрагональной (t') кристаллической фазой и может быть использовано для изготовления износостойких деталей в соединительных изделиях для волоконно-оптических линий связи, пар трения в насосах для перекачки абразивосодержащих и агрессивных жидкостей, деталей в условиях повышенных механических нагрузок.

Изобретение относится к области технологии производства прецизионных деталей компонентов волоконной оптики, а именно к технологии производства наконечников для волоконно-оптических соединителей.

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита. Керамический материал на основе кубического диоксида циркония, стабилизированного 8 мол.% оксида иттрия, содержит добавку силиката натрия в количестве 2-5 мас.%. Технический результат изобретения - получение материала повышенной прочности, спекающегося до плотного состояния при низкой температуре 1130-1150°C. Полученный материал характеризуется однородной структурой с открытой пористостью менее 1%, размером кристаллов 80-120 нм и высокими механическими характеристиками: прочностью при изгибе не менее 300 МПа и трещиностойкостью не менее 6,0 МПа∗м1/2. 1 пр., 1 табл.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов. Керамический материал на основе диоксида циркония, стабилизированного 3 мол.% оксида иттрия, содержит добавку силиката натрия в количестве 2-5 мас.%. Технический результат изобретения - увеличение прочности материала, спекающегося до плотного состояния при низкой температуре 1130-1150°C. Полученный материал характеризуется нанокристаллической структурой, пористостью менее 0,01% и высокими механическими характеристиками: прочностью при изгибе не менее 350 МПа. 1 пр., 1 табл.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой. Термообработка включает предварительный обжиг с равномерным нагревом до температуры 250±5°C и выдержкой в течение 3 часов и окончательный обжиг с равномерным нагревом до температуры 1650±5°C и выдержкой в течение 1 часа. В качестве порообразователя используют порошки карбоната магния, гидроксида алюминия, в качестве пластификатора - парафин, воск при следующем соотношении компонентов, мас.%: MgCO3 10-12, Al(OH)3 5-10, парафин 10-20, воск 1-3, порошок ZrO2 (5 мас.% MgO) - остальное. Используемый порошок ZrO2 содержит фазу с тетрагональной кристаллической решеткой не менее 75%. Перед приготовлением термопластичной смеси стабилизированный порошок диоксида циркония активируют, получая порошок со средним размером частиц не более 0,5 мкм; максимальным размером частиц не более 1,0 мкм и формой, близкой к сферической. Техническим результатом является получение керамического биоматериала с улучшенными эксплуатационными характеристиками: пористостью не менее 40%, предел прочности при сжатии не менее 500 МПа и бимодальным распределением пористости, аналогичным природной кости. 5 з.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к керамическим композиционным материалам, состоящим из оксида алюминия в качестве керамической матрицы и диспергированного в ней оксида циркония, и может быть использовано в медицинской промышленности для изготовления искусственных протезов, например ортезов и эндопротезов, или для изготовления имплантатов тазобедренных или коленных суставов. Композиционный материал в качестве первой фазы содержит по меньшей мере 65 об.% оксида алюминия и в качестве второй фазы от 10 до 35 об.% оксида циркония, причем оксид циркония, в пересчете на общее содержание оксида циркония, от 80 до 99%, находится в виде тетрагональной фазы, а общее содержание химических стабилизаторов для стабилизации тетрагональной фазы оксида циркония составляет менее 0,2 мол.%. Технический результат изобретения - повышение прочности и трещиностойкости изделий из композиционного материала. 2 н. и 5 з.п. ф-лы, 1 табл.

Изобретение относится к производству композиционных материалов, преимущественно конструкционного назначения, и может быть использовано для изготовления теплозащитных слоистых композиционных изделий, предназначенных, например, для эффективной тепловой защиты аэрокосмических летательных аппаратов и их энергетических систем. Техническим результатом предлагаемого изобретения является исключение расслойных трещин, образующихся при охлаждении в процессе получения теплозащитного слоистого композиционного материала, а также его высокие механические свойства. Способ получения теплозащитного слоистого композиционного материала системы Zrm(O-B-C)n включает подготовку порошков по меньшей мере двух выбранных соединений указанной системы: ZrO2, ZrB2 или ZrC, формирование из них заготовок и послойную укладку заготовок в графитовую пресс-форму, горячее прессование. При послойной укладке между указанными заготовками помещают промежуточный слой порошковой смеси выбранных соединений указанной системы, объемные доли которых в смеси определяют из формулы: , где: α1, α2 - КТР выбранных соединений, V1, V2 - объемные доли выбранных соединений в смеси, при этом толщину промежуточного слоя рассчитывают по формуле: , где: ΔН - толщина промежуточного слоя, α1, α2 - КТР выбранных соединений, h1, h2 - толщины заготовок, ΔT - разница температур, заданная режимом горячего прессования материала. Порошки выбранных соединений подготавливают обработкой в шаровой мельнице в бензине в течение 80-100 ч, затем высушенные порошки протирают через сито. Заготовки формуют прессованием в пресс-форме при давлении 100-200 МПа. Горячее прессование проводят при температуре 1400-1700°C, давлении 10-20 МПа в течение 20-30 минут в среде азота. 3 з.п. ф-лы, 4 пр.

