Рентгеновский анализатор


 


Владельцы патента RU 2504756:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (RU)

Использование: для исследования объектов посредством рентгеновского излучения. Сущность: заключается в том, что рентгеновский анализатор выполнен из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и прозрачные в перпендикулярном направлении, и подложки в виде сотовой структуры, при этом слои сцинтиллятора выполнены в виде расположенных друг за другом сцинтилляционных пластин из полистирола протяженностью не менее 3 мм, CaF2 протяженностью не менее 2 мм, ZnO протяженностью не менее 2 мм, CsI протяженностью не менее 8 мм, BGO протяженностью не менее 15 мм. Технический результат: обеспечение возможности определения спектра рентгеновского излучения в диапазоне от 0,3 кэВ до 1,0 МэВ с помощью одного датчика, упрощение технической реализации и процедуры измерений, обеспечение измерения спектров импульсных излучений. 1 ил., 2 табл.

 

Изобретение относится к измерительной технике, а именно к сцинтилляционным датчикам, основанных на фильтрации рентгеновского излучения и может применяться в медицинских томографах, рентгеновских досмотровых системах, а также в устройствах для анализа спектрального состава рентгеновского и гамма излучения.

Действие детекторов основано на фильтрации рентгеновского излучения с помощью набора металлических фольг или отдельных элементов детектора, расположенных ближе к источнику. R.G. Waggener, M.M. Blough, J.A. Terry, et al., «Х-ray spectra estimation using attenuation measurements from 25 kVp to 18 MV», Med. Phys. 26 (1999) 1269; C. Avila, J. Lopez, J.C. Sanabria, G. Baldazzi, et al., «Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors», Med. Phys. 32 (2005) 3755.

Восстановление спектра пришедшего на детектор излучения осуществляют в энергетических окнах путем математической процедуры с учетом калибровочных данных.

Известен анализатор рентгеновского излучения, содержащий плоскую малогабаритную сборку из четырех термолюминесцентных детекторов, помещенных в полиэтиленовый контейнер. Байгарин К.А., Зинченко В.Ф., Лихолат В.М., Тимофеев В.В. Анализатор рентгеновского излучения на основе термолюминесцентных детекторов. Атомная энергия. 1991. N70. Вып.6. С.410.

Известен анализатор рентгеновского излучения, содержащий вакуумированный корпус с входным окном из невакуумноплотного, слабопоглощающего материала, например лавсана. Корпус заполнен слабопоглощающим электроположительным газом, например, водородом. Отпаянный детектор рентгеновского излучения с тонким невакуумноплотным окном заполнен рабочим газом неоном или аргоном. Патент Российской Федерации №2030736, МПК: G01N 23/223, 1995 г.

Недостатками вышеуказанных анализаторов рентгеновского излучения является громоздкость конструкций, необходимость работы с вакуумными или отпаянными системами, возможность использования лишь для мягкого рентгеновского излучения.

Известен анализатор рентгеновского излучения, содержащий корпус, термолюминесцентные детекторы и фильтры рентгеновского излучения, расположенные в ячейках, с корпусом из двух частей, причем в сквозных ячейках одной из частей расположены фильтры, зафиксированные от выпадения прижимной пластиной. Каждый детектор расположен в ячейке, выполненной в съемной пробке, установленной в отверстии другой части корпуса соосно с фильтром, а корпус и прижимная пластина выполнены из материала с атомным номером, близким к атомному номеру детекторов. Патент Российской Федерации №2177629, МПК: G01T 1/36, 2001 г.

Известно устройство для поиска источников, определения направления на него и измерения спектра гамма-излучения источника, содержащее блок индикации, блок измерения, блок сравнения и детектирующий блок, состоящий из цилиндрического экрана и более трех детекторов. Оно снабжено анализатором импульсов и оптоэлектронным преобразователем, соединенным электрически с анализатором и оптически с экраном, причем экран выполнен в виде сцинтиллятора. Патент Российской Федерации №2169380, МПК: G01T 1/16, 2001 г.

Недостатками аналогов являются большие габариты, сложность конструктивного исполнения и невозможность сконструировать координатно-чувствительный мульти-энергетический анализатор с пространственным разрешением ~1 мм.

