Способ получения технических газов из воздуха


 

B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2605705:

Миронов Виктор Владимирович (RU)
Общество с ограниченной ответственностью "ЭЛЕКТРОРАМ" (RU)
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (RU)

Изобретение относится к способам получения технических газов из воздуха. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, установленного в створе природного или техногенного водотока. На гидроагрегат, имеющий подвижные в радиальном направлении стенки в виде мембран, устанавливают камеры сжатия воздуха, рабочие органы которых приводят в возвратно-поступательное движение энергией периодического гидравлического удара. Сжатый атмосферный воздух из генератора пневматической энергии собирают в ресивере, сглаживающем пульсации давления, далее после очистки и осушки подают в установку разделения воздуха, выделенный технический газ направляют потребителю. Изобретение позволяет снизить себестоимость получения технических газов за счет использования гидравлической энергии природных и техногенных водотоков для генерации пневматической энергии, необходимой для работы газоразделительных установок различного типа. 1 ил.

 

Изобретение относится к получению технических газов (кислорода, азота и др. газов) из воздуха путем использования генераторов пневматической энергии, соединенных с газоразделительным оборудованием. Технические газы широко используются практически во всех отраслях промышленности и потребление их в мире постоянно растет.

Известен криогенный способ разделения атмосферного воздуха на компоненты [RU 2147107 С1, МПК 7 F25J 3/04, опубл. 27.03.2000]. Недостатками данного способа являются большие капитальные и энергетические затраты при его реализации.

Существует мембранный способ получения технических газов из воздуха [RU 2035981 С1, МПК6 B01D 61/00, B01D 63/00, опубл. 27.05.1995]. К недостаткам мембранного метода разделения газов следует отнести наличие газовых примесей в конечном продукте, то есть недостаточную чистоту получения технических газов кислорода или азота на выходе из газоразделительных установок.

Наиболее близким к предлагаемому техническому решению является способ разделения газообразных смесей (атмосферного воздуха) методом адсорбции [Method and apparatus for fractionating gaseous mixtures by adsorption, US 2944627, опубл. 12.07.1960]. Недостатком данного способа является применение воздушных компрессоров с приводом от электродвигателей или двигателей внутреннего сгорания для генерации пневматической энергии, необходимой в процессе разделения атмосферного воздуха на компоненты в газоразделительных установках. Использование такого привода воздушных компрессоров, генерирующих пневматическую энергию, делает себестоимость получения технических газов из воздуха крайне высокой.

Технической задачей, стоящей перед данным изобретением, является создание несложного способа получения технических газов с использованием возобновляемых источников энергии, позволяющего производить технические газы из атмосферного воздуха с низкой себестоимостью. В качестве возобновляемых источников энергии могут быть использованы многочисленные в мире низконапорные водотоки природного или техногенного происхождения.

Согласно изобретению техническая задача решается следующим образом. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, состоящего из водовода, камер сжатия воздуха и ударных клапанов. Водовод гидроагрегата выполняют с подвижными в радиальном направлении стенками (мембранами), над которыми устанавливают сфероидальные камеры сжатия воздуха. На конце водовода гидроагрегата устанавливают ударные клапаны для инициирования в водоводе автоматического периодического гидравлического удара [Овсепян В.М. Гидравлический таран и таранные установки. - М.: Машиностроение. 1968. - 124 с.].

