Способ защиты объекта от средств воздушного нападения и система для его осуществления

Изобретение относится к области вооружения и военной техники, в частности к защите объектов от средств воздушного нападения, например, с помощью пулеметных (пушечных) установок. Способ защиты объектов от средств воздушного нападения, включающий обнаружение и опознавание целей, взятие их на сопровождение, сопровождение, определение скорости сближения цели с объектом защиты, вычисление абсолютной начальной скорости снаряда, вычисление упрежденной дальности, определение начальной скорости снаряда и абсолютной начальной скорости снаряда с учетом износа канала ствола, вычисление углов упреждения и на движение цели и объекта защиты соответственно в вертикальной и горизонтальной плоскостях прицельной системы координат, изменение положения стволов оружия относительно текущего положения линии визирования с учетом фактического значения начальной и абсолютной начальной скорости снаряда, учитывающего износ канала ствола оружия. Система защиты объектов от средств воздушного нападения содержит обзорно-прицельную, навигационную систему, бортовую вычислительную систему, силовые приводы установки, пулеметную или пушечную установку, первый и второй датчики, закрепленные на канале ствола, блок определения начальной скорости снаряда и определенную комбинацию связей между элементами системы. Технический результат заключается в повышении точности прицеливания. 2 н. и 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области вооружения и военной техники, в частности к защите объектов от средств воздушного нападения, например, с помощью пулеметных (пушечных) установок.

Известен способ защиты боевой машины, заключающийся в обнаружении и опознавании цели, визуальном определении скорости, ракурса и дальности до цели, выборе точки визирования на кольцах сетки прицела в соответствии с ракурсной скоростью цели, стрельбе по воздушной цели [1].

Известна подсистема защиты боевой машины от средств воздушного нападения, включающая коллиматорный прицел наводчика, механизм наведения, крупнокалиберные зенитные пулеметы [1].

Недостатком вышеприведенного способа и реализующей его подсистемы является низкая эффективность стрельбы по воздушным целям, обусловленная большими погрешностями глазомерного способа определения дальности до цели и ракурсной скорости цели.

Известен способ защиты самолетов-бомбардировщиков от атакующих целей, заключающийся в поиске (обнаружении), захвате целей на сопровождение, сопровождении цели прицельно-навигационной системой с выдачей необходимых параметров в бортовой вычислитель, определении угловых поправок стрельбы с отработкой их силовым приводом пулеметной (пушечной) установки (ПУ) и стрельбе по цели [2].

Недостатком приведенного способа является сложность прицельного алгоритма, представляющего собой систему восьми нелинейных уравнений, что приводит к трудностям (или даже невозможности) реализации его даже на современных бортовых цифровых вычислительных машинах (ЦВМ). Предлагаемые там же [2] упрощенные зависимости прицельного алгоритма, предназначенные для реализации на аналоговых вычислителях, вносят большие методические ошибки.

Другим существенным недостатком, возникающим при решении вышеописанной системы нелинейных уравнений, является влияние и взаимовлияние каналов (следящих систем).

Известен способ защиты от средств воздушного нападения, заключающийся в поиске и обнаружении целей, взятии их на сопровождение, сопровождении и определении угловых поправок стрельбы, стрельбе с учетом их по цели [3].

Известна система огневой защиты, которая содержит обзорно-прицельную, навигационную системы, бортовую вычислительную систему, определяющую угловые поправки стрельбы, силовые приводы установки, пулеметную (пушечную) установку [3].

Однако допущения, сделанные при выводе прицельного алгоритма, приводят к большим систематическим ошибкам в выработке упреждений, а следовательно, и к значительному снижению эффективности стрельбы по средствам воздушного нападения.

Наиболее близким к изобретению является способ защиты объекта, заключающийся в обнаружении и опознавании цели, взятии ее на сопровождение, сопровождении и определении угловых поправок стрельбы, стрельбе пушечной установки с учетом их по цели, определении скорости сближения цели с носителем D ˙ , вычислении абсолютной начальной скорости снаряда V01 из соотношения:

V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,

где V0 - относительная начальная скорость снаряда, м/с, Vн - скорость носителя, м/с, β - угол визирования цели в горизонтальной плоскости в связанной с носителем системе координат, рад, ε - угол визирования цели в вертикальной плоскости в связанной с носителем системе координат, рад, нахождении времени полета снаряда tпол из соотношения:

t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,

где g1(CH Dy,V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, С - баллистический коэффициент снаряда, м2/кгс, Н(Н) - относительная плотность воздуха, б/р, нахождении упрежденной дальности из соотношения:

D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2

где Dy - упрежденная дальность, D - текущая дальность до цели, м, D ˙ - скорость сближения цели и носителя, м/с, ωAY - угловая скорость линии визирования относительно вертикальной оси (OYA) прицельной системы координат XДYДZД, 1/с, ωZA - угловая скорость линии визирования относительно горизонтальной оси (OZD) прицельной системы координат XDYDZD, 1/c, tпол - полетное время снаряда, с, tз - время задержки (время между последним замером координат и параметров цели и началом стрельбы), с, определении кинематических поправок (углы упреждения на движение цели и носителя) Δε, Δβ прицельной системы из соотношений:

Δ ε = ω Y A D D ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;

Δ β = ω Z A D ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,

где Δβ - угол упреждения на движение цели и носителя в горизонтальной плоскости прицельной системы координат XДYДZД, рад, Δε - угол упреждения на движение цели и носителя в вертикальной плоскости прицельной системы координат XДYДZД, рад, и в соответствии с вычисленными угловыми поправками во время стрельбы ствол пушечной установки постоянно отклоняют относительно текущего положения линии визирования [4].