Известен рентгеновский анализатор, выполненный из плоских элементов, содержащих слой сцинтиллятора, нанесенный на подложку или введенный в ее состав и волоконно-оптические элементы, на концах которых установлены фотоприемники, в котором слой сцинтиллятора расположен вдоль направления распространения излучения, непрозрачен в этом направлении и прозрачен в перпендикулярном направлении, а подложка выполнена в виде сотовой структуры. Патент Российской Федерации №2388015, МПК: G01T 1/00, 2009 г. Прототип.

Недостатком прототипа является невозможность его применения при наличии в спектре падающего на него излучения рентгеновских квантов с энергией вблизи K-края фотоэлектрического поглощения и/или с энергией, соответствующей рождении в сцинтилляторе электрон-позитронных пар.

Данное изобретение устраняет недостатки аналогов и прототипа.

Задачей изобретения является: расширение спектрального диапазона, в котором может применяться сцинтилляционный спектрозональный датчик рентгеновского и гамма излучений, упрощение технической реализации и процедуры измерений, обеспечение измерения спектров импульсных излучений, повышение точности восстановления спектра.

Техническим результатом изобретения является определение спектра рентгеновского излучения в диапазоне от 0,3 кэВ до 1,0 МэВ с помощью одного датчика, упрощение технической реализации и процедуры измерений, обеспечение измерения спектров импульсных излучений.

Технический результат достигается тем, что в рентгеновском анализаторе, выполненном из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, не прозрачные в этом направлении и прозрачные в перпендикулярном направлении, и подложки в виде сотовой структуры, слои сцинтиллятора выполнены в виде расположенных друг за другом сцинтилляционных пластин из полистирола протяженностью не менее 3 мм, CaF2 протяженностью не менее 2 мм, ZnO протяженностью не менее 2 мм, CsI протяженностью не менее 8 мм и BGO протяженностью не менее 15 мм.

Сущность изобретения поясняется чертежом, на котором схематически представлен сцинтилляционный спектрозональный датчик рентгеновского и гамма излучения, где: 1 - сцинтиллятор, составленный из нескольких пластин из различных сцинтилляционных материалов, 2 - позиционно-чувствительное фотоприемное устройство, 3 - первичная электроника, 4 - коллиматор. Стрелкой 5 показано направление распространения излучения.

Датчик содержит сцинтилляционные пластины 1, расположенные вдоль направления распространения излучения, на боковой поверхности сцинтилляционных пластин 1 расположено позиционно-чувствительное фотоприемное устройство 2, работающее в режиме накопления сигнала (токовом режиме).

Излучение поступает на торцевую поверхность сцинтилляционных пластин 1 через коллиматор 4, служащий для формирования угловой расходимости пучка таким образом, чтобы излучение не проходило через боковую поверхность сцинтилляционных пластин 1. При взаимодействии рентгеновских квантов с материалом сцинтилляционных пластин 1 в них образуются электроны, которые возбуждающие сцинтилляционные вспышки.

Фотоны от сцинтилляционных вспышек попадают на позиционно-чувствительное фотоприемное устройство 2, где образуют фотоэлектроны. Количество фотонов во вспышке пропорционально энергии, выделенной электроном.

Для измерения пространственного распределения энерговыделения в сцинтилляционных пластинах 1 на позиционно-чувствительное фотоприемное устройство 2 попадают только сцинтилляционные фотоны, которые распространяются перпендикулярно поверхности сцинтилляционных пластин 1.

Это обеспечивают с использованием: порошкового сцинтиллятора; сцинтиллятора, состоящего из набора пластин, разделенных светоотражающими или светопоглощающими перегородками; или матричного сцинтиллятора, например, волоконного; или оптического коллиматора, устанавливаемого между пластинами сцинтиллятора 1 и позиционно-чувствительным фотоприемным устройством 2.

В качестве позиционно-чувствительного фотоприемного устройства 2 в датчике могут использоваться фотодиодные линейки, ПЗС-матрицы, двухкоординатные ФЭУ, оптические хронографы.