Способ получения технических газов из воздуха (см. чертеж) реализуется следующим образом. Генератор пневматической энергии выполняют в виде гидроагрегата, преобразующего кинетическую энергию потока воды сначала в потенциальную энергию гидравлического удара, а затем в энергию сжатого воздуха. Гидроагрегат состоит из водовода 1, ударных клапанов 2, подвижных в радиальном направлении стенок водовода (мембран), являющихся рабочими органами сфероидальных камер сжатия 3, снабженных всасывающими и нагнетательными патрубками с обратными клапанами. За счет энергии гидравлического удара происходит возвратно-поступательное движение рабочих органов камер сжатия 3, вследствие чего происходит всасывание в полость камер 3 воздуха через всасывающие патрубки 4, его последующее сжатие и выталкивание в нагнетательную линию 5. Сжатый воздух поступает в ресивер 6, предназначенный для сглаживания (демпфирования) пульсационных давлений, снабженный устройствами для сброса конденсата 7, манометрами 8, предохранительными клапанами давления 9. Из ресивера 6 сжатый воздух поступает в блок подготовки 10, который может включать фильтры грубой и тонкой очистки, осушители газа, и далее в газоразделительный адсорбционный блок 12. В блоке подготовки 10 предусмотрен дополнительный слив образующегося в процессе работы конденсата 11. Газоразделительный блок включает в себя кратное двум количество параллельно работающих адсорберов 13 с обвязкой запорно-регулирующими устройствами, заполненных адсорбентом, для поглощения определенного газа из состава воздуха. При этом функцией каждого первого адсорбера является производство требуемой фракции из газовой воздушной смеси - кислорода или азота (далее технического газа). В то же время функцией каждого второго адсорбера является регенерация адсорбента, сброс давления и выпуск поглощенного ранее газа через линию 14. Произведенный в адсорбционном газоразделительном блоке 12 технический газ поступает в буферную емкость 15, которая может быть выполнена в виде ресивера, откуда направляется непосредственно на нужды потребителя по линии 16 или дополнительным компрессором высокого давления 17 дожимается до давления 150 атмосфер и направляется по линии 18 для его последующей закачки в баллоны.

В предложенном способе производства технических газов из атмосферного воздуха пневматическая энергия (энергия сжатого атмосферного воздуха), необходимая для получения технических газов в газоразделительной установке, генерируется путем преобразования кинетической энергии воды, движущейся в водоводе 1, сначала в потенциальную энергию упругой деформации воды и стенок водовода при резком автоматическом закрытии ударных клапанов 2, а затем в энергию сжатого воздуха. Под действием потенциальной энергии совершается механическая работа по радиальному возвратно-поступательному перемещению подвижных частей стенок водовода (мембран), являющихся рабочими органами сфероидальных камер сжатия 3, вследствие которой происходит всасывание, сжатие и последующее выталкивание подаваемого к камерам сжатия воздуха в газоразделительную установку 12.

В предложенном способе кинетическая энергия начинает накапливаться в водоводе гидроагрегата при открытии ударных клапанов 2, работающих автоматически за счет энергии потока воды. Количество кинетической энергии и время ее накопления в водоводе гидроагрегата зависят от массы воды, то есть от геометрических размеров водовода. Известно, что масса является мерой инерции. Поэтому при увеличении длины водовода, при неизменных размерах его поперечного сечения, потребуется больший промежуток времени для накопления энергии, но при этом будет и большая отдача энергии. Накопление кинетической энергии происходит при возрастании скорости движения воды от нуля до значения, соответствующего установившемуся движению жидкости в водоводе 1 с известными значениями гидравлических сопротивлений и напора на входе в водовод 1 при открытых ударных клапанах 2. Количеством ударных клапанов 2 регулируются гидравлические сопротивления в водоводе 1. Размеры гидроагрегата, площадь и радиальный ход подвижных стенок водовода (мембран), а также их количество выбирают исходя из гидрологических параметров природных или техногенных водотоков. Количество гидроагрегатов, установленных в створе водотока, также выбирают согласно гидрологическим параметрам природного или техногенного водотока. Водоводы 1 устанавливают в створе водотока параллельно скорости движения жидкости в нем. Срабатывание автоматических ударных клапанов всех установленных в створе водотока гидроагрегатов осуществляют не одновременно, а со сдвигом во времени, обеспечивая непрерывность накопления энергии, первичное сглаживание пульсационных воздействий и устранение неравномерности в подаче сжатой газовой смеси (воздуха) на газоразделительную установку. Кроме того, параллельно установленные друг другу гидроагрегаты в створе водотока являются для последнего гидравлическими сопротивлениями, поэтому создают перед собой необходимый подпор для работы гидроагрегатов генераторов пневматической энергии. В случае недостаточности этого подпора при малом продольном уклоне водотока в его створе сооружают дополнительный водослив, обеспечивающий необходимый подпор воды перед гидроагрегатом.