Наиболее близким к изобретению является система защиты объекта от средств воздушного нападения, которая содержит обзорно-прицельную, навигационную системы, бортовую вычислительную систему, силовые приводы установки, пулеметную (пушечную) установку, при этом бортовая вычислительная система содержит устройство определения углов упреждения, которое состоит из блока формирования угла упреждения Δβ, блока формирования угла упреждения Δε, а также блок формирования упрежденной дальности, блок формирования полетного времени, блок формирования абсолютной начальной скорости, блок формирования скорости сближения [4].

Недостатком данного способа и устройства является недостаточная точность прицеливания, так как при формировании углов упреждения для стволов оружия используются данные о начальной и абсолютной начальной скорости без учета износа канала ствола оружия.

Техническим результатом изобретения является повышение точности прицеливания.

Технический результат изобретения достигается тем, что в способе защиты объекта, заключающемся в обнаружении и опознавании цели, взятии ее на сопровождение, сопровождении и определении угловых поправок стрельбы, стрельбе пушечной установки с учетом их по цели, определении скорости сближения цели с носителем, вычисление абсолютной начальной скорости снаряда из соотношения:

V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,

где V0 - относительная начальная скорость снаряда, м/с, Vн - скорость носителя, м/с, β - угол визирования цели в горизонтальной плоскости в связанной с носителем системе координат, рад, ε - угол визирования цели в вертикальной плоскости в связанной с носителем системе координат, рад, нахождении времени полета снаряда tпол из соотношения:

t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,

где g1(CH Dy,V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, С - баллистический коэффициент снаряда, м /кгс, Н(Н) - относительная плотность воздуха, б/р, нахождении упрежденной дальности из соотношения:

D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2

где Dy - упрежденная дальность, D - текущая дальность до цели, м, D ˙ - скорость сближения цели и носителя, м/с, ωУА - угловая скорость линии визирования относительно вертикальной оси (OYA) прицельной системы координат XДYДZД, 1/с, ωZA - угловая скорость линии визирования относительно горизонтальной оси (OZD) прицельной системы координат XDYDZD, 1/c, tпол - полетное время снаряда, с, tз - время задержки (время между последним замером координат и параметров цели и началом стрельбы), с, дополнительно определяют текущее значение начальной и абсолютной начальной скорости снаряда, осуществляют определение кинематических поправок (углы упреждения на движение цели и носителя) Δε, Δβ прицельной системы с учетом текущих значений начальной и абсолютной начальной скорости снаряда из соотношений:

Δ ε = ω Y A D D ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;

Δ β = ω Z A D ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,

где Δβ - угол упреждения на движение цели и носителя в горизонтальной плоскости прицельной системы координат XДYДZД, рад, Δε - угол упреждения на движение цели и носителя в вертикальной плоскости прицельной системы координат XДYДZД, рад, и в соответствии с вычисленными угловыми поправками во время стрельбы ствол пушечной установки постоянно отклоняют относительно текущего положения линии визирования.

Для реализации способа в систему защиты объекта от средств воздушного нападения, содержащую обзорно-прицельную, навигационную системы, бортовую вычислительную систему, силовые приводы установки, пулеметную (пушечную) установку, при этом выходы обзорно-прицельной системы и навигационной системы соединены соответственно с первой и второй группой входов бортовой вычислительной системы, первый и второй выходы которой соединены с силовыми приводами установки, выходы которых соединены с пушечной установкой, дополнительно введены первый и второй датчики, блок определения начальной скорости снаряда, причем выходы датчиков соединены с первым и вторым входами блока определения начальной скорости, выход которого соединены третьим входом бортовой вычислительной системы.

Кроме того, бортовая вычислительная система определяет углы Δβ, Δε упреждения стволов оружия в соответствии с выражением

Δ β = ω Z A D ˙ ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,

Δ ε = ω Y A D ˙ ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;

где D - текущая дальность до цели, м; Dy - упрежденная дальность, м; D ˙ - скорость сближения цели и боевой машины, м/с; ωУА - угловая скорость линии визирования относительно вертикальной оси прицельной системы координат, 1/с; ωZA - угловая скорость линии визирования относительно горизонтальной оси прицельной системы координат, 1/с; осуществляет реализацию алгоритма формирования упрежденной дальности Дy в соответствии с выражением

D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2

осуществляет реализацию алгоритма формирования полетного времени tпол в соответствии с выражением

t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,

где g1(CH Dy,V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, С - баллистический коэффициент снаряда, м2/кгс, Н(Н) - относительная плотность воздуха, б/р, осуществляет реализацию алгоритма формирования абсолютной начальной скорости V01 в соответствии с выражением

V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,

где V0 - относительная начальная скорость снаряда, м/с; Vн - скорость объекта защиты, м/с; β - угол визирования цели в горизонтальной плоскости в связанной с системой координат объекта защиты, рад; ε - угол визирования цели в вертикальной плоскости в связанной системой координат объекта защиты, рад, и осуществляет реализацию алгоритма формирования скорости D ˙ сближения,

D ˙ = ( D 2 D 1 ) Δ t ,

где D1, D2 - значения измерительной дальности в моменты времени t2, t2, Δt - интервал времени между замерами.