Широко распространенным фотоприемным устройством является фотодиодная линейка. В основном применяют два типа фотодиодных линеек. В досмотровых системах используют линейки высотой 0,3-1.6 мм с межцентровым расстоянием между соседними фотодиодами (шаг считывания) в пределах 0,2-1,6 мм. При этом длина линейки принимает два значения: 51,2 мм и 102,4 мм.

Фотодиодные линейки, применяемые в спектрометрии, содержат более 103 фотодиодов высотой до 4 мм и минимальным шагом считывания 6,25 мкм в бескорпусном исполнении на одном термостабилизированном основании V.A. Labusov, «Setup complexes for atomic-emission spectral analysis based on grand spectrometer», Chemistry and Materials Science. Inorganic Materials Volume 45, Number 14, 1529-1536, DOI: 10.1134/S0020168509140039; V.A. Labusov, L.N. Mazalov, S.V. Fomenko, D.O. Selyunin, A.V. Bekhterev, «Multichannel Linear Detector for X-ray Spectroscopy», Optoelectronics, Instrumentation and Data Processing (Avtometriya), 2009, N3, v.45, p.53-61.

Квантовая эффективность этих линеек в оптическом диапазоне превышает 50%, а нелинейность фотоотклика измерительного канала не превышает 0,5%. Динамический диапазон выходных сигналов измерительных каналов составляет 104.

Важным условием корректного восстановления спектра в энергетических окнах по пространственному распределению сигнала в пластинах сцинтиллятора 1 является выбор материала пластин.

Необходимо, чтобы энергетическая зависимость коэффициента линейного ослабления µ(Е) в сцинтилляторе для падающего на него излучения не имела экстремумов и характеризовалась максимально возможной производной.

Если коэффициенты линейного ослабления в соседних энергетических окнах µ(Ei) отличаются недостаточно по сравнению со статистической неопределенностью измеряемого сигнала, то восстановление спектра становится либо неточным, либо невозможным.

Для всех сцинтилляторов зависимость µ(Е) имеет один и тот же характер. При малых энергиях µ(E) быстро падает, затем меняется сравнительно слабо и, наконец, начинает расти. Указанные области соответствуют различным механизмам ослабления излучения. В начале основным механизмом является фотопоглощение, затем неупругое рассеяние и, наконец, рождение электрон-позитронных пар. В общем случае в зависимости сечения от энергии существуют две области энергий, в которых имеют место экстремумы. Первая область - это область скачков в фотопоглощении, вторая - переходная область между неупругим рассеянием и рождением электрон-позитронных пар.

Скачки в зависимости µ(E) в области фотопоглощения имеют место при значениях энергии, определяемых энергией связи электронов атомов, входящих в состав сцинтиллятора. Необходимо, чтобы левая граница спектра падающего на сцинтиллятор излучения Emin лежала выше энергии К-края полосы поглощения EK-edge (Emin>EK-edge) самого тяжелого атома из входящих в состав сцинтиллятора, за исключением атомов активатора, концентрация которых обычно достаточно мала.

Правая граница спектра падающего на сцинтиллятор излучения Emax должна быть ограничена сверху энергией Ee-e, при которой заметный вклад в сцинтилляционный сигнал начинает вносить рождение электрон-позитронных пар. Величина Ee-e составляет несколько МэВ в случае сцинтилляторов, содержащих атомы с большим зарядом электронной оболочки и >10 МэВ в случае малого заряда.

В определенном таким образом интервале энергий (Emin, Emax) основными видами взаимодействия рентгеновского излучения с веществом является фотопоглощение и неупругое рассеяние, причем сечение фотопоглощения характеризуется более выраженной зависимостью от энергии, чем сечение неупругого рассеяния. Поэтому в области преимущественного ослабления излучения за счет фотопоглощения, спектр восстанавливается более точно, чем при неупругом рассеянии. В качестве правой границы этой области принята энергия Eф-к, при которой сечение фотопоглощения сравнивается с сечением неупругого рассеяния. В переходной области (Еф-к, Ее-е) µ(E) меняется сравнительно слабо и поэтому при разбиении спектра на энергетические группы может оказаться целесообразным представлять эту область энергий одной группой.

В таблице 1 приведены определенные выше значения EК-край, Еф-к, а также Ee-e для применяемых в датчике сцинтилляторов.

