Способ получения технических газов из воздуха


B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2605705:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (RU)
Общество с ограниченной ответственностью "ЭЛЕКТРОРАМ" (RU)
Миронов Виктор Владимирович (RU)

Изобретение относится к способам получения технических газов из воздуха. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, установленного в створе природного или техногенного водотока. На гидроагрегат, имеющий подвижные в радиальном направлении стенки в виде мембран, устанавливают камеры сжатия воздуха, рабочие органы которых приводят в возвратно-поступательное движение энергией периодического гидравлического удара. Сжатый атмосферный воздух из генератора пневматической энергии собирают в ресивере, сглаживающем пульсации давления, далее после очистки и осушки подают в установку разделения воздуха, выделенный технический газ направляют потребителю. Изобретение позволяет снизить себестоимость получения технических газов за счет использования гидравлической энергии природных и техногенных водотоков для генерации пневматической энергии, необходимой для работы газоразделительных установок различного типа. 1 ил.

 

Изобретение относится к получению технических газов (кислорода, азота и др. газов) из воздуха путем использования генераторов пневматической энергии, соединенных с газоразделительным оборудованием. Технические газы широко используются практически во всех отраслях промышленности и потребление их в мире постоянно растет.

Известен криогенный способ разделения атмосферного воздуха на компоненты [RU 2147107 С1, МПК 7 F25J 3/04, опубл. 27.03.2000]. Недостатками данного способа являются большие капитальные и энергетические затраты при его реализации.

Существует мембранный способ получения технических газов из воздуха [RU 2035981 С1, МПК6 B01D 61/00, B01D 63/00, опубл. 27.05.1995]. К недостаткам мембранного метода разделения газов следует отнести наличие газовых примесей в конечном продукте, то есть недостаточную чистоту получения технических газов кислорода или азота на выходе из газоразделительных установок.

Наиболее близким к предлагаемому техническому решению является способ разделения газообразных смесей (атмосферного воздуха) методом адсорбции [Method and apparatus for fractionating gaseous mixtures by adsorption, US 2944627, опубл. 12.07.1960]. Недостатком данного способа является применение воздушных компрессоров с приводом от электродвигателей или двигателей внутреннего сгорания для генерации пневматической энергии, необходимой в процессе разделения атмосферного воздуха на компоненты в газоразделительных установках. Использование такого привода воздушных компрессоров, генерирующих пневматическую энергию, делает себестоимость получения технических газов из воздуха крайне высокой.

Технической задачей, стоящей перед данным изобретением, является создание несложного способа получения технических газов с использованием возобновляемых источников энергии, позволяющего производить технические газы из атмосферного воздуха с низкой себестоимостью. В качестве возобновляемых источников энергии могут быть использованы многочисленные в мире низконапорные водотоки природного или техногенного происхождения.

Согласно изобретению техническая задача решается следующим образом. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, состоящего из водовода, камер сжатия воздуха и ударных клапанов. Водовод гидроагрегата выполняют с подвижными в радиальном направлении стенками (мембранами), над которыми устанавливают сфероидальные камеры сжатия воздуха. На конце водовода гидроагрегата устанавливают ударные клапаны для инициирования в водоводе автоматического периодического гидравлического удара [Овсепян В.М. Гидравлический таран и таранные установки. - М.: Машиностроение. 1968. - 124 с.].