Кроме того, блок определения начальной скорости снаряда, содержит дифференцирующую цепь, генератор импульсов, сдвиговый регистр, элемент НЕ, элемент И, первый и второй счетчики импульсов, задатчик сигналов, делитель, блок памяти, при этом первый, второй и третий входы блока определения начальной скорости снаряда являются соответственно первым входом сдвигового регистра, элемента НЕ, и входом дифференцирующей цепи, выход которой соединен со вторыми входами сдвигового регистра, первого и второго счетчиков, а третий вход сдвигового регистра соединен с выходом генератора импульсов, выход сдвигового регистра соединен с первыми входами первого счетчика и элемента И, второй и третий входы которого соединены соответственно с выходом элемента НЕ и выходом генератора импульсов, а выход элемента И соединен с первым входом второго счетчика, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика сигналов, а выход делителя соединен с первым входом блока памяти, второй вход которого соединен с выходом первого счетчика, выход блока памяти является выходом блока определения начальной скорости снаряда.

На фиг.1 показана ориентация визирной системы координат XDYDZD и системы координат, связанной с подвижной артиллерийской установкой X V 0 Y V 0 Z V 0 относительно связанной с носителем системы координат (с.к.) XHYHYH. Система координат XHYHYH жестко связана с центром масс носителя. Ось OXH направлена вдоль продольной оси носителя по направлению движения, ось OYH в плоскости симметрии носителя вверх перпендикулярно к плоскости башни, ось OZH перпендикулярно к плоскости XHOZH, причем за положительное направление оси принимаем направление вправо.

С.к. XHYHZH связана с системой сопровождения цели (визирным устройством). Ось OXD направлена по линии дальности. С.к XDYDZD образуется из с.к. XHYHZH двумя поворотами: а) вокруг оси OYH на угол β в плоскости башни; б) вокруг оси OZD в плоскости, перпендикулярной к плоскости башни на угол ε.

С.к. X V 0 Y V 0 Z V 0 связана с подвижной ПУ. Ось O X V 0 направлена по оси ствола пушки по вектору V0.

С.к. X V 0 Y V 0 Z V 0 образуется из с.к. XHYHZH двумя поворотами:

а) вокруг оси вращения, параллельной оси OYH носителя на угол β/=β+Δβ; б) вокруг оси O Z V 0 на угол ε/=ε+Δε.

На фиг.2 представлена функциональная схема системы защиты объекта. На фиг.3 приведена структурная схема блока определения начальной скорости снаряда.

Система защиты объекта от средств воздушно-космического нападения содержит, обзорно-прицельную 1, навигационную 2, бортовую вычислительную 3 системы, первый 4 и второй 5 датчики, блок 6 определения начальной скорости снаряда, силовые приводы 7 установки, пулеметную (пушечную) 8установку, при этом выходы обзорно-прицельной 1 и навигационной 2 систем соединены соответственно с первой и второй группой входов бортовой 3 вычислительной системы, первый и второй выходы которой соединены с силовыми приводами 7 установки, выходы которых соединены с пушечной 8 установкой, выходы первого 3 и второго 4 датчиков соединены с первым и вторым входами блока 6 определения начальной скорости, выход которого соединены третьим входом бортовой вычислительной 3 системы.

Блок 6 определения начальной скорости снаряда, содержит дифференцирующую цепь 9, генератор 10 импульсов, сдвиговый регистр 11, элемент НЕ 12, элемент И 13, первый 14 и второй 15 счетчики импульсов, задатчик 16 сигналов, делитель 17, блок 18 памяти, при этом первый, второй и третий входы блока 6 определения начальной скорости снаряда являются соответственно первым входом сдвигового регистра 11, элемента НЕ 12, и входом дифференцирующей цепи 9, выход которой соединен со вторыми входами сдвигового регистра 11, первого 14 и второго 15 счетчиков, а третий вход сдвигового регистра 11 соединен с выходом генератора 10 импульсов, выход сдвигового регистра 11 соединен с первыми входами первого 14 счетчика и элемента И 13, второй и третий входы которого соединены соответственно с выходом элемента НЕ 12 и выходом генератора 10 импульсов, а выход элемента И 13 соединен с первым входом второго 15 счетчика, выход которого соединен с первым входом делителя 17, второй вход которого соединен с выходом задатчика 16 сигналов, а выход делителя 17 соединен с первым входом блока памяти 18, второй вход которого соединен с выходом первого 14 счетчика, выход блока 18 памяти является выходом блока 6 определения начальной скорости снаряда.

Система защиты объекта работает следующим образом.

В момент обнаружения и опознавания подлетающей цели к объекту защиты, обеспечивается взятии ее на сопровождение, сопровождении.

При этом с выходов обзорно-прицельной системы поступают сигналы соответствующие значениям углов визирования цели в горизонтальной и вертикальной плоскости β и ε и ωYA ωZA на первую группу входов бортовой вычислительной системы.

С выходов навигационной системы сигналы о скорости движения носителя Vн, плотности воздуха и другие поступают на вторую группу входов бортовой вычислительной системы (фиг.2).

Бортовая вычислительная система осуществляет реализацию алгоритма формирования абсолютной начальной скорости V01 в соответствии с выражением

V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,

где V0 - относительная начальная скорость снаряда, м/с; Vн - скорость объекта защиты, м/с; β - угол визирования цели в горизонтальной плоскости в связанной с системой координат объекта защиты, рад; ε - угол визирования цели в вертикальной плоскости в связанной с системой координат объекта защиты, рад.

Начальная скорость снаряда определяется блоком определения начальной скорости снаряда следующим образом (фиг 3).

В момент начала стрельбы при включении питания обеспечивается подготовка блока 6 определения начальной скорости снаряда к измерению. При этом от источника питания происходить обнуление сдвигового регистра 11, и первого 14 и второго 15 счетчиков, входящих в состав блока 6 определения начальной скорости снаряда по следующей цепи, источник питания через дифференцирующую цепь 9 на вторые входы сдвигового регистра 11, первого 14 и второго 15 счетчиков.