Таблица 1
№ п/п Сцинтиллятор EК-край, кэВ Eф-к, кэВ Eе-е, МэВ
1 Полистирол (пластмасса) ≈0.3 ≈20 >10
2 CaF2 (керамика) ≈4.1 ≈60 >10
3 ZnO (керамика) ≈9.8 ≈120 >10
4 CsI (кристалл) ≈37 ≈300 ≈5
5 BGO (кристалл) ≈91 ≈470 ≈3

Из таблицы 1 видно, что значения EК-край для полистирола, CaF2 и ZnO находятся в области практически мало используемых энергий (Е<10 кэВ). Для CsI и BGO значения EК-край составляют, соответственно, ≈37 кэВ и ≈91 кэВ и находятся в широко используемой области энергий. Для представленных в таблице сцинтилляторов значений Eф-к для предыдущего по порядку сцинтиллятора существенно больше значения EК-край для последующего. Размещение этих пластин сцинтилляторов последовательно друг за другом по мере увеличения EК-край позволяет при достаточной толщине пластин практически полностью (примерно, в 104-105 раз) удалить из спектра кванты с энергией в области значений EК-край для последующих сцинтилляторов. Из приведенных в таблице 1 данных следует, что для составного сцинтиллятора диапазон энергий (EК-край, Eф-к), который может быть сравнительно точно восстановлен, лежит в области 0,3 кэВ - 470 кэВ, а возможный энергетический диапазон, в котором не нарушается работа датчика лежит в области 0,3 кэВ - 3 МэВ.

Восстановление спектра излучения основано на решении переопределенной системы линейных уравнений:

C∗A=B,

где C - восстанавливаемый спектр, вектор столбец с элементами с, равными числу фотонов в i-й энергетической группе восстанавливаемого спектра,

A - калибровочная матрица с элементами a ij равными среднему сигналу, вызываемому фотоном i-й группы в j-м элементе (пикселе) фотоприемного устройства, которое определяется калибровочными измерениями и (или) расчетом,

B - сигнал в j-м элементе (вектор-строка).

Для оценки влияния на точность восстановления спектра статистики сигнала в элементах датчика, количества выбранных энергетических окон и спектрального диапазона падающего на датчик излучения была использована группа расположенных друг за другом сцинтилляционных пластин 1 с поперечным сечением 0,8×0,8 мм, из полистирола, CaF2, ZnO, CsI и BGO протяженностью, соответственно, 3 мм, 2 мм, 2 мм, 8 мм и 15 мм.

Рентгеновский пучок падает вдоль оси расположенных друг за другом сцинтилляционных пластин 1, а пространственное распределение разрешение датчика составляет 100 мкм.

Оценки проведены для трех различных спектров (10÷50) кэВ, (50÷250) кэВ и (10÷250) кэВ, характеризующихся равномерным энергетическим распределением. Все спектры разбиты на пять энергетических групп. В последнем случае расчеты были выполнены еще и для 10 групп (число в скобках в таблице 2). Относительное стандартное отклонение сигнала, просуммированного по всех пикселям %RSDS, варьировалось в пределах от 0,1% до 10%. В таблице 2 представлены максимальные значения относительного стандартного отклонения %RSDi для числа квантов в энергетических группах восстановленного спектра при %RSDS=1%.

Таблица 2
Диапазон энергий, кэВ 10÷50 50÷250 10÷250
%RSDi <14% <10% <4% (28%)

Из представленных в таблице 2 результатов видно, что величина %RSDi тем меньше, чем больше отличаются значения µ(Ei) в соседних энергетических группах.

Величина %RSDi находится в прямой зависимости от %RSDS в диапазоне 0,1%÷10%. При восстановлении спектра в пяти энергетических окнах в области широко используемых энергий (10-250) кэВ относительное стандартное отклонение для числа частиц в отдельной группе может быть менее 10% при 1% статистической точности интегрального сигнала и менее при лучшей статистике. В случае излучения со спектром в более узком энергетическом диапазоне количество применяемых в датчике сцинтилляторов может быть уменьшено. При наборе пластин с значением энергии Eф-к, при которой коэффициент линейного ослабления за счет фотоэффекта сравнивается с сечением неупругого рассеяния, для данного сцинтиллятора и его длина обеспечивает эффективное выведение из пучка квантов с энергией EК-край, соответствующей К-краю фотопоглощения для последующей пластины сцинтиллятора, а вероятность рождения электрон-позитронных пар в каждой из пластин была пренебрежимо мала возможен и другой подбор материала пластин.

