Способ изготовления смеси фракций окислителя из класса перхлоратов



Способ изготовления смеси фракций окислителя из класса перхлоратов
Способ изготовления смеси фракций окислителя из класса перхлоратов
Способ изготовления смеси фракций окислителя из класса перхлоратов
Способ изготовления смеси фракций окислителя из класса перхлоратов

 


Владельцы патента RU 2521584:

Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") (RU)

Изобретение относится к подготовке окислителя из класса перхлоратов, применяемого для изготовления смесевого твердого ракетного топлива (СТРТ) зарядов РДТТ. Способ изготовления смеси фракций окислителя включает дозирование и смешивание крупных фракций с частицами размером 160-315 мкм и мелких фракций перхлората аммония с удельной поверхностью 6500-7500 см2/г, причем мелкая фракция получена кристаллизацией окислителя из водного раствора в процессе его мелкодисперсного распыления в термокамере, и содержит антислеживаюшую добавку - двуокись кремния. Крупную и мелкую фракции смешивают в соотношении 73/27÷70/30 с дополнительным введением двуокиси кремния. Смешивание осуществляют в условиях вращательно-колебательного движения смеси за счет смещения оси емкости по отношению к оси вращения на 45° с последующим обеспечением псевдоожиженного состояния смеси подачей в герметичную емкость осушенного воздуха под давлением не более 0,07 МПа с одновременной выгрузкой из емкости под вакуумом. Изобретение направлено на предотвращение агломерации частиц фракций окислителя как во время смешения, так и в процессе выгрузки смеси, и протекания побочных реакций с образованием агрессивных газов, что позволяет избежать негативное воздействие на характеристики СТРТ, обеспечить стабильность физико-механических и энергетических характеристик топлива, а также экологическую безопасность производства. 2 ил., 2 табл., 14 пр.

 

Изобретение относится к ракетной технике, а именно к технологии подготовки и изготовления рабочей смеси окислителя из фракций с разным размером частиц - перхлората аммония (ГГХА) крупной и мелкой фракций, применяемого для изготовления смесевого твердого ракетного топлива (СТРТ) зарядов РДТТ.

Основной проблемой, которую необходимо решить при изготовлении смеси фракций ПХА, является обеспечение качественного их смешивания, что можно достичь только при условии отсутствия агломерации частиц мелкой фракции и предотвращения слеживаемости смеси фракций после смешивания до введения в полимерное связующее СТРТ.

Известен способ подготовки окислителя из класса перхлоратов (RU 2211207 С2, МПК7 С06В 21/00, 27.08.2003), включающий гидрофобизацию ПХА метилтрихлорсиланом или метилтриэтоксисиланом для предотвращения его слеживаемости. Изобретение предполагает использование таких операций, как измельчение перхлората аммония, его увлажнение, усреднение и обработку гидрофобизатором, которые существенно увеличивают трудоемкость процесса.

Известен способ получения перхлората аммония ультрадисперсной фракции и способ его подготовки (RU 2246472 С1, МПК7 С06В 21/00, 20.02.2005) для предотвращения агломерации частиц в топливной смеси путем создания покрытия из раствора лецитина в жидком носителе. Изобретение также предусматривает дополнительные операции, увеличивающие трудоемкость процесса изготовления смеси фракций.

Наиболее близким по технической сущности решением является изобретение «Способ изготовления смеси фракций окислителя из класса перхлоратов» (RU 2378237 С1, МПК7 С06В 21/00, 10.01.2010), согласно которому используют гидрофобизированную мелкую фракцию перхлората с определенным значением рН, которое выбрано за прототип.

Общие признаки прототипа с изобретением - использование мелкой фракции окислителя, наряду с крупной фракцией с частицами 160-350 мкм, дозирование и смешивание фракций.

