Способ получения кислотоупорных плиток

Изобретение относится к промышленности керамических материалов, преимущественно к способу для получения кислотоупоров. Техническим результатом изобретения является повышение прочности на изгиб, кислотостойкости, морозостойкости и термостойкости изделий. Способ получения кислотоупорных плиток включает дозирование сырьевой смеси, содержащей мас.%: необогащенный каолин - 45-60, «хвосты» обогащения полиметаллических руд - 10-17, солевые алюминиевые шлаки - 30-38, измельчение компонентов, перемешивание, формование при влажности шихты 18-22%, сушку до остаточной влажности не более 5%, обжиг при температурах 1200-1250°С. При этом солевые алюминиевые шлаки обжигают при температуре 900-920°С до содержания потерь при прокаливании не более 4%, затем полученный компонент перемешивают с необогащенным каолином и «хвостами» обогащения полиметаллических руд. 3 табл.

 

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кислотоупорного материала.

Известен способ для изготовления кислотоупоров состава, мас.%: глина огнеупорная 60-70, шамот 30-40 по следующей технологии: обжиг глины на шамот, измельчение шамота и глины, смешивание, формование, сушка и обжиг (Будников П.П. Химическая технология керамики и огнеупоров, П.П.Будников, В.Л.Балкевич, А.С.Бережной, И.А.Булавин, Г.В.Куколев, Д.Н.Полубояринов, Р.Я.Попильский. М.: изд-во «Стройиздат», 1972, с.408-410) [1].

Недостатком данного способа производства является то, что в технологии предусмотрен обжиг огнеупорной глины на шамот до водопоглощения 4-6% (это температура обжига, как известно, для огнеупорной глины не менее 2000°С).

Наиболее близким к изобретению является способ для изготовления кислотоупорных плиток состава, мас.%: необогащенный каолин - 45-60, «хвосты» обогащения полиметаллических руд - 10-17, солевые алюминиевые шлаки - 30-38 по следующей технологии пластического способа: измельчение компонентов, перемешивание, формование при влажности шихты 18-22%, сушка до остаточной влажности не более 5%, обжиг при температурах 1200-1250°С (Пат. № 2308435, РФ, МПК С04В 33/138. Керамическая шихта для изготовления кислотоупорных плиток / Е.С.Абдрахимова, В.З.Абдрахимов. - Опубл. 20.10.2007. Бюл. №29) [2]. Принят за прототип.

Недостатком указанного способа является относительно низкие прочность на изгиб, кислотостойкость, морозостойкость и термостойкость кислотоупорных плиток.

Техническим результатом изобретения является повышение прочности на изгиб, кислотостойкости, морозостойкости и термостойкости, а также снижение усадки кислотоупорных плиток.

Указанный технический результат достигается тем, что в способе получения кислотоупорных плиток с повышенными физико-механическими показателями, включающем дозирование сырьевой смеси, содержащей мас.%: необогащенный каолин - 45-60, «хвосты» обогащения полиметаллических руд - 10-17, солевые алюминиевые шлаки - 30-38, измельчение компонентов, перемешивание, формование при влажности шихты 18-22%, сушку до остаточной влажности не более 5%, обжиг при температурах 1200-1250°С, солевые алюминиевые шлаки обжигают при температуре 900-920°С до содержания п.п.п. (потерь при прокаливании) не более 4%, затем полученный компонент перемешивают с необогащенным каолином и «хвостами» обогащения полиметаллических руд.

Способ осуществляется следующим образом.

Солевые алюминиевые шлаки химического состава, мас.%: NaCl - 10,25; СаО+СаСО3 - 14,28; MgO+MgCO3 - 15,30; FeCl3 - 0,001; SiO2 - 3,10; Аl2О3 - 41,282; KCl - 5,35; CuCl2 - 0,001; алкилмеркаптиты Al - 0,545; предельные углеводороды - 0,001; Al (металлический) - 9,89 обжигаются при температуре 900-920°С до химического состава, представленного в табл.1, при этом в полученном компоненте содержание п.п.п. не превышает 4%.

Таблица 1.
Химический состав обожженного солевого алюминиевого шлака
Содержание оксидов, мас.%
SiO2 AlO3 2О3 CaO MgO R2O П.п.п.
4,55 75,1 1,6 2,56 7,61 5,13 3,45

Как видно из табл.1, после обжига солевые алюминиевые шлаки значительно обогащаются оксидом алюминия, что позволит значительно повысить прочность при изгибе, кислотостойкость, термостойкость и морозостойкость кислотоупорных плиток.

Затем компоненты измельчают и перемешивают в соотношениях представленных в табл.2. Керамическую массу готовили пластическим способом при влажности 18-22%. Формовали квадратные плитки типа ПК-1, которые высушивались до остаточной влажности не более 5% и затем обжигались при температурах 1200-1250°С.