Рентгеновский анализатор, выполненный из плоских элементов, содержащих слои сцинтиллятора, расположенные вдоль направления распространения излучения, непрозрачные в этом направлении и прозрачные в перпендикулярном направлении, и подложки в виде сотовой структуры, отличающийся тем, что слои сцинтиллятора выполнены в виде расположенных друг за другом сцинтилляционных пластин из
полистирола протяженностью не менее 3 мм,
CaF2 протяженностью не менее 2 мм,
ZnO протяженностью не менее 2 мм,
CsI протяженностью не менее 8 мм,
BGO протяженностью не менее 15 мм.



 

Похожие патенты:

Использование: для рентгеновского флуоресцентного анализа образца минерала. Сущность: заключается в том, что устройство (1) для рентгеновского флуоресцентного анализа образца минерала, содержит источник (2) рентгеновского излучения, предназначенный для создания пучка рентгеновских лучей для облучения образца минерала; по меньшей мере один детектор (4, 5) флуоресценции для измерения флуоресцентного излучения, испускаемого образцом минерала при облучении пучком рентгеновских лучей; блок обработки для обеспечения анализа образца минерала на основании измерений, выполненных посредством упомянутого по меньшей мере одного детектора (4, 5) флуоресценции, при этом упомянутое устройство (1) дополнительно содержит контейнер (3) для образца, выполненный с возможностью вмещать образец минерала в течение облучения, причем контейнер для образца выполнен с возможностью обеспечивать по меньшей мере два различных пути прохождения облучения через упомянутый образец минерала в течение облучения, и средство контроллера, чтобы регулировать напряжение рентгеновской трубки упомянутого источника (2) рентгеновского излучения в соответствии с длиной путей прохождения облучения.

Использование: для рентгенофлуоресцецтного анализа состава вещества. Сущность заключается в том, что энергодисперсионный поляризационный рентгеновский спектрометр содержит источник гамма- или рентгеновского излучения, вогнутую мишень, диафрагму с отверстием, держатель образца, детектор с коллиматором, направленным на образец, и регистрирующую аппаратуру, вход которой соединен с выходом детектора, при этом использован источник излучения с линейным фокусом, мишень вогнута по цилиндру, фокус источника расположен на образующей цилиндра, детектор и отверстие диафрагмы расположены, во-первых, на образующей цилиндра, диаметрально противоположной источнику, во-вторых, в диаметрально противоположных точках сферы, при этом сфера смещена в сторону детектора от мишени, а держатель образца выполнен с возможностью установки образца на этой сфере под вторичное излучение, прошедшее через отверстие диафрагмы, кроме того, введен коллиматор первичного пучка с плоскопараллельными каналами, перпендикулярными оси цилиндра.

Использование: для рентгенофлуоресцентного анализа состава вещества. Сущность: заключается в том, что поляризационный спектрометр содержит источник гамма - или рентгеновского излучения, вогнутую мишень, диафрагму с отверстием, держатель образца, детектор с коллиматором, направленным на образец, и регистрирующую аппаратуру, вход которой соединен с выходом детектора, при этом мишень вогнута по цилиндру, фокус источника расположен на образующей цилиндра, введены второй держатель образца, вторая диафрагма, второй детектор с коллиматором и регистрирующей аппаратурой, коллиматор с узкими щелями или каналами для формирования первичного пучка, перпендикулярного оси цилиндра, при этом детекторы и отверстия диафрагм расположены, во-первых, на образующей цилиндра, диаметрально противоположной источнику, во вторых, в диаметрально противоположных точках двух сфер одинаковых размеров, кроме того, сферы разнесены в обе стороны, а держатели образцов выполнены с возможностью установки образцов на этих сферах под вторичные пучки, прошедшие через отверстия диафрагм.