Заявленное техническое решение позволяет преобразовывать практически даровую гидравлическую энергию многочисленных в мире низконапорных природных и техногенных водотоков в пневматическую энергию, необходимую для работы газоразделительных установок, и снизить, таким образом, эксплуатационные затраты на производство технических газов из воздуха.

Способ получения технических газов из воздуха, включающий генератор пневматической энергии, соединенный с газоразделительной установкой, отличающийся тем, что генератор пневматической энергии выполняют в виде гидроагрегата, размещают гидроагрегат в створе водотока с обеспечением подпора воды перед ним параллельно скорости движения жидкости в водотоке, устанавливают на гидроагрегате, имеющем подвижные в радиальном направлении стенки в виде мембран, сфероидальные камеры сжатия воздуха, инициируют периодический гидравлический удар в гидроагрегате, приводят в возвратно-поступательное движение мембраны камер сжатия воздуха, подают сжатый воздух в ресивер для сглаживания пульсаций давления с последующим направлением его на блок очистки и осушки воздуха, после чего сжатый воздух подают на адсорбционную установку разделения воздуха, выделяют в ней необходимый технический газ, собирают в буферной емкости, затем подают газ непосредственно потребителю или дожимают его с последующей закачкой в баллоны.



 

Похожие патенты:

Изобретение относится к охране окружающей среды и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей.

Изобретение относится к устройствам, предназначенным в основном для защиты воздушного бассейна Земли от канцерогенных газов и осадков, вылетающих из торчащих в небо труб промышленных предприятий (или организаций) в металлургической или химической промышленности, включая котельные, ТЭЦ и др.

Изобретение относится к очистителю, который разделяет газы, полученные в электролитическом генераторе из загрязнителей электролита, а также электролитическому генератору, содержащему такой очиститель, и способу газоочистки.

Изобретение относится к области теплоэнергетики, а более точно к устройству для очистки дымовых газов от оксидов азота селективным некаталитическим восстановлением.

Изобретение представляет: распределитель для жидкой или газообразной среды, внутренняя полость распределителя включает размещенные соосно центральной оси вращения внутри друг друга полые фигуры вращения - оболочки, имеющие сквозные отверстия или окна, с возможностью перемещения и поворота любой из них относительно других и корпуса распределителя, его переключение связано с возможностью совмещения определяемых управляющим распределением устройством отверстий или окон в оболочках и корпусе распределителя.

Изобретение относится к аппаратам для концентрирования различных суспензий и может быть использовано в пищевой и химической отраслях промышленности. Барботажный вакуум-выпарной аппарат содержит корпус с патрубками для ввода, при этом аппарат состоит из двух частей, верхней и нижней, причем верхняя часть снабжена паровой рубашкой, с ней соединен патрубок для удаления испаряемых паров, а внутри аппарата установлен коллектор с радиально расположенными трубками для барботирования суспензии горячим воздухом и центральная рециркуляционная труба с входными и выходными окнами, в которой установлен вал с ротором для рециркуляции суспензии из входных окон в выходные; к внешней части центральной рециркуляционной трубы закреплены мешалки со скребками, при этом центральная рециркуляционная труба установлена с возможностью вращения в подшипниках, при этом вал ротора и центральная рециркуляционная труба вращается за счет электропривода через коническую и две цилиндрические зубчатые передачи.

Изобретение относится к нефтедобывающей промышленности, в частности к установкам сепарации водогазонефтяной смеси, и направлено на повышение степени утилизации попутного нефтяного газа.

Изобретение относится к области очистки газов и может быть использовано в быту, в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц.

Предложена система для производства диоксида углерода, включающая в себя: подсистему сбора, выполненную для сбора технологического газа, причем технологический газ включает в себя углеводород; подсистему сжигания, выполненную для сжигания углеводорода в технологическом газе и получения газообразного потока сгорания, при этом газообразный поток продуктов сгорания включает в себя диоксид углерода и воду; и подсистему отделения, выполненную для отделения диоксида углерода от газообразного потока продуктов сгорания.

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.
Наверх