Электрохимический способ выявления аминокислотных замен и идентификации пептидов

Изобретение относится к области химии, а именно к аналитической химии, электрохимии и биохимии, и предназначено для идентификации пептидов и выявления аминокислотных замен в их структурах. Для осуществления способа на печатный графитовый электрод наносят аликвоту 60-100 мкл 50 мкМ раствора пептида в буферном растворе. Регистрируют квадратно-волновую вольтамперограмму окисления в области от 0 до 1,5 В (отн. Ag/AgCl). Измеряют потенциалы максимумов и высоты полученных сигналов окисления аминокислотных остатков - пиков или волн и фиксируют результаты. По различию в положении потенциалов максимумов сигналов окисления и их интенсивности, зная аминокислотные последовательности для группы исследуемых пептидов или имея базу данных, полученную ранее, проводят идентификацию пептидов. При сравнении результатов относительно контроля - «нормального» пептида, констатируют аминокислотную замену. Использование изобретения обеспечивает электрохимическую идентификацию пептидов и выявление в их структуре аминокислотных замен. 1 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

 

Изобретение относится к области аналитической химии, электрохимии и биохимии и касается методики идентификации пептидов и выявления аминокислотных замен в их структуре электрохимическим методом с помощью регистрации анодных вольтамперограмм на печатных графитовых электродах.

Изобретение может быть использовано в аналитической химии, электрохимии и биохимии при идентификации пептидов и выявлении аминокислотными замен в их структуре, а также при изучении биологических процессов с участием пептидов in vitro. Создание в перспективе библиотек вольтамперограмм окисления пептидов расширит возможности по их идентификации. Аминокислотные замены в пептидах и белках представляют интерес при изучении молекулярных механизмов различных заболеваний. Очевидно, что свойства и функции пептидов определяются их аминокислотной последовательностью [1]. Так мутации, приводящие к аминокислотным заменам в β-амилоиде (Аβ) и α-синуклеине, могут быть связаны с развитием болезни Альцгеймера и болезни Паркинсона, соответственно [2-5].

На практике для исследования аминокислотных замен в пептидах используют электрофоретические методы; секвенирование молекул пептидов или анализ молекул ДНК, кодирующих исследуемые пептиды; протеомные методы, сопряженные с хромато-масс-спектрометрией, и предсказание аминокислотных замен методами in silico. К недостатку электрофоретического анализа можно отнести необходимость в достаточно больших количествах исследуемого вещества, кроме того, с помощью этого метода возможно выявление только тех аминокислотных замен, которые вносят существенный вклад в изменение заряда молекулы или молекулярной массы пептида. Предсказание аминокислотных замен в пептидах методами in silico требуют последующей экспериментальной проверки. Несмотря на широкое использование протеомных подходов и анализа ДНК, эти методы достаточно трудоемки, многостадийны, требуют большого количества реагентов и дорогостоящего оборудования.

Электрохимические методы анализа, отличающиеся своей чувствительностью, широким диапазоном определяемых концентраций, низкой себестоимостью оборудования и расходных материалов, скоростью и портативностью, представляются наиболее перспективными для создания нового подхода к идентификации пептидов и анализу аминокислотных замен в их молекулах. В настоящее время электрохимического способа идентификации пептидов и анализа аминокислотных замен в их молекулах не существует.

Идентификация молекул пептидов и выявление замен в их аминокислотных последовательностях могут быть осуществлены, используя электрохимическую активность аминокислотных остатков, входящих в их состав: тирозина, триптофана, цистеина, гистидина, метионина и цистина [6]. Реакции электрохимического окисления аминокислот могут быть выражены следующими схемами [6]:

Электрохимическая активность пептидов и белков за счет окисления аминокислотных остатков показана для ряда молекул, используя разные типы электродов их углеродных материалов [7-10]. Диапазоны потенциалов, при которых проходят реакции окисления аминокислотных остатков пептидов и белков описаны в литературе (Таблица 1) [7-11].

Так, окисление пептида Аβ через остаток Тир-10 при потенциале 0,6-0,7 В (отн. Ag/AgCl) используют для слежения за процессом его агрегации [7]. Ранее было показано, что электрохимический анализ сигнала окисления позволяет различить дикий тип и мутантные формы с одиночными аминокислотными заменами фермента ацетилхолинэстеразы [11]. Авторы работы [11] обращают внимание на то, что замены, приводящие к изменениям конформации белка, давали большие изменения электрохимического сигнала, чем другие замены. Наблюдаемые электрохимические эффекты в отношении ацетилхолинэстеразы также подтверждают предположение, что только аминокислоты, локализованные на поверхности белка, проявляют свои электроактивные свойства [12]. Однако, в отличие от молекул белков с относительно стабильной третичной структурой, пептиды достаточно подвижны в нейтральных рН, принимая конформацию случайного клубка.