Недостатки прототипа:

1. В процессе гидрофобизации мелкой фракции ПХА образуется хлористый водород, разрушающе действующий на многие материалы, в том числе на синтетические каучуки, используемые в качестве полимерного связующего при изготовлении СТРТ, и на сами перхлораты. В процессе изготовления топлива с использованием ПХА, полученного по прототипу, хлористый водород из топливной массы полностью не удаляется. Это отрицательно сказывается на физико-механических и энергетических (скорости горения) характеристиках топлива, что делает проблематичным сохранение баллистических характеристик заряда при длительном хранении.

2. Хлористый водород также отрицательно влияет на технологические характеристики топлива (живучесть), так как является катализатором его полимеризации. Это не позволяет получить равномерное распределение окислителя в связующем при изготовлении топлива. Поэтому гидрофобизированный перхлорат аммония нецелесообразно использовать в зарядах с длительными циклами перемешивания и заполнения.

3. Использование для гидрофобизации алкилсилоксанов делает операцию подготовки окислителей, которые являются пожаро-взрывоопасными веществами, также экологически опасной, так как хлористый водород несет прямую угрозу как технологическому оборудованию из-за своей коррозионной активности, так и обслуживающему персоналу из-за опасного воздействия на организм и, прежде всего, на органы зрения и дыхания.

4. Гидрофобизация мелкой фракции ведет к снижению активности перхлората аммония, как окислителя, так как создает на поверхности его частиц инертную пленку.

Несмотря на то что гидрофобизация ведет к снижению слеживаемости окислителя, перечисленные недостатки приводят к необходимости поиска других, более эффективных способов изготовления смеси фракций окислителя.

Технической задачей изобретения является разработка способа изготовления смеси фракций окислителя из класса перхлоратов улучшенного качества за счет использования конструктивно-технологических приемов, не оказывающих влияния на окислительную активность перхлората аммония и предотвращающих агломерацию частиц фракций окислителя как во время смешивания, так и в процессе выгрузки смеси, а также антислеживающей добавки, не дающей побочных реакций в виде хлористого водорода.

Техническая задача решается тем, что в известном способе изготовления смеси фракций окислителя из класса перхлоратов, включающем дозирование и смешивание крупных фракций с частицами размером 160-315 мкм и мелких фракций перхлората аммония, согласно изобретению при смешивании используют мелкую фракцию с удельной поверхностью 6500-7500 см2/г, предварительно полученную кристаллизацией окислителя из водного раствора в процессе его мелкодисперсного распыления в термокамере и содержащую антислеживающую добавку - двуокись кремния, при дозировании окислителя обеспечивают соотношение крупной и мелкой фракций как 73/27÷70/30 с дополнительным введением двуокиси кремния в количестве (0,07-0,09)% от навески смеси фракций, смешивание фракций осуществляют в герметичной емкости в условиях вращательно-колебательного движения смеси фракций окислителя за счет смещения оси емкости по отношению к оси вращения на 45° в течение 30-50 мин, после смешивания обеспечивают псевдоожиженное состояние смеси фракций подачей в емкость осушенного воздуха под давлением не более 0,07 МПа с одновременной выгрузкой ее из емкости с помощью вакуума при абсолютном давлении не более 50 мм рт.ст.

Существенно новым признаком изобретения является выбор мелкой фракции, полученной путем мелкодисперсного распыления раствора перхлората аммония в термокамере, и содержащей инертную антислеживающую добавку - двуокись кремния взамен обработки ее алкилсилоксаном, а также дополнительное введение в смесь фракций двуокиси кремния в количестве (0,07-0,09)% от ее массы.

Проблема слеживаемости окислителя в предлагаемом изобретении решается также за счет оптимального соотношения крупной и мелкой фракций, их эффективного смешивания и поддержания смеси во псевдоожиженном состоянии с одновременной выгрузкой ее из емкости с помощью вакуума.

Эти решения позволяют исключить негативное действие продуктов гидрофобизации и более полно использовать энергетический потенциал топлива, в частности, за счет достижения заданных показателей скорости горения. Отсутствие при изготовлении топлива агрессивных газов позволит также избежать негативного воздействия на характеристики СТРТ, обеспечить стабильность его физико-механических свойств при длительном хранении заряда.