Способ получения технических газов из воздуха (см. чертеж) реализуется следующим образом. Генератор пневматической энергии выполняют в виде гидроагрегата, преобразующего кинетическую энергию потока воды сначала в потенциальную энергию гидравлического удара, а затем в энергию сжатого воздуха. Гидроагрегат состоит из водовода 1, ударных клапанов 2, подвижных в радиальном направлении стенок водовода (мембран), являющихся рабочими органами сфероидальных камер сжатия 3, снабженных всасывающими и нагнетательными патрубками с обратными клапанами. За счет энергии гидравлического удара происходит возвратно-поступательное движение рабочих органов камер сжатия 3, вследствие чего происходит всасывание в полость камер 3 воздуха через всасывающие патрубки 4, его последующее сжатие и выталкивание в нагнетательную линию 5. Сжатый воздух поступает в ресивер 6, предназначенный для сглаживания (демпфирования) пульсационных давлений, снабженный устройствами для сброса конденсата 7, манометрами 8, предохранительными клапанами давления 9. Из ресивера 6 сжатый воздух поступает в блок подготовки 10, который может включать фильтры грубой и тонкой очистки, осушители газа, и далее в газоразделительный адсорбционный блок 12. В блоке подготовки 10 предусмотрен дополнительный слив образующегося в процессе работы конденсата 11. Газоразделительный блок включает в себя кратное двум количество параллельно работающих адсорберов 13 с обвязкой запорно-регулирующими устройствами, заполненных адсорбентом, для поглощения определенного газа из состава воздуха. При этом функцией каждого первого адсорбера является производство требуемой фракции из газовой воздушной смеси - кислорода или азота (далее технического газа). В то же время функцией каждого второго адсорбера является регенерация адсорбента, сброс давления и выпуск поглощенного ранее газа через линию 14. Произведенный в адсорбционном газоразделительном блоке 12 технический газ поступает в буферную емкость 15, которая может быть выполнена в виде ресивера, откуда направляется непосредственно на нужды потребителя по линии 16 или дополнительным компрессором высокого давления 17 дожимается до давления 150 атмосфер и направляется по линии 18 для его последующей закачки в баллоны.

В предложенном способе производства технических газов из атмосферного воздуха пневматическая энергия (энергия сжатого атмосферного воздуха), необходимая для получения технических газов в газоразделительной установке, генерируется путем преобразования кинетической энергии воды, движущейся в водоводе 1, сначала в потенциальную энергию упругой деформации воды и стенок водовода при резком автоматическом закрытии ударных клапанов 2, а затем в энергию сжатого воздуха. Под действием потенциальной энергии совершается механическая работа по радиальному возвратно-поступательному перемещению подвижных частей стенок водовода (мембран), являющихся рабочими органами сфероидальных камер сжатия 3, вследствие которой происходит всасывание, сжатие и последующее выталкивание подаваемого к камерам сжатия воздуха в газоразделительную установку 12.

В предложенном способе кинетическая энергия начинает накапливаться в водоводе гидроагрегата при открытии ударных клапанов 2, работающих автоматически за счет энергии потока воды. Количество кинетической энергии и время ее накопления в водоводе гидроагрегата зависят от массы воды, то есть от геометрических размеров водовода. Известно, что масса является мерой инерции. Поэтому при увеличении длины водовода, при неизменных размерах его поперечного сечения, потребуется больший промежуток времени для накопления энергии, но при этом будет и большая отдача энергии. Накопление кинетической энергии происходит при возрастании скорости движения воды от нуля до значения, соответствующего установившемуся движению жидкости в водоводе 1 с известными значениями гидравлических сопротивлений и напора на входе в водовод 1 при открытых ударных клапанах 2. Количеством ударных клапанов 2 регулируются гидравлические сопротивления в водоводе 1. Размеры гидроагрегата, площадь и радиальный ход подвижных стенок водовода (мембран), а также их количество выбирают исходя из гидрологических параметров природных или техногенных водотоков. Количество гидроагрегатов, установленных в створе водотока, также выбирают согласно гидрологическим параметрам природного или техногенного водотока. Водоводы 1 устанавливают в створе водотока параллельно скорости движения жидкости в нем. Срабатывание автоматических ударных клапанов всех установленных в створе водотока гидроагрегатов осуществляют не одновременно, а со сдвигом во времени, обеспечивая непрерывность накопления энергии, первичное сглаживание пульсационных воздействий и устранение неравномерности в подаче сжатой газовой смеси (воздуха) на газоразделительную установку. Кроме того, параллельно установленные друг другу гидроагрегаты в створе водотока являются для последнего гидравлическими сопротивлениями, поэтому создают перед собой необходимый подпор для работы гидроагрегатов генераторов пневматической энергии. В случае недостаточности этого подпора при малом продольном уклоне водотока в его створе сооружают дополнительный водослив, обеспечивающий необходимый подпор воды перед гидроагрегатом.

Заявленное техническое решение позволяет преобразовывать практически даровую гидравлическую энергию многочисленных в мире низконапорных природных и техногенных водотоков в пневматическую энергию, необходимую для работы газоразделительных установок, и снизить, таким образом, эксплуатационные затраты на производство технических газов из воздуха.