Задачей настоящего изобретения является разработка способа электрохимической идентификации пептидов и выявления аминокислотных замен в их структуре. Метод основан на регистрации квадратно-волновых вольтамперограмм окисления пептидов в области 0-1,5 В.

Описываемый далее способ ранее никогда не использовался для идентификации пептидов и выявления аминокислотных замен в их структуре. Работы, опубликованные в данной области, в отличие от предлагаемого способа анализа, во-первых, направлены на изучение электрохимических свойств отдельных белков и пептидов в целом и, во-вторых, предлагают различные методы, основанные на регистрации только одного сигнала белка или пептида (в большинстве работ, сигнала окисления за счет остатков Тир). Предлагаемый способ состоит в расширении числа регистрируемых сигналов окисления пептида (белка) за счет нескольких аминокислотных остатков (всех проявляющих электрохимическую активность) и их комплексном анализе.

В соответствии с изобретением описывается способ идентификации пептидов и анализа аминокислотных замен в их структуре, заключающийся в том, что на печатный графитовый электрод наносят аликвоту (60-100 мкл) 50 мкМ раствора пептида в буферном растворе и регистрируют квадратно-волновую вольтамперограмму окисления в области от 0 до 1,5 В (отн. Ag/AgCl); измеряют потенциалы максимумов и высоты полученных сигналов окисления (пиков или волн); заносят результаты в таблицу и по различию в положении потенциалов максимумов сигналов окисления и их интенсивности, зная аминокислотные последовательности для группы исследуемых препаратов или имея базу данных, полученную ранее, проводят идентификацию пептидов. Путем сравнения результатов относительно контроля («нормального» пептида) констатируют аминокислотную замену или модификацию.

ПРИМЕР 1. Методика регистрации электрохимического сигнала образца Аβ16

Поскольку синтетический пептид Аβ16, соответствующий участку 1-16 Аβ человека, содержит в своем составе два вида потенциально электрохимически активных аминокислотных остатка: Тир (Тир-10) и Гис (Гис-6, Гис-13 и Гис-14). Следовательно, на квадратно-волновой вольтамперограмме ожидается появление двух сигналов, соответствующих окислению остатков Тир и Гис.

Исходный 2×10-4 М водный раствор пептида Аβ 16 или его мутатной формы (Таблица 1) перед измерениями разводят в два раза соответствующим фосфатным буферным раствором, для получения 200 мкл-образцы с концентрацией пептида 1×10-4 М в 1×10-2 фосфатном буфере с 5×10-2 M NaCl (рН 7,2). После чего из каждого образца отбирают по три аликвоты объемом 60 мкл и для каждой регистрируют квадратно-волновые вольтамперограммы при следующих параметрах:

Время инкубации: 10 с;

Частота: 25 Гц;

Начальный потенциал: 0 В;

Конечный потенциал: 1,5 В;

Шаг потенциала: 0,005 В;

Амплитуда: 0,040 В.

Для регистрации квадратно-волновых вольтамперограмм закрепляют печатный графитовый электрод в разъеме потенциостата в «горизонтальном режиме». С помощью автоматической пипетки ручного дозирования на поверхность печатного графитового электрода наносят 60 мкл образца пептида (или его мутантной формы) в буфере так, чтобы капля полностью закрыла рабочий, вспомогательный и электрод сравнения. Запускают процедуру измерения сигнала. Полученную вольтамперограмму сохраняют. Для каждого образца пептида проводят процедуру измерения вольтамперограммы окисления в трех технических повторах на трех печатных графитовых электродах. Один печатный графитовый электрод используют один раз для регистрации одной вольтамперограммы. Для каждого образца определяют потенциалы максимумов и высоты полученных пиков(волн)окисления.

В Таблице 2 приведены результаты, полученные для синтетического пептида Аβ 16, его мутантных форм Н6А-Н13А-Аβ16, D7H-Aβl6 и H6R-Aβ16, отличающихся числом остатков Гис; и кАβ16 - пептида, соответствующего участку 1-16 Аβ крысы, не имеющего в своей последовательности Тир. Согласно полученным результатам, вольтамперограммы окисления индивидуальны для каждого исследованного пептида с соответствующими значениями потенциалов максимумов и высот пиков окисления остатков Тир и Гис. По полученным вольтамперограммам можно идентифицировать каждый из тестируемых препаратов пептидов (Таблица 2). Препараты пептидов с аминокислотными заменами значимо отличаются от «нормального» варианта Аβ 16 (Таблица 2).