Способ изготовления смеси фракций окислителя, предусматривающий изготовление мелкой фракции окислителя без использования гидрофобизации, позволяет избежать свойственные прототипу отрицательные воздействия на оборудование и обслуживающий персонал.

Устройство для реализации способа изготовления смеси фракций окислителя по изобретению изображено на фиг.1 и 2.

На фиг.1 представлено устройство для смешивания фракций окислителя в емкости 1, установленной в раме 2 под углом 45° относительно оси вращения 3.

На фиг.2 изображена емкость 1, размещенная на ложементах рамы 4, которая в свою очередь установлена на транспортной тележке 5, снабженной вибратором 6. В нижней части емкости выполнен разгрузочный патрубок со штуцером 7, а в верхней торцевой части - штуцер 8 для подачи в емкость сжатого осушенного воздуха.

Примеры изготовления смесей фракций окислителя, состоящих из крупной фракции с размером частиц 160-315 мкм и мелкой фракции с частицами, имеющими удельную поверхность, равную 6500-7500 см2/г, взятых в соотношениях 73/27 и 70/30, а также показатели скорости горения готовой продукции до и после ускоренных климатических испытаний (УКИ) в зависимости от параметров смешивания представлены в таблицах 1и 2.

Пример 1. Патентуемый способ изготовления смеси фракций окислителя (таблица 1) заключается в дозировании в соотношении 73/27 крупной фракции перхлората аммония с частицами размером 160-315 мкм и мелкой его фракции с удельной поверхностью 6500-7500 см /г, предварительно полученной кристаллизацией ПХА из водного раствора в процессе его мелкодисперсного распыления в термокамере, и содержащей антислеживающую добавку - двуокись кремния марки А-380 в количестве (0,2-0,25)% масс, и последующем смешивании фракций с добавлением двуокиси кремния в количестве (0,07-0,09)% к навеске смеси фракций в герметичной емкости 1, установленной в раме 2 под углом 45°, в условиях вращательно-колебательного движения смеси в течение 40 мин на устройстве, представленном на фиг.1. После смешивания емкость 1 с усредненной смесью фракций снимают с устройства, устанавливают на ложементы рамы 4 и транспортируют на тележке 5 к месту выгрузки смеси (фиг.2). Разгрузочный штуцер 7 патрубка емкости соединяют с линией вакуума с абсолютным давлением 50 мм рт.ст., через штуцер 8 в крышке емкости подают осушенный воздух под давлением не более 0,07 МПа, к вибратору 6 подводят сжатый воздух. При этом обеспечивается псевдоожиженное состояние смеси фракций в емкости с одновременной ее выгрузкой.

Пример 2 отличается от примера 1 соотношением фракций окислителя, равным 70/30.

Как следует из данных таблицы 1, изменение соотношения фракций в пределах 73/27-70/30 не приводит к значительному (выходящему за пределы допуска) изменению показателя скорости горения топлива.

В таблице 2 представлены заявленные значения параметров изготовления смеси при выбранных соотношениях фракций 73/27-70/30.

На примерах 3-5 показано, что требуемая скорость горения обеспечивается при величине угла наклона емкости 45°.

Из данных примеров 6-9 следует, что необходимая скорость горения достигается при времени смешивания от 30 до 50 мин. При недостаточном времени смешивания (меньше 30 мин) имеет место повышенный разброс показателя скорости горения. Увеличение времени смешивания до 60 мин приводит к необоснованному увеличению трудоемкости.

На примерах 10-12 показано, что повышение давления воздуха при выгрузке смеси фракций более 0,07 МПа ведет к забивке разгрузочного сопла выгружаемым продуктом.

Из примеров 13,14 следует, что увеличение абсолютного давления более 50 мм рт.ст., т.е. снижение величины вакуума, приводит к повышенной трудоемкости и возможной забивке разгрузочного сопла.

