Способ прогнозирования осложнений после операций шунтирования коронарных артерий в условиях искусственного кровообращения



Способ прогнозирования осложнений после операций шунтирования коронарных артерий в условиях искусственного кровообращения
Способ прогнозирования осложнений после операций шунтирования коронарных артерий в условиях искусственного кровообращения
Способ прогнозирования осложнений после операций шунтирования коронарных артерий в условиях искусственного кровообращения

 


Владельцы патента RU 2536279:

Шигаев Михаил Юрьевич (RU)
Агапов Валерий Владимирович (RU)
Семенова Анна Сергеевна (RU)

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, анестезиологии и реаниматологии, и может быть использовано для прогнозирования развития осложнений в раннем послеоперационном периоде (в первые 6 суток после операций) у пациентов при выполнении операции шунтирования коронарных артерий (АКШ) в условиях искусственного кровообращения, которые могут быть выражены в виде органных дисфункций. Способ включает измерение через 25-35 минут после начала искусственного кровообращения уровня артериального давления, центрального венозного давления, парциального давления кислорода в венозной артериальной крови, концентрации лактата в крови, уровня гематокрита, а также измерение длительности искусственного кровообращения и длительности пережатия аорты по завершении процедуры искусственного кровообращения. Анализируют измеренные величины с помощью компьютерной программы типа «нейронные сети», предварительно обученной построению прогнозов послеоперационных рисков развития органных дисфункций с использованием измеренных показателей и имеющихся клинических данных о наличии или отсутствии органных дисфункции в раннем периоде после проведения операции. По результатам анализа формируют заключение о наличии или отсутствии риска развития осложнений. Способ позволяет оперативно получить результаты прогноза, в том числе непосредственно в процессе проведения операции шунтирования коронарных артерий по завершении процедуры искусственного кровообращения. 1 табл., 3 ил., 2 пр.

 

Изобретение относится к области медицины, а именно к сердечно-сосудистой хирургии, анестезиологии и реаниматологии, и может быть использовано для прогнозирования развития осложнений в раннем послеоперационном периоде (в первые 6 суток после операций) у пациентов при выполнении операции шунтирования коронарных артерий (АКШ) в условиях искусственного кровообращения, которые могут быть выражены в виде органных дисфункций, в частности, острой почечной недостаточности, дыхательной недостаточности, острой сердечно-сосудистой недостаточности, острого инфаркта миокарда, фибрилляции предсердий, энцефалопатии и нарушений мозгового кровообращения. При этом прогноз наступления неблагоприятных событий, согласно заявляемому способу, делают после операции по критериям риска - параметрам гомеостаза и гемодинамики, снимаемым непосредственно во время проведения операции.

Из уровня техники известен способ прогнозирования результатов кардиохирургических операций в раннем послеоперационном периоде у больных с изолированными, сочетанными и комбинированными поражениями клапанного аппарата сердца - патент RU 2251964 C1. Для прогнозирования риска послеоперационной смертности используется анализ наличия нескольких критериев риска из перечисленного перечня: наличие функционального класса недостаточности кровообращения выше третьего, величины исходной фракции левого желудочка менее 45%, величины исходной легочной гипертензии не менее 60 мм рт.ст., концентрации сывороточного креатинина в предоперационном периоде более 102 МкМ/л, времени искусственного кровообращения более 230 минут. При наличии трех или более из вышеперечисленных критериев риска прогноз считают неблагоприятным.

Однако данный способ информативен только в отношении наступления летального исхода в послеоперационном периоде и не позволяет прогнозировать развитие не летальных осложнений в виде органных дисфункций, которые при развитии в послеоперационном периоде приводят к удлинению сроков пребывания пациентов в отделении интенсивной терапии, в стационаре, приводят к увеличению стоимости лечения и снижению качества жизни на послегоспитальном этапе. В известном способе используются дооперационные критерии риска без учета изменений параметров гомеостаза, происходящих во время оперативного вмешательства в условиях искусственного кровообращения. Единственным критерием риска, связанным с проведением искусственного кровообращения (ИК), который используется в известном способе, является продолжительность ИК более 230 минут, что малоприменимо для операций коронарного шунтирования, продолжительность которых значительно меньше.

