Способ обработки металлических изделий, полученных холодным пластическим деформированием


C21D1/04 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2658563:

Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU)

Изобретение относится к области металлургии. Для повышения надежности холоднодеформированных металлических изделий за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости, а также снижения продолжительности обработки изделие после холодного пластического деформирования подвергают воздействию пульсирующим дозвуковым воздушным потоком, имеющим частоту, соответствующую частоте собственных колебаний обрабатываемого изделия, и звуковое давление 100-145 дБ при температуре от -20°С до +5°С.

 

Изобретение относится к области металлургии, а более конкретно к обработке металлов, в частности к воздействию на изделия, полученные холодным пластическим деформированием.

Металлические детали машин, приборов, другого оборудования, полученных пластическим холодным деформированием, зачастую эксплуатируются без последующей обработки, приобретя свои окончательные механические свойства в процессе пластического формоизменения, сопровождающегося деформационным упрочнением - наклепом. Наклеп, повышая значения показателей прочности, резко снижает пластичность и ударную вязкость.

Такая обработка, как отжиг способствует в зависимости от температуры уменьшению или полному снятию наклепа, но при этом происходит разупрочнение изделия.

Актуальной является задача повышения надежности изделий, полученных холодным пластическим деформированием за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости.

Известен способ дробеструйной обработки изделий (см. патент RU 2087583 С1, 20.08.1997). В результате силового воздействия стальных дробинок на изделие его поверхностный слой подвергается пластической деформации. При этом происходит развитие рельефа поверхности, насыщение ее структурными дефектами. Это способствует увеличению энергии поверхностных атомов и скорости их диффузии в процессе химического взаимодействия с расплавленной частицей. Дробь хромистой стали при ударе о поверхность изделия деформируется. При этом материал дроби переносится на поверхность, вследствие чего последняя покрывается слоем хрома. Использование известного способа дробеструйной обработки поверхности изделий смесью стальной дроби и дроби хромистой стали обеспечивает создание на поверхности изделия слоя хрома, обладающего высокой диффузионной подвижностью, что увеличивает адгезию плазменного покрытия в 1,9 раз. Изобретение может быть использовано преимущественно для подготовки поверхности стальных деталей к плазменному напылению, очистки от окалины, упрочнения металлических изделий и создания коррозионной защиты.

Основным недостатком способа является снижение качества поверхности, делающее способ малопригодным для обработки готовых изделий.

Наиболее близким по технической сущности к заявляемому изобретению является способ снятия остаточных напряжений на поверхности металлических изделий (см. патент RU 2458155 С1, 10.08.2012 г., бюл. №22), принятый в качестве ближайшего аналога.

Снятие растягивающих остаточных напряжений на поверхности металлических изделий осуществляют за счет воздействия на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре.

Основным недостатком данного известного способа является недостаточное в результате его применения повышение пластичности и ударной вязкости, а также продолжительность обработки не менее 10 минут.

Перед заявляемым изобретением поставлена задача повышения надежности металлических изделий, полученных холодным пластическим деформированием, за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости, а также снижения продолжительности обработки пульсирующим воздушным потоком.

Решение поставленной задачи достигают тем, что полученные холодным пластическим деформированием изделия из металлических материалов подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту, соответствующую частоте собственных колебаний обрабатываемого изделия, и звуковое давление 100-145 дБ при температуре от -20°С до +5°С.

Таким образом изобретение позволило получить технический результат, а именно: повысить надежность металлических изделий, полученных холодным пластическим деформированием, за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости, а также снизить продолжительность обработки пульсирующим воздушным потоком.

Заявляемое изобретение реализуется следующим образом.

Полученные холодным пластическим деформированием изделия из металлических материалов подвергают в успокоительной камере генерирующей колебания установки, обеспечивающей выравнивание параметров потока в поперечной плоскости, воздействию пульсирующего дозвукового воздушного потока, имеющего частоту, соответствующую частоте собственных колебаний обрабатываемого изделия, и звуковое давление 100-145 дБ при температуре, которая соответствует значению температуры в успокоительной камере, пониженной относительно комнатной из-за охлаждения при расширении воздушной струи, находясь в интервале от -20°С до +5°С.

При взаимодействии пульсирующего газового потока с преградой в последней могут возникать и распространяться механические волны.

Под механической волной понимается процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Эффективность воздействия пульсирующих струй газа на конструктивную прочность металлических материалов зависит не только от продолжительности обдува и энергии импульсов газа, но и от частоты этих импульсов.