Таким образом, в примерах, отмеченных знаком, в которых угол наклона оси емкости составляет 45°, время смешивания лежит в диапазоне 30-50 мин, давление воздуха в пределах 0,05-0,07 МПа, а величина вакуума (абсолютное давление) в смесителе составляет не более 50 мм рт.ст., обеспечивается получение требуемой скорости горения топлива при рациональных параметрах технологического процесса как после его изготовления, так и после ускоренных климатических испытаний зарядов. В остальных примерах приведены данные, при которых поставленная задача не реализуется.

Способ изготовления смеси фракций окислителя из класса перхлоратов, включающий дозирование и смешивание крупных фракций с частицами размером 160-315 мкм и мелких фракций перхлората аммония, отличающийся тем, что при смешивании используют мелкую фракцию с удельной поверхностью 6500-7500 см2/г, предварительно полученную кристаллизацией окислителя из водного раствора в процессе его мелкодисперсного распыления в термокамере и содержащую антислеживающую добавку - двуокись кремния, при дозировании окислителя обеспечивают соотношение крупной и мелкой фракций как 73/27÷70/30 с дополнительным введением двуокиси кремния в количестве (0,07-0,09)% от навески смеси фракций, смешивание фракций осуществляют в герметичной емкости в условиях вращательно-колебательного движения смеси фракций окислителя за счет смещения оси емкости по отношению к оси вращения на 45° в течение 30-50 мин, после смешивания обеспечивают псевдоожиженное состояние смеси фракций подачей в емкость осушенного воздуха под давлением не более 0,07 МПа с одновременной выгрузкой ее из емкости с помощью вакуума при абсолютном давлении не более 50 мм рт.ст.



 

Похожие патенты:

Изобретение относится к снаряжательной промышленности и может быть использовано для формирования разрывных зарядов из мощных взрывчатых составов, чувствительных к внешнему трению, непосредственно в корпусе боеприпаса. Устройство для снаряжения боеприпасов порошкообразными взрывчатыми составами содержит прессующий механизм с гидроцилиндром и пресс-инструментом, траверсу с кривошипно-шатунным приводом, механизм зажима и поворота корпуса боеприпаса, питатель с мешалкой и индикатор перемещения пресс-инструмента.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения сферического пороха заключается в получении порохового лака в реакторе, диспергировании его на сферические частицы, обезвоживание и отгонку этилацетата из сферического пороха с последующей промывкой, сортировкой и сушкой, при этом сферический порох с графитом через циклон-осадитель подают в камеру сушки с вышибной поверхностью.

Изобретение относится к технологии флегматизации взрывчатых веществ, предназначенных для изготовления прессованных зарядов для снаряжательной и нефтедобывающей промышленности, в частности зарядов перфораторных кумулятивных и других специальных зарядов, используемых при повышенных температурах эксплуатации.
Изобретение относится к способу получения тонкосводных дисковых порохов водно-дисперсионным способом. Способ получения пороха включает перемешивание в воде компонентов пороха - высокоазотного пироксилина с условной вязкостью 1,0-4,0°Э или пороховой массы на его основе с 15-25 мас.% нитроглицерина, и стабилизатора химической стойкости, приготовление порохового лака в этилацетате, соблюдая соотношение между объемами воды и порохового лака 0,5-0,8, диспергирование порохового лака с вводом эмульгатора, ввод сульфата натрия, удаление этилацетата, промывку, сортировку и сушку пороховых элементов, при этом после удаления этилацетата температуру в реакторе снижают до 50-60°С, вводят возвратно-технологические отходы, восстанавливая исходное соотношение между объемами воды и порохового лака.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Способ получения сферического пороха включает введение в сферический порох после отжима от воды графитовой суспензии с последующей подачей пороха с графитом в пневматическую линию под давлением сжатого воздуха, где в процессе движения сферического пороха с графитом в потоке нагретого воздуха происходит процесс сушки и графитовки пороха.