Способ получения технических газов из воздуха, включающий генератор пневматической энергии, соединенный с газоразделительной установкой, отличающийся тем, что генератор пневматической энергии выполняют в виде гидроагрегата, размещают гидроагрегат в створе водотока с обеспечением подпора воды перед ним параллельно скорости движения жидкости в водотоке, устанавливают на гидроагрегате, имеющем подвижные в радиальном направлении стенки в виде мембран, сфероидальные камеры сжатия воздуха, инициируют периодический гидравлический удар в гидроагрегате, приводят в возвратно-поступательное движение мембраны камер сжатия воздуха, подают сжатый воздух в ресивер для сглаживания пульсаций давления с последующим направлением его на блок очистки и осушки воздуха, после чего сжатый воздух подают на адсорбционную установку разделения воздуха, выделяют в ней необходимый технический газ, собирают в буферной емкости, затем подают газ непосредственно потребителю или дожимают его с последующей закачкой в баллоны.



 

Похожие патенты:

Изобретение относится к охране окружающей среды и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей.

Изобретение относится к устройствам, предназначенным в основном для защиты воздушного бассейна Земли от канцерогенных газов и осадков, вылетающих из торчащих в небо труб промышленных предприятий (или организаций) в металлургической или химической промышленности, включая котельные, ТЭЦ и др.

Изобретение относится к очистителю, который разделяет газы, полученные в электролитическом генераторе из загрязнителей электролита, а также электролитическому генератору, содержащему такой очиститель, и способу газоочистки.

Изобретение относится к области теплоэнергетики, а более точно к устройству для очистки дымовых газов от оксидов азота селективным некаталитическим восстановлением.

Изобретение представляет: распределитель для жидкой или газообразной среды, внутренняя полость распределителя включает размещенные соосно центральной оси вращения внутри друг друга полые фигуры вращения - оболочки, имеющие сквозные отверстия или окна, с возможностью перемещения и поворота любой из них относительно других и корпуса распределителя, его переключение связано с возможностью совмещения определяемых управляющим распределением устройством отверстий или окон в оболочках и корпусе распределителя.

Изобретение относится к аппаратам для концентрирования различных суспензий и может быть использовано в пищевой и химической отраслях промышленности. Барботажный вакуум-выпарной аппарат содержит корпус с патрубками для ввода, при этом аппарат состоит из двух частей, верхней и нижней, причем верхняя часть снабжена паровой рубашкой, с ней соединен патрубок для удаления испаряемых паров, а внутри аппарата установлен коллектор с радиально расположенными трубками для барботирования суспензии горячим воздухом и центральная рециркуляционная труба с входными и выходными окнами, в которой установлен вал с ротором для рециркуляции суспензии из входных окон в выходные; к внешней части центральной рециркуляционной трубы закреплены мешалки со скребками, при этом центральная рециркуляционная труба установлена с возможностью вращения в подшипниках, при этом вал ротора и центральная рециркуляционная труба вращается за счет электропривода через коническую и две цилиндрические зубчатые передачи.

Изобретение относится к нефтедобывающей промышленности, в частности к установкам сепарации водогазонефтяной смеси, и направлено на повышение степени утилизации попутного нефтяного газа.

Изобретение относится к области очистки газов и может быть использовано в быту, в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц.

Предложена система для производства диоксида углерода, включающая в себя: подсистему сбора, выполненную для сбора технологического газа, причем технологический газ включает в себя углеводород; подсистему сжигания, выполненную для сжигания углеводорода в технологическом газе и получения газообразного потока сгорания, при этом газообразный поток продуктов сгорания включает в себя диоксид углерода и воду; и подсистему отделения, выполненную для отделения диоксида углерода от газообразного потока продуктов сгорания.

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.

