Способ определения индолил-уксусной кислоты методом капиллярного электрофореза


 


Владельцы патента RU 2517219:

Государственное научное учреждение Северо-Кавказский зональный научно-исследовательский институт садоводства и виноградарства Россельхозакадемии (RU)

Настоящее изобретение относится к аналитической химии ауксинов, в частности к способам определения индолил-уксусной кислоты в верхушках концевых приростов побегов и листьев яблони, груши, сливы, черешни, винограда и проростков пшеницы. Способ предусматривает экстракционную подготовку пробы биологического материала, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, при этом для анализа используют водный ведущий электролит, содержащий 0,28% борной кислоты и 0,04% тетрабората натрия при положительной полярности напряжения и длине волны детектирования - 254 нм. Изобретение обеспечивает экспрессность и достоверность количественного определения индолил-уксусной кислоты методом капиллярного электрофореза с применением нетоксичных и доступных реактивов для проведения анализа. 6 пр., 1 таб., 1 ил.

 

Изобретение относится к аналитической химии ауксинов, в частности к способам определения свободной индолил-уксусной кислоты в верхушках концевых приростов побегов и листьев яблони, груши, сливы, черешни, винограда и проростков пшеницы.

Ауксины, в частности индолил-уксусная кислота, относятся к группе фитогормонов. Индолил-уксусная кислота стимулирует ростовые процессы, увеличивая растяжимость клеточных стенок, что усиливает поглощение воды клетками, усиливает экспрессию ионов [Г.-В. Хелдт Биохимия растений. - М.: БИНОМ. - 2011. - 471 с.].

Известно, что для выделения и изучения ауксинов используют различные виды хроматографии. Метод биологических проб (биотестов) применяют для определения активности эндогенных биологически активных веществ, химическая природа которых еще не известна. Метод основан на измерении механическими средствами ростовой реакции отрезков колеоптилей озимой пшеницы. Для выращивания колеоптилей используют буферный раствор следующего состава: 1,019 г лимонной кислоты и 1,794 г гидрофосфата калия в 1 дм3 2%-ного раствора сахарозы [Гродзинский A.M., Гродзинский Д.М. Краткий справочник по физиологии растений. - Киев, Наукова Думка. - 1964. - 388 с.].

Недостатки: хотя метод и экологически чистый, однако весьма длителен в исполнении - неделя и более, и не обеспечивает требуемой точности количественного анализа.

Известен способ определения индолил-уксусной кислоты, основанный на выделении эндогенных ауксинов по методу Кефели В.И. и Турецкой Р.Х. с последующим разделением с помощью тонкослойной хроматографии. Затем полученные на пластинке пятна ауксинов проявляют реактивами Прохазки, Ван Урка или Сальковского, а количественное определение выполняют спектрофотометрически. [Большой практикум по физиологии растений. Минеральное питание. Физиология клетки. Рост и развитие. Под ред. Б.А. Рубина. - М.: Высшая школа, 1978. - 408 с.].

Недостатки: использование реактивов для проявления пятен ауксинов приводит к модификации молекул индольных соединений, что не позволяет их анализировать в чистом виде, для разделения и проявления применяют агрессивные и ядовитые реактивы, что требует специальных условий к проведению анализа. Кроме того, процесс анализа занимает 10 часов и более.