Во время стрельбы зенитной пушки на выходах датчиках (4, 5) закрепленных на выходах канала ствола возникают сигналы, которые поступают последовательно на первый и второй входы блока 6 определения начальной скорости снаряда. При этом сигналы поступают соответственно на первый вход сдвигового регистра 11 и вход элемента НЕ 12, на третий вход сдвигового регистра 11 поступает сигнал с выхода генератора 10 импульсов.

В момент поступления сигнала с выхода первого 4 датчика на первый вход сдвигового регистра 11, с его выхода сигнал поступает на первый входа первого 14 счетчика и элемента И 13, на второй и третий входы которого поступают сигналы соответственно с выхода элемента НЕ 12 и выхода генератора 10 импульсов.

С выхода элемента И 13 сигнал поступает на первый вход второго 15 счетчика, с выхода которого поступает на первый вход делителя 17, на второй вход которого поступает сигнал с выхода задатчика 16 сигналов.

На выходе первого 15 счетчика формируется сигнал соответствующий количеству выстрелов из канала ствола.

С выхода делителя 17 сигнал соответствующий начальной скорости снаряда поступает на первый вход блока 17 памяти, на второй вход которого поступает сигнал соответствующий количеству выстрелов снаряда поступает с выхода первого 14 счетчика, выход блока 18 памяти является выходом блока 6 определения начальной скорости снаряда.

В момент поступления сигнала с выхода второго 5 датчика на вход элемента НЕ 12, сигнал с его выхода и соответственно со второго входа элемента И 13 снимается, тем самым прекращая подсчет импульсов вторым 15 счетчиком.

Таким образом, на выходе блока 18 памяти хранятся сигналы соответствующие количеству произведенных выстрелов и начальной скорости снаряда.

Формирования скорости D ˙ сближения осуществляется в соответствии с выражением:

D ˙ = ( D 2 D 1 ) Δ t ,

где D1, D2 - значения измерительной дальности в моменты времени t1, t2, при этом Δt - интервал времени между замерами.

Дальность определяется на основе моноимпульсного лазерного дальномера после принятия решения о стрельбе непосредственно перед стрельбой производится двукратный замер дальности D1=D(t1) и D2=D(t2) через некоторый заданный стабильный интервал времени.

Могут быть и другие более сложные варианты определения скорости сближения. Например, при наличии высокочастотного дальномер D ˙ целесообразно рассчитывать, в частности, с помощью фильтров с эффективной конечной памятью.

Бортовая вычислительная 3 система объекта осуществляет формирования упрежденной дальности Ду в соответствии с выражением:

D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2 ,

при этом формирования полетного времени tпол осуществляется в соответствии с выражением

t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,

где g1(CHDy,V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, C - баллистический коэффициент снаряда, м2/кгс, H(H) относительная плотность воздуха, б/р.

Последовательность формирования упрежденной дальности Dy осуществляется следующим образом. По нулевому начальному значению упрежденной дальности D y = D ˙ y = D определяется нулевое приближенное значение полетного времени t ˙ п о л = D ˙ y / v 01 . Далее с использованием информации с обзорно-прицельной и навигационной систем вычисляется первое приближение упрежденной дальности

D y / / = { [ D + D ˙ ( t п о л 0 + t з ) + V H t п о л 0 cos β cos ε ] 2 + [ D ω Z A ( t п о л 0 + t з ) V H t п о л 0 cos β sin ε ] 2 + [ D ω Y A ( t п о л 0 + t з ) + V H t п о л 0 sin ε ] 2 } 1 / 2 ,

которое поступает на вход алгоритма формирования полетного времени tпол вместе со значением абсолютной начальной скорости V01 с выхода алгоритма формирования абсолютной начальной скорости снаряда а также относительной плотности воздуха Н(Н) и т.п. Вычисляется первое значение полетного времени t ( 1 ) п о л , которое поступает на вход алгоритма формирования упрежденной дальности Dy, где осуществляется вторая итерация вычисление D . y ( 2 ) .

Итерации продолжаются до тех пор, пока модуль разности двух последовательных приближений Dy не будет менее заданной малой величины ε. При выполнении условия ε = | D y i D y i 1 | < ε т р е б полученное значение Dy поступает на входы алгоритмов формирования углов упреждения Δβ и Δε.

На основе полученных значений упрежденной дальности, времени полета снаряда, начальной и абсолютной начальной скорости снаряда, скорости сближения средств воздушного нападения и объекта защиты происходит определении угловых поправок стрельбы и стрельба пушечной установки с учетом их по цели.

Бортовая вычислительная 3 система определяет углы Δβ, Δε упреждения стволов оружия в соответствии с выражением

Δ β = ω Z A D ˙ ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,

Δ ε = ω Y A D ˙ ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;

где D - текущая дальность до цели, м; Dy - упрежденная дальность, м; D ˙ - скорость сближения цели и боевой машины, м/с; ωУА - угловая скорость линии визирования относительно вертикальной оси прицельной системы координат, 1/с; ωZA - угловая скорость линии визирования относительно горизонтальной оси прицельной системы координат, 1/с.

Далее комбинация выработанных поправок по каждому из каналов поступает на вход силового 7 привода.

Силовой 7 привод, обрабатывая управляющие сигналы с учетом сигнала обратной связи, в каждый момент времени разворачивают стволы пушечной 8 установки в нужном направлении.