Изобретение относится к области изготовления зарядов смесевого твердого топлива, формуемым свободным литьем непосредственно в бронечехол, предварительно установленный в пресс-форму (изложницу).
Изобретение относится к способу модификации поверхности углерода окисью меди. Способ включает подготовку суспензии углерода в водном растворе ацетата меди при массовом соотношении С:H2O:Cu(CHCOO)2·H2O=1:10…15:0,25…0,30, нагревание до 90…100°C, дозирование водного раствора едкого натра в суспензию углерода при мольном соотношении ацетата меди к едкому натру Cu(CH3COO)2·H2O:NaOH=1:1,05…1,2 в течение 20…30 минут, добавление водного раствора поверхностно-активного вещества - октилфенилового эфира полиэтиленоксида к углероду при массовом отношении ОФП:С=0,005…0,02:1.
Изобретение относится к области ракетной техники и касается разработки крепящей полимерной композиции, предназначенной для скрепления забронированного заряда из твердого ракетного топлива (ТРТ) с корпусом газогенератора (ГГ), исключающего продольное перемещение заряда в корпусе ГГ.
Предложенное изобретение относится к пиротехнике, а именно пиротехническим средствам для иллюминации, увеселительных, зрелищных и сигнальных целей. Согласно изобретению при изготовлении пиротехнических составов салютов и фейерверков предлагается использовать отходы материала сгорающей гильзы.
Изобретение относится к области пиротехники и может быть использовано в технологии приготовления пиротехнических составов со стабильными рабочими характеристиками.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения сферического пороха включает промывку, сортировку, отжим от воды и сушку, в котором отжим пороха от воды проводят на карусельном вакуум-фильтре, состоящем из 8 вращающихся воронок, в нижней части которых установлены верхняя и нижняя сетки 01 и 07, соответственно, на боковых частях воронок установлены вибраторы, водно-пороховую суспензию с концентрацией пороха 25-30 мас.% подают во вращающиеся воронки, заполняют их на 2/3 объема порохом, вводят графитовую суспензию и проводят под разрежением 8-12 кПа удаление воды до остаточного содержания 18-22 мас.%, затем порох выгружают в приемный бункер шнек-питателя и пневмотранспортом подают на сушку. 1 ил., 1 табл., 5 пр.