Если частота импульсов близка к частоте собственных (свободных) колебаний обдуваемого металлического изделия, возможен резонанс и значительный рост воздействующих на металл импульсов, что может способствовать интенсификации процессов дислокационной перестройки структуры металлического материала и изменению его механических свойств.

Частота вынужденных колебаний образца в целом соответствуют частоте колебаний натекающего на него газового потока. Собственные колебания образца рассчитываются по формуле в зависимости от массы, длины, модуля Юнга и момента инерции. При совпадении частот колебаний параметров потока с собственными колебаниями образца (системы) должны наблюдаться резонансные эффекты, оказывающие дополнительное воздействие на структуру материала.

Так для стали 40 при размещении ударных образцов из холодного проката со степенью деформации 50% поперек пульсирующего воздушного потока закрепленными за один конец, при частоте собственных колебаний, составляющих 3787 Гц и соответствующих частоте колебаний натекающего потока, после обдува в течение 5 мин ударная вязкость составила 0,8 МДж/м2 против 0,6 МДж/м2 без обдува или на 25% больше, при не менее высоких значениях показателей прочности и твердости и более высокой пластичности.

Таким образом изобретение позволило получить технический результат, а именно: повысить надежность металлических изделий, полученных холодным пластическим деформированием, за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости, а также снизить продолжительность обработки пульсирующим воздушным потоком.

Способ обработки холоднодеформированных стальных изделий, включающий воздействие на изделия пульсирующим дозвуковым воздушным потоком, отличающийся тем, что воздействие на изделия пульсирующим дозвуковым воздушным потоком ведут с частотой, соответствующей частоте собственных колебаний стального изделия, и давлением, равным 100-145 дБ, при температуре от -20°C до +5°C.



 

Похожие патенты:

Изобретение относится к области термической обработки и может быть использовано при термической обработке литых деталей из высокомарганцовистых сталей, работающих в условиях интенсивного абразивного и ударного воздействия.
Изобретение относится к области металлургии и может быть использовано в машиностроительной и радиотехнической промышленности. Техническим результатом изобретения является упрощение и сокращение процесса закалки и улучшение экологии.

Настоящее изобретение относится к металлургии, а именно к способам упрочняющей обработки окончательно изготовленных стальных деталей машин и инструментов без изменения их первоначальных размеров и структуры.

Изобретение относится к области машиностроения, а в частности к обработке металлических листов с целью обеспечения их жесткости. В способе обеспечения жесткости металлического листа посредством локального переплава механической и химической обработкой подготавливают металлический лист необходимых размеров в диапазоне (Д×Ш×Т) 300×100×2 мм до 3000×1500×12 мм из перлитных, бейнитных или мартенситных закаливающихся сталей марок 30ХГСА, 35ХГСА и прочих.

Изобретение относится к области металлургии. Для улучшения эксплуатационных свойства режущего инструмента и деталей проводят химико-термическую обработку деталей в условиях акустического резонансного воздействия потоком сжатого воздуха путем нагрева до температуры от 150 до 450 С° и охлаждения деталей в газовой смеси, состоящей из воздуха и газообразных химических реагентов, при этом нагрев и охлаждение деталей осуществляют в резонаторной камере при давлении 1.5-4.5 атм и воздействии на детали циркулирующим потоком сжатого воздуха на резонансной частоте в диапазоне 500-5000 Гц, а концентрация газовых компонент по отношению к воздушной среде в камере составляет: по водороду: от 2 до 2.5%, по метану: от 10 до 25%, по азоту: от 15 до 25%, по аммиаку: от 15 до 45%.

Изобретение относится к области металлургии, конкретно к термической обработке горячекатаного рулонного проката из легированных доэвтектоидных сталей типа 50ХГФА, предназначенного для изготовления нажимных пружин сцепления.

Изобретение относится к области металлургии, а именно к производству бесшовного трубного изделия, и может быть использовано в нефтяных и газовых скважинах. Бесшовное трубное изделие нефтегазопромыслового сортамента в виде трубки или трубы из высокопрочной нержавеющей стали имеет состав, мас.%: С 0,05 или менее, Si 0,5 или менее, Mn от 0,15 до 1,0, P 0,030 или менее, S 0,005 или менее, Сr от 15,5 до 17,5, Ni от 3,0 до 6,0, Мо от 1,5 до 5,0, Cu 4,0 или менее, W от 0,1 до 2,5, N 0,15 или менее, и остальное состоит из Fe и случайных примесей.