Использование заявляемого способа и реализующей его системы обеспечит повышение точности стрельбы и отсюда эффективности зенитного огня по воздушным целям при защите объекта, на основе использования фактических данных о начальной скорости снаряда, при формировании углов упреждения стволов оружия.

Источники информации

1. Теория стрельбы из танков / Под ред. Н.И. Романова. - М.: Академия бронетанковых войск им. маршала Малиновского Р.Я., 1973, с.315-328.

2. Мубарашкин Р.В. и др. Прицельные системы стрельбы, ч.1. - М.: ВВИА им. проф. Н.Е. Жуковского, 1973, с.78-90, 96, 97.

3. Преснухин Л.Н. и др. Основы теории и проектирования приборов управления. - М.: Оборонгиз, 1960, с.200, 201.

4. Способ защиты боевой машины от средств воздушного нападения и система для его осуществления. Патент РФ на изобретение №2087832, Заявка №95100709/02, опубл. 17.01.1995 г., патент опубл. 20.08.1997 г.

1. Способ защиты объектов от средств воздушного нападения, включающий обнаружение и опознавание целей, взятие их на сопровождение, сопровождение, определение скорости D ˙ сближения цели с объектом защиты, вычисление абсолютной начальной скорости снаряда V01 из соотношения:
V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,
где V0 - относительная начальная скорость снаряда, м/с; VН - скорость перемещения объекта защиты, м/с; β - угол визирования цели в горизонтальной плоскости в связанной с объектом защиты системе координат, рад; ε - угол визирования цели в вертикальной плоскости в связанной с объектом защиты системе координат, рад, нахождение времени полета снаряда tпол из соотношения:
t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,
где g1(CHDy, V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, C - баллистический коэффициент снаряда, м2/кгс, H(H) - относительная плотность воздуха, б/р, нахождение упрежденной дальности из соотношения:
D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2 ,
где D - текущая дальность до цели, м; Dy - упрежденная дальность, м; D ˙ - скорость сближения цели и объекта защиты, м/с; ω - угловая скорость линии визирования относительно вертикальной оси прицельной системы координат, 1/с; ωZA - угловая скорость линии визирования относительно горизонтальной оси прицельной системы координат, 1/с; tпол - полетное время снаряда, с; tз - время задержки между последним замером координат и параметров цели и началом стрельбы, с, отличающийся тем, что дополнительно определяют текущее значение начальной скорости снаряда V0 и абсолютной V01 начальную скорость снаряда с учетом износа канала ствола, осуществляют определение кинематических поправок (углов упреждения на движение цели и объекта защиты) Δε, Δβ соответственно в вертикальной и горизонтальной плоскостях прицельной системы координат с учетом текущих значений начальной и абсолютной начальной скорости снаряда из соотношений:
Δ ε = ω Y A D D ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;
Δ β = ω Z A D ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,
где Δβ - угол упреждения на движение цели и носителя в горизонтальной плоскости прицельной системы координат XДYДZД, рад, Δε - угол упреждения на движение цели и носителя в вертикальной плоскости прицельной системы координат XДYДZД, рад, и в соответствии с вычисленными угловыми поправками во время стрельбы ствол пушечной установки постоянно отклоняют относительно текущего положения линии визирования.

2. Система защиты объектов от средств воздушного нападения содержит обзорно-прицельную, навигационную систему, бортовую вычислительную систему, силовые приводы установки, пулеметную или пушечную установку, причем выходы обзорно-прицельной и навигационной системы соединены с входами бортовой вычислительной системы, выход которой соединен с входами силовых приводов установки, выходы которых соединены с входами пулеметной или пушечной установки, отличающаяся тем, что дополнительно введены первый и второй датчики, блок определения начальной скорости снаряда, при этом первый и второй датчики размещены на стволе или непосредственной близости от ствола, выходы датчиков соединены с первым и вторым входом блока определения начальной скорости снаряда, третий вход которого соединен с источником питания, а выход блока определения начальной скорости снаряда соединен с третьим входом бортовой вычислительной системы.

3. Система по п.2, отличающаяся тем, что бортовая вычислительная система определяет углы Δβ, Δε упреждения стволов оружия в соответствии с выражением
Δ β = ω Z A D ( t п о л + t з ) D y V 01 V 0 V H sin β t п о л V 01 D y D y V 0 ,
Δ ε = ω Y A D ( t п о л + t з ) D y V 01 V 0 + V H cos β sin ε t п о л V 01 D y D y V 0 ;
где D - текущая дальность до цели, м; Dy - упрежденная дальность, м; D ˙ - скорость сближения цели и боевой машины, м/с; ω - угловая скорость линии визирования относительно вертикальной оси прицельной системы координат, 1/с; ωZA - угловая скорость линии визирования относительно горизонтальной оси прицельной системы координат, 1/с; осуществляет реализацию алгоритма формирования упрежденной дальности Dу в соответствии с выражением
D y = { [ D + D ˙ ( t п о л + t з ) + V H t п о л cos β cos ε ] 2 + [ D ω Z A ( t п о л + t з ) V H t п о л cos β sin ε ] 2 , + [ D ω Y A ( t п о л + t з ) + V H t п о л sin ε ] 2 } 1 / 2
осуществляет реализацию алгоритма формирования полетного времени tпол в соответствии с выражением
t п о л = D y V 01 g 1 ( C H D y , V 01 ) ,
где g1(CHDy,V01) - табличная функция, учитывающая сопротивления воздуха при определении t; CH=cH(H) - приведенный баллистический коэффициент, C - баллистический коэффициент снаряда, м2/кгс, H(H) - относительная плотность воздуха, б/р, осуществляет реализацию алгоритма формирования абсолютной начальной скорости V01 в соответствии с выражением
V 01 = V 0 2 + V H 2 + 2 V 0 V H cos β cos ε ,
где V0 - относительная начальная скорость снаряда, м/с; Vн - скорость объекта защиты, м/с; β - угол визирования цели в горизонтальной плоскости в связанной с системой координат объекта защиты, рад; ε - угол визирования цели в вертикальной плоскости в связанной системой координат объекта защиты, рад, и осуществляет реализацию алгоритма формирования скорости D ˙ сближения,
D ˙ = ( D 2 D 1 ) Δ t ,
где D1, D2 - значения измерительной дальности в моменты времени t1, t2, Δt - интервал времени между замерами.