Использование: для рентгенофлуоресцентного анализа (РФА) состава вещества. Сущность: заключается в том, что поляризационный рентгеновский спектрометр содержит источник гамма или рентгеновского излучения, вогнутую мишень-ноляризатор, диафрагму с отверстием, держатель образца, детектор с коллиматором, направленным на образец, и регистрирующую аппаратуру, вход которой соединен с выходом детектора, при этом мишень вогнута но цилиндру, фокус источника расположен на этом цилиндре, отверстие диафрагмы и детектор расположены, во первых, на образующей цилиндра, диаметрально противоположной источнику, во вторых, в диаметрально противоположных точках сферы, при этом сфера смещена в сторону детектора от источника и мишени, а держатель образца выполнен с возможностью установки образца на этой сфере под вторичное излучение, прошедшее через отверстие диафрагмы, кроме того, введен коллиматор с одной или двумя узкими щелями для формирования первичного пучка в плоскости, перпендикулярной оси цилиндра.

Изобретение относится к способам определения технического состояния двигателей, машин и механизмов по характеристикам металлических частиц износа, обнаруженных в смазочных маслах, топливах и специальных жидкостях.

Изобретение относится к физике, а именно к физике халькогенидных стеклообразных полупроводников. .

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на ранних этапах геолого-разведочных работ для предварительной оценки качества силикатного сырья и для предварительной оценки коэффициента светопропускания.

Изобретение относится к способу рентгенофлуоресцентного определения микроэлементов и может быть использовано при анализе природных вод и техногенных растворов. .

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов, содержащихся в буровом растворе. Для определения весовой концентрации глины в образце пористого материала выбирают водорастворимую соль металла, вступающую в селективную ионно-обменную реакцию с глиной, с общей формулой R+M-, где металл R+ выбирают из группы {Ba2+; Sr2+; Tl+; Rb+…}, М- выбирают из группы {Cln; NOn; OHn; CH3COO, SO4;…} в соответствии с таблицей растворимости неорганических веществ в воде. Маркируют глину путем смешивания глины с водным раствором выбранной соли металла, удаляют остатки соли металла, не провзаимодействовавшие с глиной. Проводят рентгенофлуоресцентную спектрометрию маркированной глины и образца и определяют содержание металла в маркированной глине и естественное содержание металла в образце. Прокачивают водный раствор маркированной глины через образец, высушивают образец и проводят рентгенофлуоресцентную спектрометрию целого образца или его отдельных сегментов. Определяют содержание металла в образце или в каждом сегменте и рассчитывают весовые концентрации глины, удерживаемой в образце или в каждом его сегменте. Техническим результатом является обеспечение возможности измерения малой весовой концентрации глины, проникшей в поровое пространство образца в ходе закачки глиносодержащего раствора. 2 н. и 2 з.п. ф-лы, 1 ил.
Использование: для изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов. Сущность изобретения заключается в том, что на подложку наносят однокомпонентные слои компонентов сплава или твердого раствора толщиной, обеспечивающей соотношение количества атомов компонентов, соответствующее их соотношению в эталонируемом сплаве или твердом растворе. Технический результат: упрощение технологии изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов.

Использование: для рентгеноспектрального анализа негомогенных материалов. Сущность изобретения заключается в том, что определяют интенсивность IA аналитической линии определяемого элемента А в анализируемом материале, рассчитывают интенсивности IA2I в образцах-смесях из анализируемого материала и образца сравнения с заданным содержанием CBji определяемого элемента А и сравнивают количественно интенсивности IA и IA2I, обеспечивая оценку содержания СA определяемого элемента в анализируемом материале, при этом оценку содержания определяемого элемента в анализируемом материале производят в порядке определения изначально интенсивности IA0 и содержания СA0 определяемого элемента в образце сравнения, а также значимых коэффициентов влияния «мешающих» элементов, содержащихся в анализируемом материале, на интенсивность определяемого элемента в материале, определения экспериментально интенсивностей аналитических линий «мешающих» элементов, содержащихся в анализируемом материале и образце сравнения, преобразования интенсивностей IA и IA0 определяемого элемента А в анализируемом материале и образце сравнения соответственно путем учета интенсивностей и значимых коэффициентов влияния «мешающих» элементов и количественного сравнения преобразованных интенсивностей IAj и IA2I в анализируемом материале и расчетных образцах-смесях соответственно. Технический результат: повышение точности оценки содержания элемента. 5 табл., 4 ил.