Изобретение относится к области получения сферических порохов для стрелкового оружия. Способ получения сферического пороха включает получение порохового лака в реакторе, диспергирование его на сферические частицы, обезвоживание и отгонку этилацетата из пороховых элементов с последующей промывкой, сортировкой пороха по фракциям и сушкой, при этом из напорной емкости водно-пороховую суспензию с концентрацией пороха 25-30 мас.% с помощью эрлифта или секторного питателя подают на плоский качающийся грохот, установленный под водой на глубине 200-300 мм от верхнего зеркала воды, состоящий из переменного набора сеток, установленных с наклоном от 3 до 10° относительно горизонтальной плоскости, совершающий возвратно-поступательное движение 40-60 колебаний в минуту. Техническим результатом является обеспечение полного разделения полученного пороха по фракциям при мокрой сортировке по строго заданным размерам пороховых элементов, обеспечивающих стабильные баллистические характеристики. 1 ил., 1 табл.
Изобретение относится к области получения сферических порохов для стрелкового оружия, в том числе для 7,62 мм спортивного патрона. Согласно способу получения сферического пироксилинового пороха в реактор заливают воду, загружают нитроцеллюлозу и возвратно-технологические отходы от предшествующих операций, при перемешивании заливают растворитель - этилацетат, загружают к массе нитроцеллюлозы дифениламин, ведут приготовление порохового лака, а затем после ввода защитного коллоида - клея мездрового и декстрина, ведут дробление порохового лака на сферические частицы, вводят сернокислый натрий и ведут перемешивание, отгонку растворителя из пороховых элементов ведут по температуре теплоносителя, подаваемого в рубашку реактора, при этом температуру теплоносителя поднимают до 82-86°С и ведут выдержку, отгоняют 70-75 мас.% растворителя, после чего температуру теплоносителя поднимают до 94-98°С и ведут выдержку до достижения температуры смеси в реакторе 94-96°С. Изобретение обеспечивает получение сферического пороха для 7,62 мм патрона, в частности спортивно-винтовочного патрона. Порох имеет высокую насыпную плотность и низкую пористость пороховых элементов, что обеспечивает стабильные баллистические характеристики по скорости полета пули и по давлению пороховых газов в канале ствола оружия. 1 табл., 5 пр.
Изобретение относится к метательным зарядам. Блочный метательный заряд содержит непластифицированные нитраты целлюлозы (НЦ), водорастворимое полимерное связующее, дифениламин (ДФА) и возможно энергонасыщенную массу (на основе нитроглицерина, высокоэтерифицированных НЦ, дифениламина и централита II) и активный наполнитель из бризантных взрывчатых веществ и/или порохов и/или пороховой крошки. Способ изготовления блочных зарядов включает приготовление раствора связующего, раствора ДФА в этиловом спирте и возможно активного наполнителя, смешение в смесителе вышеуказанных компонентов с использованием энергонасыщенной массы или без нее, с получением пресс-массы с последующим снижением ее влажности подсушиванием или путем непосредственного отвода из смешанной пресс-массы избытка жидкой фазы при грануляции в грануляторе. Прессование зарядов осуществляют из подсушенной или гранулированной пресс-массы с выдержкой при давлении и с одновременным отводом из пресс-формы избытка жидкой фазы. После двухстадийного удаления влаги блочные изделия, с целью снижения гигроскопичности, подвергают поверхностному покрытию тонким слоем из энергетически активного материала, наносимого из разбавленного раствора нитратов целлюлозы в органических растворителях. Изготовленные по данному изобретению метательные блочные заряды имеют повышенные физико-химические, баллистические и эксплуатационные характеристики. 3 н. и 9 з.п. ф-лы, 3 табл.

Изобретение относится к области уничтожения дымных ружейных порохов (ДРП) и может быть реализовано с использованием в качестве средства инициирования взрывчатых веществ. Согласно предложенному способу уничтожение осуществляют подрывом короба с ДРП тротиловыми шашками массой не менее 200 г. Подрыв производят на площадке, предназначенной для установки на неё короба, наполненного дымным порохом массой не более 50 кг. Короб кладут на бок, горловиной вправо или влево от направления электровзрывной цепи. Достигается повышение производительности и снижение пожаро- и взрывоопасности. 2 ил.
Изобретение относится к производству сферических порохов для стрелкового оружия. Способ получения наполненного сферического пороха включает приготовление порохового лака при перемешивании нитратцеллюлозных ингредиентов в воде с этилацетатом (ЭА), диспергирование лака, обезвоживание и удаление этилацетата отгонкой, при этом в качестве нитратов целлюлозы используют баллиститные нитроглицериновые пороха, трубчатые динитродиэтиленгликолевые пороха или возвратно-технологические отходы, которые первоначально загружают в воду при перемешивании в количестве 30-40% от их общей массы, дозируют 1,8-2,0 об.ч. этилацетата по отношению к 1 мас.ч. всего количества нитратцеллюлозных ингредиентов, поднимают температуру до 65-68°C, затем через 20-30 минут дозируют 0,20-0,60 мас.ч. гексогена по отношению к 1 мас.ч. общего количества компонентов, смесь перемешивают в течение 20-30 минут при той же температуре, вводят оставшееся количество нитратцеллюлозных ингредиентов. Способ обеспечивает снижение расхода по ЭА и получение плотного наполненного СФП с требуемыми физико-химическими характеристиками в широком диапазоне фракционного состава. 1 табл., 6 пр.