4. Система по п.2, отличающаяся тем, что блок определения начальной скорости снаряда содержит дифференцирующую цепь, генератор импульсов, сдвиговый регистр, элемент НЕ, элемент И, первый и второй счетчики импульсов, задатчик сигналов, делитель, блок памяти, при этом первый, второй и третий входы блока определения начальной скорости снаряда являются соответственно первым входом сдвигового регистра, элемента НЕ, и входом дифференцирующей цепи, выход которой соединен со вторыми входами сдвигового регистра, первого и второго счетчиков, а третий вход сдвигового регистра соединен с выходом генератора импульсов, выход сдвигового регистра соединен с первыми входами первого счетчика и элемента И, второй и третий входы которого соединены соответственно с выходом элемента НЕ и выходом генератора импульсов, а выход элемента И соединен с первым входом второго счетчика, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика сигналов, а выход делителя соединен с первым входом блока памяти, второй вход которого соединен с выходом первого счетчика, выход блока памяти является выходом блока определения начальной скорости снаряда.



 

Похожие патенты:
Изобретение относится к военной технике, а именно к управляемым ракетам. В пульт огневой позиции передают координаты цели, полученные с помощью целеуказателя, рассчитывают установки стрельбы и полетное задание, передают установки стрельбы на пусковую установку и на управляемую ракету с лазерной полуактивной головкой самонаведения, производят запуск, устанавливают канал радиосвязи с пультом разведчика для передачи сигнала о времени включения лазерного излучения целеуказателя после выстрела.

Изобретение относится к управляемому вооружению. Способ управления орудием в подразделении заключается в том, что координаты целей определяют с помощью средства разведки и передают их в пульт командира подразделения, осуществляют топографическую привязку позиции орудия подразделения в пульте командира подразделения, рассчитывают в пульте командира подразделения установки стрельбы для указанной цели и орудия.

Изобретение относится к военной технике и может быть использовано для управления артиллерийскими снарядами. .

Изобретение относится к области компьютерной технологии в военном деле, а именно к определению траектории полета воздушной цели для решения задачи поражения воздушной цели огневыми средствами боевой машины.

Изобретение относится к радиоэлектронике и может быть использовано в передвижных радиолокационных станциях обнаружения и сопровождения с высокими массогабаритными показателями антенно-фидерной системы.
Изобретение относится к области измерительной технике, а именно к измерениям в системах управления и регулирования, а более конкретно к управляемому вооружению. .

Изобретение относится к области управления и регулирования, а более конкретно - к управляемому вооружению. .

Изобретение относится к военной технике, а более конкретно к автоматизированным системам управления высокоточным оружием. .

Изобретение относится к области приборостроения и предназначено для применения на кораблях в качестве резервного средства сопровождения целей в составе радиолокационной или оптико-электронной системы управления стрельбой.

Изобретение относится к управляемым артиллерийским снарядам с лазерной полуактивной головкой самонаведения. .

Использование: относится к области управляемого оружия и может быть использовано в способе поражения наземных станций активных помех бортовым радиолокационным станциям самолетов самонаводящимся по радиоизлучению оружием и система для его осуществления. Сущность: пуск самонаводящегося по радиоизлучению оружия производят при отсутствии излучения станции активных помех бортовым РЛС, на первом этапе его полет происходит по программе с использованием данных инерциальной навигационной системы, на определенном рубеже производят включение пассивной радиотехнической головки самонаведения в режим поиска сигналов станции активных помех по несущей частоте, длительности, периоду повторения импульсов и угловым координатам. Провоцируют включение станции активных помех противника в режим подавления бортовой РЛС, производят бланкирование (запирание) приемника пассивной радиотехнической головки самонаведения, в паузах между сигналами имитатора осуществляют поиск, обнаружение и измерение параметров ответных сигналов станции активных помех пассивной радиотехнической головкой самонаведения. Сравнивают параметры сигналов и формируют команды разрешения на захват цели пассивной радиотехнической головкой самонаведения. На втором этапе, полет самонаводящегося по радиоизлучению оружия производят под управлением пассивной радиотехнической головкой самонаведения вплоть до поражения станции активных помех. Система для осуществления способа поражения наземных станций активных помех бортовым РЛС самонаводящимся по радиоизлучению оружием. Технический результат: обеспечение поражения наземных САП самонаводящимся по радиоизлучению оружием без снижения скрытности и боевых возможностей ударной группы повышает точность наведения самонаводящегося по радиоизлучению оружия на наземные САП в 3-10 раз, увеличивает вероятность поражения РЭС-цели в 4-8 раз, а требуемый наряд СНО для поражения САП с вероятностью не менее 0.8 снижает в 6-13 раз. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к управляемому вооружению и касается управления боевыми действиями как расчета комплекса вооружения, так и подразделения артиллерийского формирования при стрельбе по целям. Во время управления комплексами вооружения определяют и топографически привязывают координаты целей с помощью средств разведки, затем передают через пульт управления командира (ПУК) в пульт управления старшего офицера (ПУСО) по цифровому каналу радиосвязи топографическую привязку позиций орудий в ПУСО. Рассчитывают в ПУСО установки стрельбы для указанной цели и орудий и передают сообщения с установками стрельбы с ПУСО на орудийные терминалы. На экране орудийного терминала каждого орудия отображают установки стрельбы и реализуют их на орудии и снаряде. При этом метеорологические условия стрельбы определяют с помощью переносного автоматизированного метеокомплекта, который подключен к ПУСО с помощью разъема, и автоматически сохраняют в ПУСО, а затем используют при расчете установок стрельбы для указанной цели и привлекаемых для ее поражения орудий. Достигается сокращение временных затрат на метеорологическую подготовку стрельбы за счет автоматизированного определения и ввода метеорологических условий стрельбы в ПУСО непосредственно перед расчетом установок стрельбы по выбранной цели, расширение функциональных возможностей артиллерийского формирования. 2 з.п. ф-лы, 2 ил.

