Способ количественного определения антиоксиданта коэнзима q10 в субстанции методом циклической вольтамперометрии


 


Владельцы патента RU 2454660:

Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU)

Изобретение относится к фармацевтической химии и может быть использовано для количественного определения антиоксиданта коэнзима Q10 в субстанции. Для этого вещество переводят из пробы в раствор и проводят вольтамперометрическое определение коэнзима Q10 с использованием стеклоуглеродного индикаторного электрода относительно насыщенного хлорид-серебряного электрода на фоне 0.025 моль/л фосфатного буфера pH 6.86. Регистрируют анодные пики при постоянно-токовой форме развертки потенциала со скоростью 0.04 В/с. Концентрацию коэнзима Q10 определяют по высоте анодного пика при потенциале +0.23 В методом градуировочного графика. Область определяемых содержаний коэнзима Q10 от 1·10-7 моль/л до 1·10-5 моль/л. Изобретение обеспечивает чувствительность и экспрессность количественного определения коэнзима Q10 в порошках, лекарственных формах, биологически активных добавках. 1 ил., 1 пр.

 

Изобретение относится к области фармацевтической химии и касается способов количественного определения биологически активных веществ, в частности коэнзима Q10 - вещества с выраженными антиоксидантными свойствами.

Существует ряд способов определения коэнзима Q10 как в лекарственных формах, так и в биологических объектах. Но большинство из них содержат сочетания различных методов. Примером определения коэнзима Q10 с электрохимическим детектированием является работа (Y.Yamamoto, S.Yamashita. Plasma ratio of ubiquinol and ubiquinone as a marker of oxidative stress. 1997, V.18, №81, P.79-84).

Исследовано соотношение между убихинолом и убихиноном в качестве маркера интенсивности окислительного стресса в организме человека и предложена методика одновременного определения убихинола-10 и убихинона-10 в плазме крови человека. Плазму, содержащую гепарин, смешивали с 5 объемами метанола и 10 объемами гексана, энергично встряхивали и центрифугировали. Центрифугат (гексановую фазу) немедленно инжектировали в режиме online в систему обращенно-фазной высокоэффективной жидкостной хроматографии (ВЭЖХ) с колонкой для восстановления и электрохимическим детектором для предотвращения окисления убихинола до убихинона.

Данный способ очень трудоемок, обладает плохой воспроизводимостью, имеет большую ошибку определения.

Для идентификации коэнзима Q10 в лекарственных формах используются методы жидкостной хроматографии и спектроскопии [И.С.Иванов. Связь структуры и токсичности в ряду производных изоборнилфенола // Актуальные проблемы экспериментальной и клинической фармакологии: Матер. конф. / Под ред. В.В.Жданова. - Томск: Изд-во Том. ун-та, 2007, 106 с.). Эти методы имеют ряд недостатков: оборудование и растворители для высокоэффективной жидкостной хроматографии имеют высокую стоимость, а спектрофотометрия в некоторых случаях не обладает необходимой селективностью и чувствительностью.

Наиболее близким к предлагаемому решению прототипом является высокочувствительная методика определения коэнзима Q10 в этанол-гексановых экстрактах сыворотки крови человека, основанная на ВЭЖХ с 8 кулонометрическими детекторами, настроенными на различные фиксированные значения потенциалов (P.H.Gamache, I.N.Acworth. Simultaneous analysis of fat soluble carotenoids, retinoids, tocopherols, vitamin K and coenzyme Q10 in plasma // Northeast Regional Chromatography Discussion Group. 1998, Book of Abstr. - P.6). Нижняя граница определяемых содержаний <20 пг, а диапазон линейной зависимости составляет 3 порядка.

Недостатком способа является высокая себестоимость и уникальность оборудования, что затрудняет его использование в рутинных анализах, мешающее влияние ряда компонентов сыворотки крови.

Перспективно использование вольтамперометрии для количественного определения биологически активных веществ - простого, чувствительного и экспрессного метода.

Новая техническая задача - увеличение чувствительности и экспрессности, а также уменьшение себестоимости способа определения коэнзима Q10 в субстанции биологически активных добавок методом циклической вольтамперометрии.