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса. Техническим результатом изобретения является получение керамического композита с нулевым коэффициентом термического линейного расширения (КТЛР) и высокими физико-механическими свойствами. Способ получения керамического композита включает приготовление порошковой смеси из оксида циркония и/или оксида алюминия, c наноструктурным вольфраматом циркония при следующем соотношении компонентов, мас.%: вольфрамат циркония 5-15, оксид циркония и/или оксид алюминия - остальное, формование заготовки и спекание. Спекание проводят при температуре 1350-1550°C, затем дополнительно осуществляют закалку при температуре 1175-1200°C, с последующим охлаждением со скоростью 200-250°C/сек. Для приготовления порошковой смеси используют диоксид циркония, стабилизированный 3-5 мас. % Y2O3, с содержанием моноклинной фазы ZrO2 не более 10%. Формование заготовки проводят холодным или горячим прессованием. 3 з.п. ф-лы, 1 пр., 2 табл.

Изобретение относится к способу изготовления плотной керамики для твердого электролита на основе полностью стабилизированного диоксида циркония и может быть использовано в твердооксидных топливных элементах, высокотемпературных электрохимических устройствах в качестве электролитических элементов. Техническим результатом данного изобретения является повышение плотности, снижение пористости и увеличение проводящих характеристик материала твердого электролита. При приготовлении шликера на 5-40 весовых частей порошка стабилизированного диоксида циркония с размером частиц не более 0,6 мкм используют 10-20 весовых частей растворителя, до 10 весовых частей связки, 0,4-4 весовые части пластификатора. Пузырьки воздуха удаляют путем вращения шаровой мельницы без мелющих тел со скоростью менее 25 об/мин. Формирование тонкой пленки производят методом литья шликера на движущуюся ленту. Сушку тонкой пленки производят в устройстве для литья керамической пленки при температуре ниже 100°С, после чего обжигают для получения твёрдого электролита на основе диоксида циркония, стабилизированного 0,5-3 мол.% CeO2 и 7-11 мол.% Sc2O3 с мелкокристаллической структурой. 1 з.п. ф-лы, 1 табл., 3 ил.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и оксидом магния, который используют в качестве стабилизирующего компонента, препятствующего переходу диоксида циркония из тетрагональной структуры в моноклинную при нагревании. Затем добавляют смесь аммония фосфорнокислого 2-х замещенного (NH4)2HPO4 и кальция углекислого CaCO3. При этом исходная смесь содержит компоненты в следующем соотношении, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 CaCO3 и 8-8,5 стекло марки ХС-2 №29. Смесь истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм, далее прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивным слоем - частицами фосфатов кальция с прочностью на сжатие не ниже 100 МПа. Способ обеспечивает одновременное получение биоинертной матрицы с биоактивным покрытием в одну стадию. 7 пр.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и оксидом магния, который используют в качестве стабилизирующего компонента, препятствующего переходу диоксида циркония из тетрагональной структуры в моноклинную при нагревании. Затем добавляют смесь аммония фосфорнокислого 2-х замещенного (NH4)2HPO4 и кальция углекислого CaCO3. При этом исходная смесь содержит компоненты в следующем соотношении, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 CaCO3 и 8-8,5 стекло марки ХС-2 №29. Смесь истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм, далее прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивным слоем - частицами фосфатов кальция с прочностью на сжатие не ниже 100 МПа. Способ обеспечивает одновременное получение биоинертной матрицы с биоактивным покрытием в одну стадию. 7 пр.

Изобретение относится к способам получения наноразмерного порошкообразного стабилизированного диоксида циркония и может быть использовано для изготовления вакуумноплотной наноструктурированной керамики: твердых электролитов, сенсоров полноты сгорания топлива, мембран для твердооксидных топливных элементов; наномодифицированных органических и неорганических материалов; порошковых покрытий на металлах. Разработан способ получения наноразмерного стабилизированного диоксида циркония, включающий совместное осаждение исходных реагентов в виде раствора оксинитрата циркония и нитрата металла-стабилизатора с раствором аммиака, фильтрование аморфного осадка геля гидроксидов, быструю заморозку этих гидроксидов и дегидратацию замороженного геля с помощью лиофильной сушки с образованием наноразмерного ксерогеля. Этот ксерогель прокаливают при температуре от 500 до 1000°C и подвергают помолу в планетарной мельнице. Способ обеспечивает получение наноразмерных порошков диоксида циркония со структурой флюорита, при этом порошок отличается низкой степенью агломерации. 1 з.п. ф-лы, 5 пр., 3 ил.
Наверх