Изобретение относится к области металлургии. Для обеспечения высокой твердости в сочетании с высокой пластичностью предложен способ формирования и обработки стального изделия из высокопрочного и высокопластичного сплава, в частности, предназначенного для использования в качестве броневой плиты.
Изобретение относится к металлургии и машиностроению и может быть использовано для термической обработки сталей. Для повышения срока службы деталей машин и инструмента, изготовленных из легированных, низколегированных и углеродистых сталей, выполняют по меньшей мере два цикла нагрева под закалку до температуры гомогенизации аустенита и охлаждения со скоростью, обеспечивающей мартенситное превращение, и отпуск с нагревом со скоростью выше 50°С/сек до температуры не выше Ac1, причем в первом цикле нагрев осуществляется до температуры аустенизации с выдержкой до полной гомогенизации аустенита, во втором и последующих циклах осуществляется высокоскоростной нагрев под закалку со скоростью 50°С/сек без выдержки до температуры, обеспечивающей гомогенизацию аустенита, температура отпуска в каждом последующем цикле ниже, чем предыдущем.

Изобретение относится к области металлургии и может быть использовано при термообработке ответственных деталей верхнего строения пути: рельсов, остряковых и рамных рельсов.

Изобретение может быть использовано при изготовлении поршня (10) для двигателя внутреннего сгорания. Край и/или дно полости (14) камеры сгорания подвергают обработке оплавлением, глубину которой изменяют в окружном направлении.
Изобретение относится к области металлургии, в частности к составу светопоглощающих покрытий, используемых при термической обработке углеродистых сплавов. Светопоглощающее покрытие для изделий из углеродистого сплава содержит оксид меди и связующее - оксиэтилцеллюлозу, силикат натрия или калия и воду при следующем соотношении компонентов, мас.%: оксид меди 4,2-4,8, оксиэтилцеллюлоза 4,0-4,4, силикат натрия или калия 25,0-26,5, вода - остальное.

Способ индукционного упрочнения почвообрабатывающего рабочего органа предназначен для использования в сельхозмашиностроении, строительной и других отраслях промышленности.

Изобретение относится к области металлургии, конкретнее к способам обработки металлов с использованием магнитных полей, и может быть использовано для обработки твердотельного порошкообразного магнитного и немагнитного материала в переменном магнитном поле для модификации структурно-зависимых свойств этих материалов.

Изобретение относится к инструментальному производству и может быть использовано для упрочнения поверхности стальных деталей, подвергающихся износу в процессе эксплуатации.

Изобретение относится к получению метаматериалов из структурных элементов на основе полупроводников, диэлектриков и металлов и может быть использовано в машиностроении и электронике в качестве материалов с улучшенными свойствами.

Изобретение относится к области сварки. Способ сварки металлов включает наложение циклической вибрационной нагрузки на кристаллизующийся металл сварочной ванны, частота которой за один цикл ее наложения изменяется по линейному закону в диапазоне от 50 до 250 Гц.

Изобретение относится к литейному производству. .

Изобретение относится к способу лазерной нагартовки и изделию для лазерной нагартовки. .

Изобретение относится к области машиностроения, в частности к виброобработке маложестких деталей для снижения в них остаточных напряжений. .

Изобретение относится к области металлургии и литейного производства, в частности к средствам изменения структуры черных и цветных металлов и их сплавов посредством электромагнитных полей. В способе обработку проводят циклично, при этом расплав металла под давлением инертного газа на зеркало расплава подают из тигля печи в металлопровод, в котором одновременно с воздействием на расплав наносекундных электромагнитных импульсов осуществляют модифицирование и рафинирование расплава путем его продувки аэрозолью, состоящей из инертного газа и наноструктурированного алмазного порошка в соотношении 20:1 по объему, с расходом 10…18 л/мин⋅см², затем возвращают обработанный расплав в тигель печи, а количество циклов задают исходя из химического состава шихты и содержания неметаллических включений в расплаве. Изобретение позволяет повысить физико-механических свойства металлов и сплавов, а также качество получаемых из них отливок за счет эффективного воздействия на тонкую структуру расплава проведением его обработки наносекундными электромагнитными импульсами одновременно с рафинированием и модифицированием. 2 пр., 3 табл., 1 ил.
Наверх