Съемка вольтамперных кривых проводится при скорости развертки потенциала W 0.04 В/с в диапазоне потенциалов (Е) от -0.5 до +0.5 В. Фоновым электролитом служит 0.025 М фосфатный буфер pH 6.86. Для устранения мешающего влияния кислород из раствора удаляется продувкой фонового раствора азотом, подаваемым в ячейку под давлением.

Регистрация вольтамперных кривых проводится в постоянно-токовом режиме развертки потенциала. В качестве индикаторного электрода используется стеклоуглеродный электрод (СУЭ), электродом сравнения и вспомогательным служили хлорид-серебряные электроды. В качестве оборудования для проведения анализа использовали вольтамперометрический анализатор «ТА-2» (производство «ООО Томьаналит», г.Томск).

В результате проведенных исследований были получены пики окисления-восстановления коэнзима Q10 при потенциалах Еа +0.23 В,

Ек-0.06 В (фиг.).

Фиг. Циклическая вольтамперограмма коэнзима Q10 в фосфатном буфере pH 6.86 на СУЭ при скорости развертки 40 мВ/с: 0.1×10-5 моль/л (2), 0.2×10-5 моль/л (3), 0.3×10-5 моль/л (4), (1) - фоновая линия

Аналитическим сигналом служит анодный ток окисления коэнзима Q10.

Градуировочная зависимость тока окисления коэнзима Q10 от его концентрации в фоновом растворе носит линейный характер в диапазоне концентраций 10-5-10-6 моль/л. Данный диапазон концентраций достаточен для определения коэнзима Q10 в биологически активных добавках.

Новым в способе является использование в качестве аналитического сигнала тока окисления коэнзима Q10 на стеклоуглеродном электроде при потенциале Е +0.23 В относительно хлорид-серебряного электрода сравнения в фосфатном буферном растворе с pH 6.86.

Пример 1. Определение коэнзима Q10 в субстанции методом циклической вольтамперометрии.

В кварцевый стаканчик вместимостью 20 мл вносят 10,0 мл раствора фонового электролита 0.025 моль/л фосфатного буфера pH 6.86 в водном растворе и помещают в электрохимическую ячейку вольтамперометрического анализатора. Опускают в раствор электроды: индикаторный - стеклоуглеродный, вспомогательный и электрод сравнения - насыщенные хлорид-серебряные. Перемешивают 10 с, успокаивают 20 с, затем фиксируют циклическую вольтамперограмму фонового раствора в диапазоне потенциалов от -0.5 до +0.5 В при скорости развертки потенциала 0.04 В/с. Отсутствие пиков свидетельствует о чистоте фона. Затем в стаканчик с фоновым раствором вносят аликвоту 1% раствора коэнзима Q10 в воде объемом 0.5 мл. Перемешивают раствор 10 с, успокаивают 20 с и вновь снимают вольтамперограмму в тех же условиях. Анодный пик регистрируют при потенциале +0.23 В. Концентрацию коэнзима Q10 по высоте анодного пика определяют методом градуировочного графика, построенного по стандартным растворам коэнзима Q10 с точно известными концентрациями.

Предложенный способ количественного определения коэнзима Q10 отличается простотой, не требует больших трудозатрат, значительного количества реактивов и отличается высокой селективностью, экспрессностью и чувствительностью.

Предложенный способ может быть использован для количественного определения коэнзима Q10 в порошке, его лекарственных формах, биологически активных добавках.

Метрологические характеристики данного способа: предел обнаружения составляет 1·10-7 моль/л. Относительная ошибка определения: 5%, область определяемых содержаний коэнзима Q10 от 1·10-7 моль/л до 1·10-5 моль/л.

Способ количественного определения антиоксиданта коэнзима Q10 в субстанции, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение коэнзима Q10, отличающийся тем, что проводят вольтамперометрическое определение с использованием индикаторного стеклоуглеродного электрода относительно насыщенного хлорид-серебряного электрода на фоне 0,025 моль/л фосфатного буфера pH 6,86 с последующей регистрацией анодных пиков при постоянно-токовой форме развертки потенциала со скоростью 0,04 В/с, концентрацию коэнзима Q10 в субстанции определяют по высоте анодного пика при потенциале +0,23 В относительно насыщенного хлорид-серебряного электрода, область определяемых содержаний коэнзима Q10 от 1·10-7 моль/л до 1·10-5 моль/л.