Настоящее изобретение относится к области химии почв, а именно к методам определения редкоземельных элементов Pr, Nd и Sm в почвах, и описывает рентгенорадиометрический энергодисперсионный способ определения содержаний Pr, Nd и Sm в почвах, включающий определение элементов Ba, La, Ce с радиоизотопным источником 241Am с помощью следующих стадий: накапливание исходного спектра анализируемого образца в интервале энергий 31-41 кэВ; построение модельного спектра мешающих своим наложением Kβ-линий Ba, La и Ce с последующим определением истинных интенсивностей спектральных Kα-линий Pr, Nd, Sm, вычисление концентрации искомых элементов по обобщенному градуировочному графику зависимости концентраций лантанидов La, Ce, Pr, Nd, Sm от интенсивностей линий. Изобретение обеспечивает определение концентраций Pr, Nd и Sm в почвах. 3 ил., 2 табл., 3 пр.

Использование: для автоматизированных подводных исследований состава водной среды и донных осадков. Сущность изобретения заключается в том, что рентгенофлуоресцентный анализатор содержит размещенные в изолированном корпусе источник первичного рентгеновского излучения, коллиматор, выполненный с обеспечением формирования коллимированного пучка первичного рентгеновского излучения в виде ленточного плоского пучка, и детектор флуоресцентного излучения пробы жидкости, которые установлены с обеспечением положения их оптических осей в одной плоскости, в качестве устройства забора пробы выбран плунжер, который одним концом выведен в канал ввода/вывода жидкости с обеспечением герметичности наружного прочного корпуса, при этом на поверхности плунжера выполнен плоский участок с насечками в виде канавок с плоскими стенками, которые параллельны между собой, а плунжер установлен с обеспечением ориентации насечек параллельно плоскости расположения оптических осей источника рентгеновского излучения, коллиматора и детектора флуоресцентного излучения, причем взаимное расположение коллиматора и плунжера выполнено с обеспечением угла полного внешнего отражения коллимированного пучка первичного рентгеновского излучения от плоского участка плунжера с насечками, а размеры плоского участка плунжера с насечками соизмеримы с размерами сечения коллимированного пучка первичного рентгеновского излучения. Технический результат: обеспечение возможности улучшения эксплуатационных характеристик устройства при проведении подводного рентгенофлуоресцентного анализа в реальном времени без подготовки пробы и в условиях переменных динамических нагрузок. 10 з.п. ф-лы, 3 ил., 2 табл.

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-500 нм и определяют каолинит по наличию полос люминесценции в диапазоне длин волн 290-400 нм с максимальным излучением при λ=335-357 нм, определяют диккит по максимальному излучению при λ=350-370 нм, определяют монтмориллонит по наличию полос люминесценции в диапазоне длин волн 320-380 нм, с максимальным излучением при λ=320-350 нм, определяют пекораит по наличию полос люминесценции в диапазоне длин волн 270-400 нм с максимальным излучением при λ=280-330 нм, определяют накрит по наличию широкой полосы рентгенолюминесценции при λ=270-500 нм с максимальным излучением при λ=340-350 нм. Технический результат: повышение экспрессности и надежности при определении глинистых минералов. 1 табл., 6 ил.

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации. Способ обнаружения рубинсодержащих кальцифиров включает отбор монофракций кальцита из чередующихся зон кальцифиров с последующим определением присутствия рубиновой минерализации. В отобранных пробах кальцита возбуждают люминесценцию в оптическом диапазоне длин волн и определяют зоны с присутствием рубиновой минерализации по резкому падению интенсивности излучения в диапазоне длин волн 600-640 нм. Изобретение обеспечивает снижение себестоимости, повышение экспрессности и надежности предварительной оценки рубиновой минерализации. 5 ил.