Наиболее близким к заявляемому способу является способ количественного определения индолил-уксусной кислоты методом высокоэффективной жидкостной хроматографии в экстрактах из жидкой среды культивирования ассоциации микроорганизмов. Предварительная пробоподготовка заключалась в следующем: жидкую среду упаривали под вакуумом при 45°C, вещества сухого остатка трижды экстрагировали смесью диэтиловый эфир/этилацетат (1:1), подкисленный соляной кислотой до pH 3,0. Полученный экстракт упаривали под вакуумом при 45°C. Далее выполняли анализ методом высокоэффективной жидкостной хроматографии на колонке с привитой фазой C18 с использованием подвижной фазы ацетонитрил/вода (65%:35% об), применяли спектрофотометрическое детектирование при 260 нм. Идентификацию и количественный анализ осуществляли на основе времени удерживания стандартного вещества. [Драговоз И.В., Яворская В.К., Антонюк В.П., Курчий Б.А. Гормональные соединения, продуцируемые ассоциацией микроорганизмов из ризосферы женьшеня // Физиология и биохимия культурных растений. - 2009. - Т.41. - №5. - С.393-395]. Недостатки: использование кислой среды для экстракции способствует разложению индолил-уксусной кислоты, соответственно к занижению результатов анализа, применение ацетонитрила категории хроматографически чистый существенно увеличивает стоимость анализа, последующая утилизация использованной подвижной фазы - приводит к загрязнению окружающей среды. При анализе более сложных по составу биологических проб происходит быстрое загрязнение разделяющей колонки и соответственно снижение точности анализа.

Задачей изобретения является эффективное разделение и определение индолил-уксусной кислоты методом капиллярного электрофореза, обеспечение экспрессных и достоверных количественных результатов при минимальных затратах на пробоподготовку и выполнение анализа.

Техническим результатом при использовании предлагаемого изобретения является экспрессность и достоверность количественного определения индолил-уксусной кислоты методом капиллярного электрофореза с применением нетоксичных и доступных реактивов для проведения анализа.

Технический результат достигают за счет того, что способ предусматривает экстракционную подготовку пробы биологического материала, центрифугирование, и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, отличающийся тем, что в анализе используют водный ведущий электролит содержащий 0,28% борной кислоты и 0,04% тетрабората натрия при положительной полярности напряжения и длине волны детектирования - 254 нм.

Способ отличается тем, что, с целью обеспечения достоверности анализа используют раствор ведущего электролита, состоящий из тетрабората натрия и борной кислоты, а сам анализ осуществляют при положительной полярности напряжения.

Поставленная задача решается за счет того, что свойства ведущего электролита позволяют исключить из процесса анализа многостадийную пробоподготовку и обеспечить эффективное разделение анализируемого компонента.

Преимущества заявляемого способа заключаются в использовании нетоксичных и доступных реактивов при осуществлении анализа на системах капиллярного электрофореза, например, серии «Капель», обеспечении объективности и достоверности анализа реальных проб, стабильности во времени состава ведущего электролита.

Использование предлагаемой совокупности существенных признаков, изложенных в формуле изобретения, позволяет достичь желаемого технического результата - объективного и экспрессного определения массового содержания индолил-уксусной кислоты как в градуировочных растворах, так и в реальных пробах. Примеры конкретного выполнения.

Пример 1

Пробу листьев яблони сорта Ренет Симиренко массой 1,00 г заливали серным эфиром, очищенным по известной технологии от перекисей, в соотношении 1:5 и растирали в смеси с кварцевым песком и настаивали в этой же порции эфира в течение 10-15 минут. Эфирный экстракт переносили в сосуд с крышкой, данную экстракцию повторяли 5 раз. Затем собранные эфирные экстракты объединяли, переносили в чашки для выпаривания и упаривали досуха в токе сухого воздуха. Полученный сухой остаток, содержащий анализируемое вещество, растворяли в 2 см3 96%-ного этанола, добавляли 3 см3 дистиллированной воды, фильтровали, центрифугировали и переносили для анализа в систему капиллярного электрофореза.

Анализ осуществляли в следующих условиях. Система капиллярного электрофореза с источником питания положительной полярности, например, серии «Капель», оборудованная фотометрическим детектором с установленной длиной волны 254 нм, кварцевым капилляром внутренним диаметром 75 мкм, эффективной длиной 0,5 м; положительное напряжение на капилляре 16 кВ; рекомендуется термостатирование капилляра при +24°C; ввод пробы - пневматический - 30 мБар в течение 10 секунд; время анализа - 10 мин. Для проведения анализа используют водный раствор ведущего электролита следующего состава: 0,28% борной кислоты и 0,04% тетрабората натрия. Срок хранения ведущего электролита не более 14 суток.

Контролем служило определение индолил-уксусной кислоты в этой же пробе, согласно способа-прототипа.