На приведенных ниже графиках представлены типичные квадратно-волновые вольтамперограммы окисления Аβ 16 в области от 0 до 1,5 В (Фиг. 1); Аβ 16, Н6А-Н13А-Аβ16 и кАβ16 в области потенциалов от 0,75 до 1,25 В (Фиг. 2) и от 0,2 до 0,9 В (Фиг. 3), полученные согласно разработанной методике анализа и демонстрирующие пики окисления пептидов за счет остатка Тир-10 (потенциал максимума пика около 0,6 В) и остатков Гис-6, Гис-13 и Гис-14 (потенциал максимума пика около 1,1 В). Концентрация пептидов составляет 1×10-4 М в фосфатном буфере, рН 7,2.

ЛИТЕРАТУРА

[1] Д. Нельсон, М. Кокс, Основы биохимии Ленинджера в 3-х томах, том 1, М.: БИНОМ. Лаборатория знаний, 2011, 694 с.

[2] A. Puschmann, R. Bhidayasiri, W.J. Weiner, Synucleinopathies from bench to bedside, Parkinsonism Relat Disord, 2012, 18 (Suppl. 1), S24-S27.

[3] Y. Wakutani, K. Watanabe, Y. Adachi, K. Wada-Isoe, K. Urakami, H. Ninomiya, Т.C. Saido, T. Hashimoto, T. Iwatsubo, K. Nakashima, Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease, J. Neurol. Neurosurg. Psychiatry, 75 (2004), 1039.

[4] W.T. Chen, C.J. Hong, Y.T. Lin, W.H. Chang, H.T. Huang, J.Y. Liao, Y.J. Chang, Y.F. Hsieh, C.Y. Cheng, H.C. Liu, Y.R. Chen, I.H. Cheng, Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies, PLoS One, 7 (2012), e35807.

[5] J.С.Janssen, J.A. Beck, T.A. Campbell, A. Dickinson, N.C. Fox, R.J. Harvey, H. Houlden, M.N. Rossor, J. Collinge, Early onset familial Alzheimer's disease: Mutation frequency in 31 families, Neurology, 60 (2003), 235.

[6] E.V. Suprun, V.V. Shumyantseva, A.I. Archakov, Protein Electrochemistry: Application in Medicine. A Review, Electrochim. Acta, 140 (2014), 72.

[7] M. Vestergaard, K. Kerman, M. Saito, N. Nagatani, Y. Takamura, E. Tamiya, A Rapid Label-Free Electrochemical Detection and Kinetic Study of Alzheimer's Amyloid Beta Aggregation, J. Am. Chem. Soc. 127 (2005), 11892-11893.

[8] M. Chiku, J. Nakamura, A. Fujishima, Y. Einaga, Conformational change detection in nonmetal proteins by direct electrochemical oxidation using diamond electrodes, Anal. Chem. 80 (2008), 5783-5787.

[9] T.A. Enache, A.M. Oliveira-Brett, Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes, Bioelectrochemistry, 89 (2013), 11-18.

[10] B.D. Topal, S.A. Ozkan, B. Uslu, Direct electrochemistry of native and denatured alpha-2-macroglobulin by solid electrodes, J. Electroanal. Chem. 719 (2014), 14-18.

[11] M. Somji, V. Dounin, S. B. Muench, H. Schuize, Т. T. Bachmann, K. Kerman, Electroanalysis of amino acid substitutions in bioengineered acetylcholinesterase, Bioelectrochemistry, 88 (2012) 110.

[12] E.V. Suprun, M.S. Zharkova, G.E. Morozevich, A.V. Veselovsky, V.V. Shumyantseva, A.I. Archakov, Analysis of Redox Activity of Proteins on the Carbon Screen Printed Electrodes, Electroanalysis, 25 (2013), 2109-2116.

1. Способ идентификации пептидов и анализа аминокислотных замен в их структуре, заключающийся в том, что на печатный графитовый электрод наносят аликвоту 60-100 мкл 50 мкМ раствора пептида в буферном растворе и регистрируют квадратно-волновую вольтамперограмму окисления в области от 0 до 1,5 В (отн. Ag/AgCl); измеряют потенциалы максимумов и высоты полученных сигналов окисления аминокислотных остатков - пиков или волн; фиксируют результаты и по различию в положении потенциалов максимумов сигналов окисления и их интенсивности, зная аминокислотные последовательности для группы исследуемых пептидов или имея базу данных, полученную ранее, проводят идентификацию пептидов.