Изобретение относится к управляемому вооружению и может быть использовано, например, в процессе формирования управляющих воздействий при стрельбе по целям управляемыми и неуправляемыми реактивными снарядами. Технический результат - расширение функциональных возможностей. Для этого метеорологические условия стрельбы в пределах высоты полета реактивного снаряда определяют с помощью метеостанции высотного зондирования атмосферы, а в пределах высоты активного участка траектории реактивного снаряда с помощью автоматизированной метеостанции, затем сохраняют в пульте управления старшего офицера формирования реактивной артиллерии и используют при расчете установок стрельбы для указанной цели и привлекаемых для ее поражения орудий. Для определения координат целей противника используют технические средства разведки, которые связаны с пультом управления командира формирования реактивной артиллерии цифровым каналом радиосвязи и обеспечивают определение координат целей противника за пределами прямой видимости. 2 ил.

Изобретение относится к области военной техники, в частности к конструкциям установок, обеспечивающих наведение оружия в горизонтальной и вертикальной плоскостях. Задачей изобретения является упрощение конструкции, снижение энергопотребления, повышение надежности и улучшение эксплуатационных характеристик. Для поворота направляющих 7 вокруг вертикальной оси включают первый двигатель, в результате чего червяк 5 начинает вращаться и поворачивать на втулке 3 зубчатое колесо 2 с платформой 1. При достижении направляющими 7 нужного азимута выключают первый двигатель, обеспечивая за счет самоторможения червячной передачи их фиксацию. Для поворота направляющих 7 вокруг горизонтальной оси включают второй двигатель, благодаря чему начинают вращаться вал 13 с червяком 12, который посредством зубчатого колеса 11 и связанного с ним червяка 9 поворачивает зубчатое колесо 8 с осью 6 и направляющими 7. После поворота направляющих до требуемого положения производят их фиксирование путем выключения двигателя. После этого производят пуск ракеты. 8 з.п. ф-лы, 2 ил.
Изобретение относится к управлению артиллерийскими управляемыми снарядами и ракетами с лазерной полуактивной головкой самонаведения (ГСН), захватывающей подсвеченную цель на конечном участке траектории, и предназначено для управления огнем минометов и ствольной артиллерии калибров 120, 122, 152, 155 мм при стрельбе управляемыми боеприпасами, а также управляемыми ракетами с ГСН. Указанная задача достигается использованием установки целеуказателя на беспилотном летательном аппарате (БЛА) с возможностью автосопровождения цели, ее обнаружения и дальнейшего автоматического сопровождения целеуказателем. Имеется возможность определения скорости движения БЛА, топографической привязки целеуказателя, огневой позиции и цели к местности и передачи периодически с частотой от 0,2 до 5 Гц координат и скорости движения целеуказателя на огневую позицию, измерения полярных координат цели относительно целеуказателя, передачи их по цифровой радиосвязи на огневую позицию, расчета в ней установок стрельбы и их реализации, установки единого компьютерного времени в целеуказателе и на огневой позиции, выработки на огневой позиции разрешения на выстрел и его производство, причем формируется оно после проверки возможности попадания отраженного от цели лазерного излучения целеуказателя в поле зрения ГСН управляемого снаряда при подлете его к цели, передачи с огневой позиции на целеуказатель по каналу цифровой радиосвязи времени включения лазерного излучения и его включения при достижении необходимого времени, наведение снаряда на цель, подсвеченную лазерным излучением целеуказателя. Технический результат - повышение безопасности оператора целеуказателя, повышение оперативности решения задач разведки и управления стрельбой, расширение области применения управляемых артиллерийских боеприпасов с лазерной полуактивной ГСН за счет размещения целеуказателя на БЛА. 2 з.п. ф-лы.

Изобретение относится к технике стрельбы по двигающимся целям и может использоваться в системах обнаружения и определения траектории полета поражающих целей. Технический результат - повышение точности. Для этого определяют точку встречи и момента встречи цели и снаряда, на основании оценок координат положения цели формируют начальную опорную траекторию движения снаряда и вектор промаха снаряда, осуществляют линеаризацию траектории снаряда в окрестности опорной траектории по углам прицеливания, на основании которой формируют матрицу частных производных вектора положения снаряда по углам прицеливания, которая удовлетворяет системе линейных однородных дифференциальных уравнений; при превышении длины вектора промаха своего максимально возможного допустимого порогового значения с использованием матрицы частных производных осуществляют коррекцию углов прицеливания артиллерийского орудия и повторяют формирование опорной траектории снаряда и вектора промаха, а при отсутствии превышения длины вектора промаха своего максимально возможного допустимого порогового значения осуществляют стрельбу по цели, используя последние величины углов прицеливания. 1 ил.