Изобретение относится к области обработки воздуха. Способ калибровки датчика воздуха устройства обработки воздуха включает в себя этапы, на которых: i) - очищают воздух, используя устройство обработки воздуха; ii) - измеряют первое количество воздуха, используя датчик воздуха для получения первого значения для калибровки датчика воздуха, причем первое количество воздуха представляет собой смесь окружающего воздуха и очищенного воздуха, причем устройство обработки воздуха расположено в воздухонепроницаемом пространстве, а этап 2 дополнительно включает в себя этапы, на которых: определяют, удовлетворяет ли качество первого количества воздуха в воздухонепроницаемом пространстве заданному критерию; и если качество первого количества воздуха удовлетворяет заданному критерию, измеряют первое количество воздуха, используя датчик воздуха, для получения первого значения. Это позволяет повысить точность измерений и, как следствие, оптимизировать работу устройства обработки воздуха. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к способам модернизации установок подготовки природного и попутного нефтяного газа к транспорту методом низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Способ модернизации действующей установки низкотемпературной сепарации газа заключается в установке на линии подачи охлажденного газа в узел редуцирования дефлегматора, верх которого соединяют линией вывода газа дефлегмации с узлом редуцирования, а низ - линией вывода флегмы с блоком сепарации конденсата. Верхнюю часть дефлегматора оборудуют двумя секциями тепломассообменных элементов, которые соединяют линиями подачи газа и конденсата с блоком низкотемпературной сепарации, а также линиями вывода газа и конденсата с блоком рекуперации холода и блоком сепарации конденсата, соответственно. Течение технологических сред между точками подключения дефлегматора на линиях подачи охлажденного газа в узел редуцирования, подачи газа низкотемпературной сепарации в блок рекуперации холода и подачи конденсата низкотемпературной сепарации в блок сепарации конденсата перекрывают с помощью запорной арматуры. Техническим результатом является увеличение степени извлечения тяжелых углеводородов при обеспечении заданного качества подготовки газа. 1 ил., 1 пр.

Изобретение относится к технологии получения поваренной соли из неочищенных рассолов от растворения каменной соли путем выпаривания в многокорпусных выпарных установках. Описан способ получения поваренной соли из рассола от растворения каменной соли, включающий выпаривание этого рассола в присутствии затравки с получением упаренной суспензии, классификацию упаренной суспензии, промывку солепульпы от гипсовой затравки, разделение в фильтрующей центрифуге сгущенной суспензии, сушку соли, в котором выпаривание проводят при 50-155°С, а в выпарных корпусах в качестве затравки применяют полугидрат сульфата кальция, для приготовления которого часть гипсового шлама перед его подачей на затравливание нагревают до температуры, равной температуре среды в корпусе, для которого предназначена затравка, и подают в выпарной корпус, отмучивают солепульпу от гипсовой затравки исходным рассолом во взвешенном слое кристаллов соли и кристаллы соли дополнительно промывают исходным рассолом в фильтрующей центрифуге. Технический результата: расширение температурного интервала выпаривания рассола, удлинение межпромывочного пробега установки, уменьшение в получаемой соли содержания примеси частиц гипса. 1 ил.

Изобретение может быть использовано в химической промышленности. Способ регенерации хлорида лития в химическом производстве включает нейтрализацию растворов пластификационной и осадительной ванн водным раствором гидроксида лития. Многокомпонентные исходные смеси содержат от 0 до 60% диметилацетамида (ДМАА), от 0 до 70% изобутилового спирта (ИБС), хлорид лития, хлорид водорода, воду и примеси - остальное до 100%. Указанные смеси разделяют на содержащие хлорид лития и не содержащие его. Смеси, не содержащие хлорид лития, разделяют на содержащие ДМАА и не содержащие его. Жидкий поток, состоящий из ИБС и воды, выводят из системы. При этом проводят ректификацию раствора пластификационной ванны в двух колоннах и вакуумную выпарку смеси кубового остатка второй колонны и осадительной ванны. Осуществляют вакуумную ректификацию кубового остатка вакуум-выпарного аппарата, вакуумную ректификацию отгонного продукта вакуум-выпарного аппарата и третьей колонны с получением диметилацетамида (ДМАА). Концентрированный раствор хлорида лития кристаллизуют в диметилацетамиде. Поток концентрированного хлорида лития последовательно направляют на вакуумную ректификацию, кристаллизацию и центрифугирование. Отделяют комплексную соль хлорид лития - диметилацетамид от маточного раствора. Из маточного раствора путем многократного разбавления водой и выпаривания под вакуумом получают очищенный хлорид лития. Изобретение позволяет получать хлорид лития с чистотой до 95% и высоким выходом. 1 ил.

