Способ получения нитрированного окисного слоя на подложке из полупроводникового материала

 

Использование: изобретение предназначено для получения подзатворных окисных слоев КМОП-интегральных схем, полупроводниковых приборов, а также окисных слоев, применяемых в качестве изоляции активных элементов и в интегральных и дискретных структурах. Сущность изобретения: способ включает формирование окисного слоя на подложке и последующее термическое нитрирование его в азотсодержащей газовой среде в поле электромагнитного излучения, диапазон длин волн которого выбирают из условия ионизации среды. Способ позволяет улучшить электрофизические параметры и радиационную стойкость слоя при толщине свыше A.

Изобретение относится к микроэлектронике, в частности к технологии производства полупроводниковых приборов и интегральных схем, и предназначено для получения подзатворных окисных слоев КМОП-интегральных схем, полупроводниковых приборов, а также окисных слоев, применяемых в качестве изоляции активных элементов в интегральных и дискретных структурах.

Известен способ получения радиационно-стойкого покрытия из оксинитрида кремния [1] , который заключается в том, что пленку осаждают пиролитически с последующим отжигом в атмосфере водорода при 500оС в течение 3 ч.

Однако данный способ не позволяет получать пленку с удовлетворительными электрофизическими характеристиками.

Наиболее близким к изобретению является способ получения нитрированного окисного слоя на подложке из полупроводникового материала [2] , включающий формирование окисного слоя и последующее термическое нитрирование его в азотсодержащей газовой среде в поле электромагнитного излучения.

Данный способ позволяет получать удовлетворительные электрофизические характеристики подзатворного окисла, но пригоден только для сверхтонких слоев диэлектрика в КМОП-схемах и не обеспечивает хорошей радиационной стойкости слоя.

Целью изобретения является улучшение электрофизических параметров и повышение радиационной стойкости нитрированных окисных слоев при увеличении их толщины свыше 100 .

Для достижения цели диапазон длин волн электромагнитного излучения выбирают из условия ионизации азотсодержащей газовой среды.

При ионизации азотсодержащих газовых сред атомы азота возбуждаются, уменьшается их эффективный радиус и увеличивается скорость их диффузии в слой диоксида кремния. Появляется возможность эффективно нитрировать слой диоксида кремния большого диапазона толщин, от сверхтонких (100 ) до толстых (1 мкм и более) при пониженной температуре нитрирования (800-900оС), что, в свою очередь, дает возможность увеличить значение и уменьшить разброс критической напряженности электрического поля в диэлектрике; уменьшить сдвиг порогового напряжения при воздействии ИИ с дозой 106 рад в 2-3 раза, уменьшить величину изменения плотности поверхностных состояний на границе раздела Si - SiO2 после воздействия ионизирующих излучений, а, следовательно, повысить радиационную стойкость диэлектрика за счет создания в его объеме центров, компенсирующих положительный заряд, образующийся после воздействия ИИ.

Практически все азотсодержащие газы распадаются на атомы и ионизируются в поле гамма- и рентгеновского излучения. Ультрафиолетовое излучение действует аналогичным образом для длин волн, соответствующих полосам поглощения применяемого газа.

Так, для NH3 полосы поглощения соответствуют: 1-я полоса 170-217 нм 2-я полоса 140-169 нм 3-я полоса 115-150 нм.

Процесс активации и распада молекулы газа на радикалы можно представить следующим образом: NH3 NH2*XB1/ + H* - 280нм NH3 NH*(a1 ) + H2 -- 2240 нм NH3 NH*(x3 ) + H* + H* 1470 нм.

NH3 NH3* + - ионизация.

Для атомарного и молекулярного азота процесс ионизации начинается с = 85,0-65,0 нм, а процесс активации возбуждением с = 160-300 нм. Уменьшение длины волны ультрафиолетового излучения повышает вероятность ионизации, активации газовых сред в единицу времени.

П р и м е р 1. Окисляют кремниевую пластину р-типа (100) до толщины окисла 350-450oС, помещают ее в кварцевую трубу диффузионной печи таким образом, чтобы обтекающий пластины азотсодержащий газ подвергался воздействию ультрафиолетового излучения (УФИ) вблизи поверхности пластины со стороны окисного слоя.

Режим: - температура окисления - 950оС; - температура нитрирования - 950оС; - время процесса - 5 мин, загрузка, газ O2 (100 л/ч), 20 мин окисление, газ тот же, 10 мин - продувка N2 (150 л/ч), 25 мин - нитрирование, газ N2 (150 л/ч), NH3 (15 л/ч), УФИ с = 180-600 нм, 5 мин - выгрузка N2 (150 л/ч).

Параметры получаемых структур: - критическая напряженность электрического поля - Екр = 1,15-1,3 х 107 В/см; - сдвиг порогового напряжения U 0,1 В; - устойчивость к воздействию ионизирующего излучения - при дозе D = 1,106 р, изменение Uпор менее 10% .

П р и м е р 2. Кремниевая пластина помещается в кварцевую трубу диффузионной печи для проведения окисления: Т = 950оС, газ - O2 (100 л/ч), толщина окисла - 350-450
Окисленную пластину запаивают в кварцевую трубу, заполненную азотом с добавкой 5% NH3. Давление в трубе составляет приблизительно 1 атм. Труба помещается в термопечь, находящуюся в установке МРХ -20 (изотоп Со60).

Режим азотирования: Т = 800оС, t = 120 мин.

Режим установки: Е = 1,25 МэВ; Р = 180 Р/с; tобр = 60 мин.

Параметры получаемых структур:
- Екр = 107 В/см;
- сдвиг порогового напряжения 0,15 В;
- устойчивость к воздействию ионизирующего излучения - при дозе D = 106 р изменение Uпор 10% .