Пример 2

Аналогично примера 1, кроме того, что пробоподготовке подвергали листья груши сорта Любимица Клапа.

Пример 3

Аналогично примера 1, кроме того, что пробоподготовке подвергали листья сливы сорта Кабардинская Ранняя.

Пример 4

Аналогично примера 1, кроме того, что пробоподготовке подвергали листья черешни сорта Краса Кубани.

Пример 5

Аналогично примера 1, кроме того, что пробоподготовке подвергали листья винограда сорта Молдова.

Пример 6

Аналогично примера 1, кроме того, что пробоподготовке подвергали проростки пшеницы сорта Батько.

Электрофореграмма определения индолил-уксусной кислоты в экстракте листьев яблони сорта Ренет Симиренко показана на фиг.1 (пик №4 - индолил-уксусная кислота, концентрация 4, 3 мг/кг листьев).

Полученные результаты, характеризующие способ определения индолил-уксусной кислоты отражены в таблице.

Таблица
Результаты определения индолил-уксусной кислоты в исследуемых объектах, мг/кг
Пример Предлагаемый способ Прототип
1 4,3 3,4
2 5,1 2,8
3 10,9 5,4
4 1,8 1,1
5 2,5 6,1
6 4,8 7,5

Анализ полученных результатов показал, что:

В случае анализа листьев яблони, сливы, груши, черешни занижение результатов определения индолил-уксусной кислоты согласно способа прототипа превышает 40-50% в сравнении с результатами предлагаемого способа. В случае анализа объектов с более сложным составом - экстракт виноградного листа, проростки пшеницы результаты согласно прототипа завышены на 70% и более - на точности определения сказывается существенное загрязнение разделяющей колонки для жидкостной хроматографии. Подвижная фаза способа-прототипа не обеспечивает устранение помехи в анализе сложных биологических объектов - проростков пшеницы и листьев винограда. Искажение результатов определения индолил-уксусной кислоты в проростках пшеницы и листьях винограда согласно способа-прототипа связано с быстрым загрязнением разделяющей колонки и соответственно ухудшением качества разделения компонентов.

Предлагаемый способ практически лишен данных недостатков - для корректного анализа не требуется разбавления проб, не сказывается влияние мешающих веществ биологической пробы - фенольных соединений, аминокислот, анионов, органических кислот, водный раствор ведущего электролита стабилен во времени и не загрязняет внутреннюю поверхность капилляра. При реализации способа получены количественные результаты определения массовой концентрации индолил-уксусной кислоты, превосходящие по своему качеству прототип.

Способ определения индолил-уксусной кислоты, характеризующийся тем, что предусматривает экстракционную подготовку пробы биологического материала, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, отличающийся тем, что для анализа используют водный ведущий электролит содержащий 0,28% борной кислоты и 0,04% тетрабората натрия при положительной полярности напряжения и длине волны детектирования - 254 нм.



 

Похожие патенты:

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к химической и фармацевтической промышленности и может быть использовано для извлечения новокаина из водных сред с целью его дальнейшего определения.

Изобретение относится к области фармакологии и касается способов оценки их противовоспалительной активности. Способ оценки противовоспалительной активности препарата включает введение исследуемого препарата экспериментальному животному, последующую индукцию воспаления каррагенином и исследование крови экспериментального животного спустя 3 часа после индукции воспаления.

Изобретение относится к области биохимии, в частности к способу специфического отбора высокоаффинных молекул ДНК (ДНК-аптамеров) к рекомбинантному белку-мишени. Указанный способ включает синтез единой полипептидной цепи рекомбинантного белка, содержащего в своем составе фрагмент глютатион-S-трансферазы, целевой белок-мишень, пептидную последовательность, расщепляемую летальным фактором B.

Группа изобретений относится к соединениям - модификаторам хемосенсорных рецепторов и их лигандов, имеющим структурную формулу (IIIb), их подвидам и конкретным соединениям, съедобным композициям, содержащим модификаторы хемосенсорных рецепторов и их лигандов, имеющие структурную формулу (IIIb), их подвиды и конкретные соединения, а также к способам применения вышеуказанных соединений для улучшения сладкого вкуса съедобных композиций.