Изобретение относится к ракетной технике, а именно к способам изготовления крупногабаритных зарядов смесевого ракетного твердого топлива (СРТТ) методом свободного литья. Способ изготовления заряда СРТТ включает размещение собранного с каналообразующей оснасткой и сливной горловиной корпуса в барокамере, стыковку сливной горловины с выпускным клапаном смесителя, вакуумирование барокамеры и корпуса и слив топливной массы в корпус, при этом для размещения корпуса в барокамере снимают крышку барокамеры, устанавливают на нее сливную горловину, на которую с внутренней стороны крышки монтируют собранный с каналообразующей иглой корпус и устанавливают в корпус барокамеры. Техническим результатом предлагаемого способа является возможность изготовления заряда СРТТ в тонкостенном корпусе свободного литья без установки корпуса в барокамере на подставку. 1 ил.

Изобретение относится к патронированию взрывчатых веществ (ВВ) для горнодобывающей промышленности. Способ патронирования порошкообразных ВВ включает формирование вертикально ориентированной оболочки патрона из термопластичной пленки на формообразующей трубе, патронирование с использованием вращающегося нагнетающего шнека, расположенного внутри формообразующей трубы, путем периодического наполнения непрерывно протягиваемой оболочки ВВ и запечатывания торцов патронов герметизирующими клипсами, обжим оболочки в жгут, наложение клипс и разрезание жгута при отключенном нагнетающем шнеке. В зависимости от требуемой плотности ВВ в патроне задают скорость и момент регулируемого привода шнека. Устройство для патронирования содержит питатель, нагнетающий шнек, расположенный внутри формообразующей трубы и оснащенный датчиком контроля скорости вращения и регулируемым приводом, рукавообразователь, устройство для продольной сварки или склейки оболочки, механизм протяжки оболочки, устройство подачи ленты термопластичной пленки с приводом вертикального перемещения, датчик контроля перемещения ленты, механизмы изготовления, наложения клипс и отрезки готовых патронов, блок контроля и управления приводом нагнетающего шнека, блок контроля скорости и величины перемещения оболочки патрона. Изобретение позволяет реализовать высокопроизводительную, эффективную и безопасную технологию изготовления патронов повышенного качества из порошкообразных ВВ. 2 н. и 2 з.п. ф-лы, 3 ил.

Роторная дробилка предназначена для дробления полимерных материалов естественного и искусственного происхождения трубчатой формы, а также в целлюлозно-бумажной промышленности и в производстве бездымных порохов, в частности, при утилизации морально устаревших, списанных или снятых с вооружения трубчатых порохов. В корпусе (1) дробилки расположены цилиндрический ротор (2) с ножами (3), загрузочный патрон (4) и выгрузочный узел (10). Загрузочный патрон выполнен с входным щелевым отверстием (5), снабжен устройством объемного дозирования (6) и патрубком с выходным щелевым отверстием (7). Изобретение повышает производительность путем обеспечения безопасности и непрерывности цикла загрузки. 4 з.п. ф-лы, 4 ил.

Изобретение относится к пиротехнике, а именно к технологии изготовления функциональных штучных пироэлементов для насыпного снаряжения различных пиротехнических изделий, фейерверочных, сигнальных, дымообразующих, воспламенительных и др. зарядов. Способ изготовления пиротехнических зарядов содержит нагрев порошковой смеси до температуры пластификации полимерного связующего, формирование из приготовленной композиции шнура проходным прессованием через калиброванную фильеру, температурную выдержку и резку шнура на мерные пироэлементы. Из порции порошковой смеси предварительно формуют таблетку уплотнением с коэффициентом осаживания 3-4, а нагрев проводят до температуры 0,4-0,6 температуры плавления полимерного связующего, при которой смесь выдерживают в термостате в течение 35±5 минут, после чего формируют шнур. Техническое решение обеспечивает высокую надежность воспламенения штучных пироэлементов для насыпного функционального заряда и стабильное их горение, при улучшении технологичности изготовления и сокращении длительности производственного цикла. 2 ил.
Наверх