2. Способ по п. 1, где путем сравнения результатов относительно контроля («нормального» пептида) констатируют аминокислотную замену.



 

Похожие патенты:

Изобретение относится к медицине и представляет собой способ диагностики немалиновой миопатии, при котором у пациента с клинической картиной врожденной миопатии осуществляют забор биоптата скелетной поперечнополосатой мышечной ткани, проводят иммуногистохимическое выявление фактора, индуцируемого гипоксией 1-альфа (HIF-1α), для чего готовят гистологические образцы-срезы, наносят на них усилитель флуоресцентного сигнала, далее на срезы наносят белок-блокатор для уменьшения фонового неспецифического окрашивания, затем срезы инкубируют с поликлональными антителами кролика к белку HIF-1α, после промывки наносят на срезы соответствующие вторичные флуоресцентные антитела, покрывают фотозащитным реагентом и проводят люминесцентную микроскопию, а при выявлении локусов округлой и/или овальной формы красной окраски диаметром 3-5 мкм под оболочкой мышечного волокна диагностируют немалиновую миопатию.

Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для прогнозирования необходимости проведения лазерной коагуляции при ретинопатии недоношенных.

Группа изобретений относится к способу калибровки составного анализа, включающему: добавление калибровочного реагента, включающего по меньшей мере две различные связывающие молекулы, где каждая молекула обладает способностью специфичного связывания с агентом захвата и способностью связываться с детектирующей молекулой и где по меньшей мере две из связывающих молекул имеют различные специфичности и присутствуют в различных концентрациях, добавление детектирующей молекулы, детектирование связанной детектирующей молекулы, создание калибровочной кривой, включающей ряд калибровочных точек/интервалов.

Изобретение относится к экспериментальной биологии и медицине и касается способа стимуляции выработки эритропоэтина клетками костного мозга in vitro. Для этого CD4+-клетки костного мозга культивируют в СO2-инкубаторе при 37°С, 5% СО2 и 100% влажности воздуха в течение 24 часов.

Изобретение относится к области медицины, а именно к педиатрии, и может быть использовано при обследовании больных для прогнозирования развития нефросклероза у детей с хроническим пиелонефритом.
Изобретение относится к офтальмологии и предназначено для прогнозирования интраоперационных геморрагических осложнений при тяжелой форме пролиферативной диабетической ретинопатии.

Изобретение относится к области биотехнологии, конкретно к мутеинам белка липокалина, а также к полученным на их основе специфично связывающимся терапевтическим или диагностическим белкам, направленным против гепсидина, и может быть использовано в медицине.
Изобретение относится к области медицины, а именно к судебно-медицинской экспертизе, криминалистике, и предназначено для определения биологического возраста трупа.

Настоящее изобретение относится к области биотехнологии и касается способа выделения антилиганда, представляющего собой антитело или его антигенсвязывающий вариант, производное или фрагмент, каркасную молекулу со сконструированными вариабельными поверхностями; рецептор или фермент, к дифференциально-экспрессирующемуся целевому лиганду.

Группа изобретений относится к области биохимии. Предложен способ для идентификации субъекта с депрессией или имеющего риск развития депрессии, который имел бы положительный эффект от или ответил на режим лечения, включающий фолат-содержащее соединение, где указанный субъект идентифицируется таким, как указанно выше при условии детекции в генотипах двух локусов наличия аллеля с тимином Т в положении 677 (в гене MTHFR) и аллеля с гуанином G в положении SNP2756 (в гене MTR).

Изобретение относится к области медицины и представляет собой способ прогнозирования риска развития быстрорастущей миомы матки, заключающийся в том, что исследуют ультразвуковые параметры матки с подсчетом количества миоматозных узлов, методом краевой дегидратации менструальных выделений (МВ) определяют наличие параллельных и волокнистых структур и рассчитывают коэффициент Р: где z рассчитывают по формуле:z=b1×x1+b2×x2+b3×х3+а,где b1 - коэффициент, равный 2,172; x1 - волокнистые структуры в MB: наличие «2»; отсутствие «1»; b2 - коэффициент, равный 2,238; x2 - параллельные структуры в MB: наличие «2»; отсутствие «1»; b3 - коэффициент, равный 1,568; x3 - количество узлов; а - константа, равная –10,915; и при значении Р>0,5 дополнительно методом иммуноферментного анализа исследуют уровни лигандов APRIL и TRAIL, и при значении APRIL более 11,1 нг/мл, TRAIL менее 22,5 пг/мл прогнозируют риск развития быстрорастущей миомы матки.