Особый характер проведения операции нитрирования, а именно: проведение термического нитрирования в полях ионизирующих излучений, активирующих используемые азотсодержащие газовые среды, позволяет улучшить электрофизические параметры нитрированного слоя диоксида кремния; увеличить значение и уменьшить разброс критической напряженности электрического поля в диэлектрическом слое; уменьшить плотность поверхностных состояний на границе раздела Si - SiO2 до величины порядка 5 1010 см-2 ев-1; повысить радиационную стойкость слоя диоксида кремния.

Создание отрицательных заряженных центров в нитрированном диоксиде кремния эффективно компенсирует возникающий от воздействия ИИ положительных заряд вплоть до значений величины доз 106-107 рад для широкого диапазона толщин диоксида кремния. (56) 1. Патент США N 3765935, кл. В 44 d 1/18, опубл. 1973.

2. Fang Y. K. et al. "Inprovement of thin-gate oxide integrity using photoenhanced low-temperature nitridation" - Solid State Electronics, 1990, т. 33, N 8, с. 1039-1041.


Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ НИТРИРОВАННОГО ОКИСНОГО СЛОЯ НА ПОДЛОЖКЕ ИЗ ПОЛУПРОВОДНИКОВОГО МАТЕРИАЛА, включающий формирование окисного слоя на подложке и последующее термическое нитрирование его в азотсодержащей газовой среде в поле электромагнитного излучения, отличающийся тем, что, с целью улучщения электрофизических параметров и повышения радиационной стойкости слоя при толщине свыше 100 диапазон длин волн электромагнитного излучения выбирают из условия ионизации азотсодержащей газовой среды.



 

Похожие патенты:

Изобретение относится к технологии обработки и производству сверхбольших интегральных схем

Изобретение относится к области технологии изготовления интегральных схем-для вычислительной техники, в частности к способу изготовления структуры затвора для МНОП-элементов памяти постоянных электрически перепрограммируемых запоминающих устройств Цель изобретения - повышение времени хранения за счет уменьшения скорости растекания информационного заряда

Изобретение относится к области технологии полупроводников и может быть использовано для осуществления электронной и химической пассивации поверхности полупроводниковых соединений A3B5 и приборов на их основе, а также для подготовки поверхности этих полупроводниковых соединений для последующего эпитаксиального выращивания на ней нитрида галлия GaN
Изобретение относится к технологии получения пленочных диэлектриков, из которых наиболее широко используемым является нитрид кремния (Si3N4)

Изобретение относится к области технологии полупроводников и может быть использовано для осуществления электронной и химической пассивации поверхности полупроводникового соединения GaSb и приборов на его основе

Изобретение относится к технологии полупроводников и может быть использовано для осуществления электронной и химической пассивации поверхности антимонида галлия
Изобретение относится к технологии изготовления мощных кремниевых транзисторов, в частности к способам получения диэлектрических пленок нитрида кремния

Изобретение относится к области изготовления структур на полупроводниках А3В5
Изобретение относится к способам устранения причин замыкания между проводящими уровнями в интегральных схемах (ИС) с целью увеличения выхода годных ИС и может найти применение в микроэлектронике
Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано для изготовления микроболометрических матриц неохлаждаемых фотоприемников ИК диапазона. В способе на подложку осаждают слой диэлектрика из газовой смеси, содержащей компоненты, необходимые для образования диэлектрика - оксинитрида кремния. Газовую смесь в неизотермическом режиме пропускают через нагреваемую спираль из углеродного материала, характеризующуюся развитой поверхностью. Формируют слой оксинитрида кремния требуемой толщины, с составом по кислороду и азоту, обеспечивающим компенсацию внутренних механических напряжений. В результате достигается: получение диэлектрических слоев, обеспечивающих предельные параметры чувствительности болометров; управление величиной внутренних механических напряжений в диэлектрическом слое мембраны, в частности, в сторону их снижения; конформное покрытие ступенчатых особенностей рельефа. 5 з.п. ф-лы.

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении полупроводниковых приборов и/или устройств микросистемной техники на кремниевых подложках, содержащих в своей структуре пленки нитрида кремния различного функционального назначения. Техническим результатом изобретения является повышение качества осаждаемых пленок нитрида кремния методом плазмоактивированного процесса химического осаждения из газовой фазы на кремниевые подложки путем предварительной обработки поверхности подложек в плазме азота, в результате чего увеличивается равномерность осаждения пленки на подложке, снижается количество дефектов в пленке, улучшаются ее оптические и диэлектрические свойства. Способ осаждения пленки нитрида кремния на кремниевую подложку включает: предварительную обработку поверхности кремниевой подложки в плазме азота, подготовку компонентов газовой смеси из 5,2% смеси моносилана с аргоном с расходом 1,05÷1,15 л/ч и азота с расходом 0,07÷0,08 л/ч, из которой формируется пленка нитрида кремния, осаждение пленки нитрида кремния на обработанную поверхность кремниевой подложки непосредственно без разгерметизации реактора после предварительной обработки поверхности кремниевой подложки в плазме азота. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии получения нитрида кремния. В способе получения нитрида кремния нитрид кремния формируют каталитическим парофазным химическим осаждением смеси гидразина (N2H4) и силана (SiH4) при температуре подложки 230-370°С, давлении SiH4 15-17,5 Па, скорости роста нитрида кремния 100 нм/мин и отношении парциальных давлений газообразных источников Р(N2H4+N2)/P(SiH4)=4-6. Техническим результатом является повышение пробивного напряжения, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличение процента выхода годных. 1 табл.
Наверх