 

Похожие патенты:

Изобретение относится к диагностике, в частности к способу количественного определения цефалоспориновых антибиотиков в жидкости ротовой полости и в цельной крови.

Изобретение относится к аналитической химии и описывает способ кондуктометрического количественного определения гидрохлоридов 5-аминолевулиновой (5-амино-4-оксопентановой) кислоты или ее сложных эфиров, включающий подготовку проб анализируемого вещества, измерение удельной электропроводности растворов, титрование, построение кондуктометрической кривой, определение эквивалентных точек и расчет содержания основного вещества, при этом титрование образцов гидрохлоридов 5-аминолевулиновой кислоты или ее сложных эфиров осуществляют титрованием раствором нитрата серебра, а расчет содержания основного вещества в гидрохлоридах 5-аминолевулиновой кислоты или ее сложных эфиров проводят по формуле.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области биотехнологии, конкретно к получению ингибиторов адгезии и/или агрегации тромбоцитов, и может быть использовано в медицине. .
Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам количественного определения гормонов. .

Изобретение относится к медицине и описывает способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со ), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сн-Со).

Изобретение относится к области медицины и фармакологии и представляет собой способ выделения смеси для получения водных дисперсий сферических наночастиц из смеси плохорастворимых в воде тритерпеноидов березовой коры, включающий инжекцию избытка воды в раствор тритерпеноидов березовой коры в смешивающихся с водой органических растворителях с формированием дисперсии, содержащей сферические наночастицы и кристаллы из тритерпеноидов березовой коры, отличающийся тем, что полученную дисперсию фильтруют или центрифугируют, отделяя от кристаллов фракцию сферических наночастиц, отделенные наночастицы упаривают с получением твердой смеси тритерпеноидов для формирования морфологически однородных сферических наночастиц путем повторной инжекции.

Изобретение относится к области аналитической химии. .
Изобретение относится к области биотехнологии и пищевой промышленности, в частности к способу получения аналитического устройства - биосенсорного электрода, который может быть использован для определения содержания моно- и полисахаридов в углеводсодержащем растительном сырье и промежуточных продуктах на разных стадиях технологического процесса.
Изобретение относится к медицине, онкологии и гематологии и может быть использовано для определения кардиотоксических осложнений у больных хроническим лимфолейкозом, получающих полихимиотерапию.

Изобретение относится к способу приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода и может быть использовано в аналитической химии, в клинической диагностике, для контроля состояния окружающей среды, в различных областях промышленности.

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку оксидант/антиоксидантной активности по изменению разности потенциалов на электродах, введенных в электропроводящую среду, при этом электропроводящая среда представляет собой гель, содержащий в качестве медиаторной системы пару химических соединений, содержащих элемент в разных степенях окисления, при этом электроды через гель контактируют с исследуемым объектом, а оксидант/антиоксидантную активность определяют по формулам.
Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам количественного определения гормонов. .

Изобретение относится к медицине и описывает способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со ), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сн-Со).

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.

Изобретение относится к устройствам для анализа воды по следующим характеристикам: мутности, цветности, температуре, результатам седиментационного анализа, электропроводности, вязкости, электрофоретической подвижности, дзета-потенциалу частиц взвеси, химической потребности в кислороде, содержанию хлора, водородному показателю и редокс-потенциалу и может быть использовано для мониторинга водных объектов, технического и питьевого водоснабжения.

Изобретение относится к способам определения различных термодинамических и условных констант равновесия неорганических и органических веществ, которые применяются в теоретической и практической области химии.

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и в контурах под давлением с водным теплоносителем, в том числе в контурах исследовательских и энергетических реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок (ЯЭУ) с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.
Изобретение относится к области биологии, а именно к физиологии растений, и может быть использовано для экспресс-способа ионометрического определения содержания калия в листьях и распределения его по физиологическим пулам
Наверх