Группа изобретений относится к медицине и предназначена для неинвазивного мониторинга свойств биологической ткани. Последовательно проводят следующие этапы: сбора данных импеданса и вспомогательных данных от участка тела пользователя; предварительной обработки полученных данных, причем предварительная обработка заключается в фильтрации полученных данных и удалении артефактов из полученных данных импеданса путем обнаружения не относящихся к пище физиологических факторов на основе вспомогательных данных; восстановления динамики кривой глюкозы путем применения обученного алгоритма машинного обучения, оценивания гликемического индекса из динамики кривой глюкозы, предоставления пользователю результатов оценки и автоматического мониторинга привычек питания на основе упомянутых результатов оценки для определенного периода времени.

Изобретение относится к медицине, а именно к гинекологии, репродуктологии, эмбриологии, и может быть использовано для определения in vitro перспективных эмбрионов для последующей имплантации в матку при проведении процедуры экстракорпорального оплодотворения (ЭКО).
Изобретение относится к области медицины и касается способа диагностики микробного фактора при хроническом неспецифическом эндометрите. Сущность способа заключается в том, что у больной на 7-9-й день менструального цикла берут бактериологический посев из полости матки и цервикального канала с помощью внутриматочной цитощетки.

Изобретение относится к медицине, хирургии, интраоперационной дифференциальной диагностике объемных образований щитовидной железы (ЩЖ). В режиме реального времени проводят конфокальную лазерную микроскопию ткани ЩЖ.

Настоящее изобретение относится к области медицины, а именно к ветеринарии, и предназначено для оценки готовности иммунной системы к вакцинации. Для оценки функциональной зрелости иммунной системы молодняка сельскохозяйственной птицы в брюшную полость цыплят в возрасте 3, 7, 12, 17 и 28 суток инъецируют маркер "Трипановый синий" в дозе не более 0,5 мл.
Изобретение относится к медицине, в частности гастроэнтерологии, и касается способа диагностики тяжести течения хронического гастрита у детей. Сущность способа заключается в изучении клинических, морфологических и иммуногистохимических показателей слизистой оболочки желудка на наличие антигенов простого герпеса, цитомегаловируса и вируса Эпштейн-Барр.
Изобретение относится к области ветеринарии и предназначено для диагностики нематодозов жвачных животных. Способ сбора и фиксации нематод, паразитирующих в сычуге и тонком кишечнике жвачных животных, включает извлечение сычуга и тонкого кишечника с содержимым во время патологоанатомического вскрытия.

Изобретение относится к медицине и может быть использовано для определения массы микрочастицы в суспензии. Для этого осуществляют формирование измерительного объема между двумя электродами, соединенными с источником переменного напряжения и расположенными в камере с жидкостью, диспергирование в этот объем частицы, измерение параметров взаимодействия частицы с электрическим полем и последующее вычисление ее массы.

Заявленное изобретение относится к области ветеринарии и предназначено для ранней диагностики мастита у коров. Способ заключается в том, что молоко в объеме 100-200 мкл наносят на предметное стекло и проводят дегидратацию препарата в потоке теплого воздуха при температуре 40-50°С и влажности 20-30% в течение 15-20 минут в горизонтальном положении.

Группа изобретений относится к области биохимии. Предложены способ и система для клеточного анализа. Способ включает обеспечение группы маркированных клеток, выбор имеющей интересующее свойство клетки в группе, запись локализации клетки, направление лазерного импульса на клетку и генерирование дискретного шлейфа, введение дискретного шлейфа в индуктивно сопряженную плазму и генерирование групп соответствующих маркеру элементарных ионов, обнаружение каждой из групп элементарных ионов одновременно для каждого дискретного шлейфа с помощью массовой цитометрии и корреляцию обнаруженных элементарных ионов с интересующим свойством. Система включает опрашивающее устройство для идентификации локализации подходящей клетки, хранилище данных для записи локализации клетки, систему лазерной абляции для направления лазерного импульса на локализацию клетки и массовый цитометр для обнаружения связанного с подходящей клеткой маркера. Изобретения обеспечивают расширение области клеточного анализа по сравнению с возможностями традиционных основанных на клетке методик отображения или визуализации. 2 н. и 13 з.п. ф-лы, 5 ил.
Наверх