Изобретение относится к аппаратам для проведения процесса удаления влаги из жидких высоковлажных термолабильных растительных эмульсий и может быть использовано в пищевой, масложировой, лакокрасочной промышленности и других отраслях, применяющих выпаривание влаги из термолабильных высоковязких жидких концентратов. Аппарат содержит цилиндрический корпус с крышками и обогреваемыми стенками, снабженными патрубками для подвода и отвода пара, расположенными соответственно в верхней и нижней частях корпуса, и патрубками для ввода исходного и вывода готового продукта, сепарационный отбойник тарельчатого типа и сепарационную камеру с патрубком для подсоединения к вакуумной системе, размещенный внутри корпуса и закрепленный на валах с помощью дисков перфорированный ротор со звездообразным сечением, вершины которого являются его лопастями, а его кромки по всей своей длине расположены параллельно образующей внутренней поверхности цилиндрического корпуса с постоянным зазором. Полости ротора, образуемые лопастями, разделены по высоте лопасти перегородкой, нижняя часть которой имеет плавный скругленный переход к цилиндрической части ротора и которая разделяет полости перфорированной и сплошной частей ротора. Внутри полости ротора установлена перегородка, которая также разделяет полости перфорированной и сплошной частей ротора. Патрубки для ввода исходного продукта расположены в районе действия лопастей ротора в верхней и нижней части крышки, размещенной на левом торце цилиндрического корпуса. Перегородки, расположенные в соседних полостях, разнесены по длине полости ротора друг относительно друга с шагом, обеспечивающим образование винтового конвейера. Технический результат - равномерное распределение продукта по внутренней поверхности аппарата, что приводит к снижению динамического воздействия на привод барабана и к более стабильному перемещению пленки продукта по длине аппарата, а также повышение эффективности выделения из парожидкой смеси водяного пара и частичек готового продукта. 2 ил.

Изобретение относится к способу извлечения углеводородов из установки для получения полиолефинов. Способ включает следующие действия: i) введение углеводородсодержащего инертного газа из блока для отделения остаточных мономеров установки для получения полиолефинов в устройство для конденсации и разделения, причем углеводороды представляют собой пропилен и необязательно пропан или этилен и необязательно этан, а инертный газ представляет собой азот, ii) введение жидкого азота в устройство для конденсации и разделения, iii) конденсацию по меньшей мере части углеводородов из углеводородсодержащего инертного газа в устройстве для конденсации и разделения с использованием энергии испарения жидкого азота, iv) разделение конденсированного углеводородсодержащего инертного газа на конденсированный углеводородсодержащий продукт, а также очищенный инертный газ в устройстве для конденсации и разделения и v) введение конденсированного углеводородсодержащего продукта из устройства для конденсации и разделения в расположенное ниже по потоку дополнительное разделительное устройство, в котором отделяют растворенные газы от конденсированного углеводородсодержащего продукта. Также изобретение относится к устройству. Способ и устройство обеспечивают чрезвычайно энергосберегающее извлечение, простое относительно аппаратов, углеводородов, в частности остаточных мономеров, при производстве полиолефинов. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в газовой отрасли для создания установок комплексной подготовки газа. Предложенная установка включает блоки сепарации (1), комплексной подготовки газа сепарации (2) и стабилизации газового конденсата (3), блок каталитической переработки легкой углеводородной фракции, включающий узлы паровой конверсии (4), синтеза метанола (5), подготовки воды (6), охлаждения и осушки синтез-газа (7), выделения метанола (8) и абсорбции (9). Установка оснащена линиями подачи сырого газа (10), балансовой воды (11), вывода товарного газа (12), водного конденсата (13), стабильного газового конденсата (14), метанола (15), а также технологическими линиями (16-28). Полученный синтез-газ после охлаждения и осушки в узле (7) подают в узел синтеза метанола (5), из катализата выделяют метанол, а отходящий газ подают в узел абсорбции (9), где частью стабильного газового конденсата абсорбируют метан. Очищенный отходящий газ по линии (27) подают в качестве топлива в узел паровой конверсии (4), а абсорбат по линии (28) подают в блок сепарации (1) для выделения метана. Использование установки обеспечивает расширение ассортимента продукции. 1 ил.