Настоящее изобретение относится к биологии и медицине и описывает способ отбора анальгетических средств, который позволяет осуществлять поиск биологически активных веществ с анальгетическим действием в рядах NH-замещенных антраниловых кислот (1), ариламидов NH-замещенных антраниловых кислот (2), ариламидов N-ацил-N-алкенил(алкил)антраниловых кислот (3), амидов и гидразидов NH-ацил(галоген)антраниловых кислот (4), имеющих общий фрагмент: карбонил, фенильный радикал и вторичная или третичная аминогруппы, у которых определяют параметры электронной структуры молекул соединений и выбирают дескрипторы: энергия Хартри-Фока (ЕHF), полная тепловая энергия (EТЕРМ), заряды на атомах азота (qN), углерода (qC) и кислорода (qO), затем с помощью трехпараметровых уравнений рассчитывают анальгетическую активность (ААрасч.) и отбирают соединения, у которых теоретически рассчитанная АА равна или превосходит таковую препарата сравнения, выбранные соединения синтезируют и подтверждают расчетные данные экспериментально на лабораторных животных (ААэксп.).

Изобретение относится к области биологии, медицины, ветеринарии и может быть использовано для проведения исследования биологической активности веществ в биологии, медицине и ветеринарии.

Изобретение относится к фармацевтическому анализу и может быть использовано для количественного определения лекарственных веществ - производных бигуанидов: глибутида, метформина, прогуанила ГХ, пиклоксидина и хлоргексидина в субстанциях в центральных заводских лабораториях, в контрольно-аналитических лабораториях, в биохимических лабораториях клиник и судебно-химических лабораториях.

Изобретение относится к аналитической химии и фармацевтике и может быть использовано для извлечения пуриновых алкалоидов из водных сред с целью их последующего определения.
Изобретение относится к области аналитической химии и биохимической клинической лабораторной диагностики и может быть использовано для определения содержания аскорбиновой кислоты в растворах, растительном и животном материале.

Изобретение относится к аналитической химии и может быть использовано для определения цинка (II) в технических и природных объектах. Способ заключается в потенциометрическом титровании пробы комплексоном (III) с индикаторным электродом из металлического висмута с буферным раствором при рН 4,1 - 9,0.

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках.

Использование: для анализа химических или физических свойств, элементного и фазового состава, марки, характера термической обработки металлов и сплавов в машиностроении, металлообработке и металлургической промышленности.

Изобретение относится к аналитической химии фосфора, в частности к способу определения общего фосфора в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа.
Использование: в материаловедении, криминалистике, ювелирном деле, а также гальванотехнике для определения состава изделий, выполненных из металлов или металлических сплавов, в том числе и имеющих металлические покрытия.

Изобретение относится к способу измерения редокс потенциала биологических сред и может быть использовано для мониторинга с целью получения диагностической информации о состоянии пациента.
Изобретение относится к аналитической химии сахаров, в частности к способам определения глюкозы, сахарозы, фруктозы в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа сахаров.

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа. .

Изобретение относится к электрохимическим способам определения концентрации элементов в водных растворах, может быть использовано в промышленности при анализе растворов, в контроле объектов окружающей среды, пищевых продуктов и других объектов, особенно в непрерывных и автоматических измерениях, а также для амперометрического детектирования в жидкостной хроматографии.

Изобретение относится к медицине и представляет собой реагент для детектирования глюкозы, содержащий фермент FAD-глюкозодегидрогеназу, фенотиазиновый или феноксазиновый медиатор, по меньшей мере один сурфактант, полимер и буфер. Реагент используется с электрохимическим тест-сенсором, содержащим множество электродов, при этом тест-сенсор обладает высокой скоростью заполнения и точностью. Реагент является стабильным и характеризуется более низким фоновым током тест-сенсоров. 6 н. и 13 з.п. ф-лы, 2 табл., 13 ил., 9 прим.
Наверх