Использование: для рентгенофлуоресцентного анализа исследуемого материала. Сущность изобретения заключается в том, что устройство для рентгенофлуоресцентного анализа исследуемого материала содержит источник первичного рентгеновского излучения, формирователь потока возбуждения, прободержатель с образцом исследуемого материала, размещенным внутри формирователя потока возбуждения параллельно направлению распространения этого потока, и детектор рентгенофлуоресцентного излучения, расположенный напротив прободержателя с образцом, формирователь потока возбуждения представляет собой плоский рентгеновский волновод-резонатор с зазором между рефлекторами наноразмерной величины, при этом формирователь имеет отверстие для введения в поток образца исследуемого материала так, чтобы его исследуемая поверхность лежала в плоскости рефлектора, расположенного напротив детектора рентгенофлуоресцентного излучения, и расположенный на выходе волновода-резонатора детектор регистрации излучения, выполненный с возможностью юстировки устройства относительно источника первичного излучения, при этом прободержатель выполнен с возможностью перемещения независимо от волновода-резонатора в направлении, перпендикулярном направлению распространения потока возбуждающего излучения, при этом детектор регистрации излучения выполнен с возможностью регистрации излучения, прошедшего через волновод-резонатор, и контроля ввода образца в поток возбуждающего излучения. Технический результат: контролируемое введение анализируемого образца в поток возбуждающего излучения. 19 з.п. ф-лы, 2 ил.

Изобретение относится к способам определения тяжелых сернистых соединений и молекулярной серы в углеводородной жидкости, в частности в сжиженных углеводородных газах (СУГ), в том числе в широкой фракции летучих углеводородов (ШФЛУ), и может быть использовано в нефтяной и газовой промышленности и обеспечивает расширение диапазона использования способа определения серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии. Способ включает отбор пробы углеводородной жидкости (СУГ) в металлический пробоотборник, который предварительно частично заполняют поглотительной жидкостью, а отбор углеводородной жидкости осуществляют до заполнения оставшегося свободного объема пробоотборника при давлении, обеспечивающем нахождение отбираемой пробы в жидкой фазе. Обе жидкости в пробоотборнике перемешивают, а затем обеспечивают испарение СУГ, снижая давление в пробоотборнике до атмосферного и обеспечивая в нем температуру 20-25°C. Пробоотборник встряхивают, измеряют объем жидкости с поглощенными компонентами и отбирают пробу в измерительную кювету, которую обрабатывают в рентгенофлуоресцентном спектрометре, и определяют содержание общей серы в этой жидкости. В этой жидкости также определяют хроматографическим методом содержание органических соединений серы. Содержание молекулярной серы в жидкости с поглощенными компонентами, а также содержание молекулярной серы в СУГ определяют расчетным путем по формулам. Техническим результатом является расширение диапазона использования способа определения серы в углеводородных жидкостях с использованием метода энергодисперсионной рентгенофлуоресцентной спектрометрии за счет обеспечения возможности определения молекулярной серы с использованием данного метода в углеводородных жидкостях, переходящих в газообразное или двухфазное состояние при снижении давления. 1 з.п. ф-лы, 4 ил., 2 пр.

Использование: для определения минерального состава глиноподобных образований. Сущность изобретения заключается в том, что отбирают пробы минералов, возбуждают в них рентгенолюминесценцию в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб снимают спектры рентгенолюминесценции в диапазоне длин волн 200-400 нм и определяют минерал галлуазит по рентгенолюминесценции в спектральном диапазоне 290-400 нм с максимальным излучением при λ=290-315 нм; определяют минерал нонтронит по максимальному высвечиванию в полосе 330-340 нм; определяют минерал ломонтит по широкой полосе рентгенолюминесценции в спектральном диапазоне 280-400 нм с максимальным излучением при λ=342 нм; определяют минерал палыгорскит по максимальному высвечиванию в полосе с максимумом при λ=345 нм; определяют минерал осоризаваит по наличию двух широких низкоинтенсивных полос рентгенолюминесценции в спектральных диапазонах 270-310 и 310-360 нм с максимальным излучением при λ=289 нм и λ=340 нм; определяют минерал алунит по очень слабой рентгенолюминесценции в спектральном диапазоне 200-400 нм с максимальным излучением в полосе при λ=350 нм. Технический результат: повышение экспрессности и надежности диагностики минерального состава глиноподобных образований. 7 ил., 1 табл.
Наверх