Изобретение относится к промысловой переработке скважинной продукции газоконденсатных месторождений и может найти применение в газовой промышленности. Установка включает блоки входной сепарации и подготовки газа, блоки дегазации, электрообессоливания и фракционирования углеводородного конденсата, а также блоки каталитической переработки дистиллята широкого фракционного состава и дегидроциклодимеризации смеси газа дегазации с газом каталитической переработки. При этом блок фракционирования дополнительно оснащен линией вывода мазута, а блок подготовки газа соединен с блоком дегазации линией подачи широкой фракции легких углеводородов (ШФЛУ). Техническим результатом является переработка скважинной продукции, содержащей газовый конденсат любого фракционного состава, и снижение металлоемкости установки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам подготовки газового конденсата к однофазному транспорту и может быть использовано в газовой промышленности. Предложен способ, согласно которому редуцированный нестабильный конденсат сепарируют в сепараторе первой ступени с получением газа выветривания и выветренного конденсата, который подают в верхнюю часть дефлегматорной секции пленочной колонны в качестве хладагента и затем направляют в зону питания, с верха колонны выводят углеводородный газ, а с низа - конденсат, который разделяют на две части: одну нагревают и сепарируют в устройстве с получением газа сепарации, направляемого в низ колонны в качестве отпаривающего агента, и остатка сепарации, который разделяют на абсорбент и балансовый поток, который в смеси с другой частью конденсата подают в качестве теплоносителя в нижнюю часть отпарной секции и выводят в качестве товарного конденсата. Углеводородный газ сжимают, охлаждают и подвергают абсорбционной очистке во фракционирующем абсорбере с охлаждаемой абсорбционной и нагреваемой отпарной секциями с получением газа стабилизации, который смешивают с газом выветривания первой ступени с получением газа выветривания и пропан-бутановой фракции. Изобретение позволяет увеличить выход и расширить ассортимент товарной продукции, уменьшить объем газа выветривания и снизить энергозатраты.1 ил.

Изобретение относится к области аналитической химии, нефтехимии, химии лаков и красок и предназначено для выделения вяжущего компонента из растворов битумных композиций, битумных эмульсий, битумных лаков, а также любых других смесей, содержащих в качестве вяжущего битумную составляющую и дальнейшего его анализа или использования. Способ выделения битумного вяжущего осуществляется из растворов и эмульсий, в которых весовое соотношение вяжущего компонента к растворителю составляет 1:0,3-10, а в качестве растворителя используется вода или углеводородный растворитель, имеющий температуру кипения не выше 300°С, либо их смесь. Способ включает первоначальную стадию отгона растворителя, последующую конденсацию растворителя и затем выделение и анализ битумного вяжущего, при этом отгон и конденсация растворителя осуществляется на роторно-пленочном испарителе при следующем поэтапном температурно-временном режиме: 1 ч с равномерным повышением температуры от 60 до 120°С (25 мм рт.ст.), 1 ч с равномерным повышением температуры от 120 до 160°С (25 мм рт.ст.), 2-4 ч при 160°С (1-5 мм рт.ст.). Способ позволяет проводить выделение вяжущих без изменения их свойств, измерять, исследовать и контролировать готовый продукт, взятый в необходимых количествах, на соответствие его действующим стандартам. 1 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам получения технических газов из воздуха. Способ получения технических газов из воздуха включает генератор пневматической энергии, соединенный с газоразделительной установкой. Генератор пневматической энергии выполняют в виде гидроагрегата, установленного в створе природного или техногенного водотока. На гидроагрегат, имеющий подвижные в радиальном направлении стенки в виде мембран, устанавливают камеры сжатия воздуха, рабочие органы которых приводят в возвратно-поступательное движение энергией периодического гидравлического удара. Сжатый атмосферный воздух из генератора пневматической энергии собирают в ресивере, сглаживающем пульсации давления, далее после очистки и осушки подают в установку разделения воздуха, выделенный технический газ направляют потребителю. Изобретение позволяет снизить себестоимость получения технических газов за счет использования гидравлической энергии природных и техногенных водотоков для генерации пневматической энергии, необходимой для работы газоразделительных установок различного типа. 1 ил.

Наверх