Изобретение относится к области военной техники, а именно к устройствам автоматического управления спаренными пулеметами. Устройство автоматического управления спаренным пулеметом содержит станок с подвижной и неподвижной частями, установку с оружием, размещенную на подвижной части, закрепленный на неподвижной части привод горизонтального наведения, привод вертикального наведения и исполнительные механизмы приводов. Часть механизма вертикального наведения выполнена в виде двух червяков со скрещивающимися взаимно перпендикулярными осями и червячного колеса. Червячное колесо жестко закреплено на оси одного червяка, размещенного на подвижной части и взаимодействующего с зубчатым колесом, жестко связанным с установкой, и сопряжено с другим червяком, ось которого совмещена с вертикальной осью поворота подвижной части. Достигается упрощение конструкции, снижение энергопотребления, повышение надежности и улучшение эксплуатационных характеристик. 11 з.п. ф-лы, 3 ил.
Изобретение относится к ракетам и управляемым артиллерийским снарядам с лазерными полуактивными головками самонаведения, захватывающими подсвеченную цель на конечном участке траектории. Способ стрельбы управляемым артиллерийским снарядом с лазерной полуактивной головкой самонаведения в телеметрическом исполнении, включающий обнаружение цели целеуказателем, измерение расстояния от целеуказателя до цели, топографическую привязку цели, целеуказателя и огневой позиции к местности, проведение расчета установок стрельбы, выстрел и подсвечивание цели после производства выстрела. В состав оборудования вводят второй дополнительный целеуказатель, в котором устанавливают частоту подсвета, отличающуюся от рабочей частоты, введенной перед выстрелом в головку самонаведения, при этом время включения второго целеуказателя определяют как tвкл2=tвкл-tц, где tвкл - расчетное время включения основного целеуказателя, tц - продолжительность цикла подсвета. Технический результат - определение максимальной дальности захвата цели головкой самонаведения в процессе стрельбовых испытаний ракет и артиллерийских снарядов с лазерными полуактивными головками самонаведения в телеметрическом исполнении.

Изобретение относится к оружейной технике. Стрелковое легкое оружие с автоматизированной электронно-оптической системой прицеливания содержит цевье с прикладом, ствол, установленный на цевье с возможностью углового изменения его положения в двух взаимно перпендикулярных плоскостях посредством пьезоэлектрического исполнительного механизма, расположенного между стволом и цевьем в средней зоне цевья, и механизма крепления ствола к цевью к передней зоне цевья. Оружие также содержит установленное с возможностью углового изменения положения относительно ствола в двух взаимно перпендикулярных плоскостях электронно-оптическое устройство с лазерным дальномером и датчиками углового положения относительно ствола и блок управления, выполненный с возможностью ручного и/или автоматизированного ввода данных о величине углов между осью ствола и оптической осью электронно-оптического устройства, расстоянии до цели, скорости и направлении ветра, температуре и влажности, баллистических параметрах боеприпасов, соединенный с электронно-оптическим устройством и исполнительным механизмом. Исполнительный механизм установлен с помощью пружинного механизма и выполнен в виде пьезоэлектрических активаторов, размещенных в крепежной скобе и обеспечивающих перемещение ствола по азимуту и углу места. Электронно-оптическое устройство состоит из оптической системы, светочувствительной матрицы и экрана. Также заявлен способ автоматизированного электронно-оптического прицеливания, по которому вводят в блок управления по меньшей мере один из следующих параметров: расстояние до цели, скорость и направление ветра, температура и влажность, баллистические параметры боеприпасов, полученный с помощью электронно-оптического датчика видеосигнал обрабатывают, определяют по нему контуры по меньшей мере одной цели и соответствующую ему метку прицеливания, осуществляют предварительное прицеливание. Затем рассчитывают корректирующие углы между направлением выстрела по метке прицеливания и расчетной точкой попадания выстрела, после чего формируют управляющий сигнал на пьезоэлектрические активаторы исполнительного механизма, преобразующие полученный сигнал в угловое смещение ствола относительно цевья по крайней мере в одной плоскости. После совпадения положения расчетной точки попадания выстрела с меткой прицеливания производят выстрел. Технический результат: повышение точности и быстроты прицеливания, в том числе с использованием системы автоматизации процессов формирования точки прицеливания. 2 н. и 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к управляемому стратегическому вооружению, в частности к сверхзвуковым летательным аппаратам и способам реализации их полета. Сверхзвуковой летательный аппарат содержит стартовый двигатель с механизмом разделения ступеней, маршевую ступень с планером и с функциональными блоками. Маршевая ступень помещена в защитный обтекатель, раскрывающийся при отделении двигателя. Планер маршевой ступени выполнен по самолетной схеме «низкоплан» с элементами вертикального оперения, обеспечивающими устойчивость планера по крену. Оперение заневоленно защитным обтекателем. Способ реализации полета сверхзвукового летательного аппарата заключается в использовании программируемой амплитуды рикошетирования. На этапе погружения в атмосферу изменение вектора аэродинамической силы осуществляют путем выбора оптимального угла атаки. Запуск летательного аппарата осуществляют с установки под траекторным углом от 50 до 85° к горизонту. Летательный аппарат выводят по баллистической траектории в разреженные слои атмосферы на высоты от 50 до 70 км. Достигается уменьшение аэродинамических нагрузок. 2 н.п. ф-лы, 2 ил.
Наверх