Таблица 2.
Составы керамических масс
Компоненты Содержание компонентов, мае., %
1 2 3 4 прототип
Необогащенный 60 55 50 45 45-60
каолин
«Хвосты» 10 12 15 17 10-17
обогащения
полиметаллических
руд
Солевые 30-38
алюминиевые
шлаки
Обожженные 30 33 35 38 -
солевые
алюминиевые
шлаки

Физико-механические показатели кислотоупорных плиток представлены в табл.3.

Таблица 3.
Физико-механические показатели кислотоупорных плиток
Показатели Составы
1 2 3 4 прототип
Усадка, % 7,2 7,0 6,8 6,5 7,3-7,8
Прочность при изгибе, МПа 50,2 54,8 57,9 59,3 43-49
Термостойкость, циклы 16 17 19 21 9-14
Кислотостойкость, % 98,8 99,0 99,2 99,4 97,9-98,9
Морозостойкость, циклы 58 65 72 78 35-49

Как видно из табл.3, предложенный способ по сравнению с прототипом позволяет в значительной степени повысить практически все физико-механические показатели кислотоупорных плиток: прочность при изгибе, термостойкость, кислотостойкость и морозостойкость, а также снизить усадку.

Полученное техническое решение при использовании обожженного солевого алюминиевого шлака позволяет повышение прочности на изгиб, кислотостойкости, морозостойкости и термостойкости, а также снижение усадки кислотоупорных плиток.

Использование техногенного сырья при получении кислотоупоров способствует утилизации промышленных отходов, охране окружающей среды и расширению сырьевой базы для керамических материалов.

Источники информации

1. Будников П.П. Химическая технология керамики и огнеупоров, П.П.Будников, В.Л.Балкевич, А.С.Бережной, И.А.Булавин, Г.В.Куколев, Д.Н.Полубояринов, Р.Я.Попильский. М.: изд-во «Стройиздат». 1972. с.408-410.

2. Пат. № 2308435, РФ, МПК С04В 33/138. Керамическая шихта для изготовления кислотоупорных плиток / Е.С.Абдрахимова, В.З.Абдрахимов. - Опубл. 20.10.2007. Бюл. №29.

Способ получения кислотоупорных плиток, включающий дозирование сырьевой смеси, содержащей мас.%: необогащенный каолин 45-60, «хвосты» обогащения полиметаллических руд 10-17, солевые алюминиевые шлаки 30-38, измельчение компонентов, перемешивание, формование при влажности шихты 18-22%, сушку до остаточной влажности не более 5%, обжиг при температуре 1200-1250°С, отличающийся тем, что солевые алюминиевые шлаки обжигают при температуре 900-920°С до содержания потерь при прокаливании не более 4%, затем полученный компонент перемешивают с необогащенным каолином и «хвостами» обогащения полиметаллических руд.



 

Похожие патенты:
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича. .
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича. .
Изобретение относится к промышленности строительных материалов и касается составов керамических масс для производства кирпича. .
Изобретение относится к области технологии силикатов и касается составов керамических масс, которые могут быть использованы для изготовления облицовочной плитки.
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича. .

Изобретение относится к технологии получения керамики, а именно к способам получения керамических изделий, таких как строительные и облицовочные кирпичи. .
Изобретение относится к промышленности строительных материалов и касается составов керамических масс для производства кирпича. .
Изобретение относится к составам керамических масс для изготовления стеновых материалов, преимущественно кирпича, и может быть использовано в промышленности строительных материалов.
Изобретение относится к промышленности строительных материалов и касается составов керамических масс для производства кирпича
Изобретение относится к строительным материалам и может быть использовано при производстве керамических строительных материалов, например для лицевого кирпича светлого тона из кембрийской глины
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича
Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кирпича
Изобретение относится к области технологии силикатов и касается составов керамических масс, которые могут быть использованы для изготовления облицовочной плитки
Изобретение относится к промышленности строительных материалов и касается составов керамических масс для производства кирпича, черепицы
Изобретение относится к промышленности строительных материалов, в частности к составам керамических масс, которые могут быть использованы для изготовления облицовочной плитки
Изобретение относится к промышленности строительных материалов и касается составов керамических масс для производства кирпича, черепицы
Изобретение относится к области технологии силикатов и касается составов керамических масс, которые могут быть использованы в производстве кирпича, облицовочной плитки, изделий хозяйственно-бытового и декоративно-художественного назначения
Изобретение относится к области технологии силикатов и касается составов керамических масс, которые могут быть использованы в производстве облицовочной плитки, декоративных настенных панно
Наверх