Также из уровня техники известен способ оценки риска развития неблагоприятных событий после операций шунтирования коронарных артерий в условиях искусственного кровообращения, раскрытый в статье «Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: an artificial neural network prediction model» Chee-Fah Chong, Yu-Chuan Li, Tzong-Luen Wang, Hang Chang AMIA Annu Symp Proc. 2003; 2003: 160-164). Авторами данной статьи на основе ретроспективного анализа данных 563 пациентов, которым выполнялись операции аортокоронарного шунтирования в условиях искусственного кровообращения, предложена методика оценки риска развития неблагоприятных событий: смерти, остановки сердца, развития комы, почечной недостаточности, требующей диализа, а также необходимости в искусственной вентиляции легких в течение более чем 14 дней. Для формирования прогноза использовался метод нейронных сетей. В качестве предикторов в способе использованы более 20 переменных, характеризующих дооперационные признаки. Интраоперационные параметры авторами для прогноза не использовались.

Однако в этом способе для оценки риска использовались только дооперационные показатели, что также не позволяет оценить влияние оперативного вмешательства и процедуры ИК на величину риска развития неблагоприятных событий после операций.

Наиболее близким к заявляемому является способ прогнозирования респираторного дистресс-синдрома взрослых и полиорганной недостаточности при коронарном шунтировании с использованием искусственного кровообращения по патенту RU 2138049 C1, согласно которому рассчитывают в баллах степень операционного риска по шкале клинических, анамнестических и лабораторных факторов риска (клинической шкале) с дополнительным определением в баллах степени риска по шкале иммунологических и метаболических факторов риска (патогенетической шкале). При сопоставлении риска по обеим шкалам делают вывод о прогнозе. При совпадении степени риска по обеим шкалам точность прогноза повышается. При высоком риске по любой из шкал делается вывод о неблагоприятном прогнозе. Недостатком данного способа является большое количество показателей-предикторов, для определения которых необходимо проведение сложных иммунологических тестов с использованием дорогостоящих реактивов и специального лабораторного оборудования, длительных по времени выполнения, что ограничивает применимость предлагаемого метода для прогнозирования развития осложнений в раннем послеоперационном периоде.

Другим недостатком данного способа является сложность его применения в повседневной клинической практике в связи с необходимостью проведения расчетов по нескольким шкалам, и неоднозначность трактовки результатов прогноза при разнонаправленных предсказаниях используемых шкал. Определение большинства параметров-предикторов производится в предоперационном периоде, что не позволяет полностью учитывать влияние процедуры искусственного кровообращения на гомеостаз. В описании метода отсутствуют четкие критерии диагностики респираторного дистресс-синдрома и полиорганной недостаточности. Кроме того, метод разработан на выборке пациентов, оперативные вмешательства которым выполнялись в условиях искусственного кровообращения и умеренной гипотермии, и неизвестна возможность использования данного метода и точность прогноза при операциях коронарного шунтирования в условиях нормотермии.

Задачей изобретения является создание для клинической практики нового способа прогнозирования развития осложнений в раннем периоде после операций реваскуляризации миокарда на основании интраоперационных параметров с использованием технологии нейронных сетей.

Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение скорости получения результатов прогноза при упрощении способа прогнозирования и сохранении высокой прогностической точности, а также возможность получения результатов в режиме онлайн - непосредственно в процессе проведения операции шунтирования коронарных артерий по завершении процедуры искусственного кровообращения.

Поставленная задача решается тем, что способ прогнозирования осложнений в раннем периоде после операций шунтирования коронарных артерий в условиях искусственного кровообращения (ИК) включает измерение через 25-35 минут после начала искусственного кровообращения следующих показателей: уровня артериального давления (АД), центрального венозного давления (ЦВД), парциального давления кислорода в венозной и артериальной крови (paO2) и (pvO2), концентрации лактата в крови, уровня гематокрита, а также измерение длительности искусственного кровообращения и длительности пережатия аорты по завершении процедуры искусственного кровообращения; анализ измеренных величин с помощью компьютерной программы типа «нейронные сети», предварительно обученной построению прогнозов послеоперационных рисков развития осложнений с использованием ретроспективных данных по перечисленным показателям и клинических данных о наличии или отсутствии осложнений (органных дисфункций) в раннем периоде после проведения операции, по результатам анализа формируют заключение о наличии или отсутствии риска развития осложнений.

Изобретение поясняется чертежами, представленными на фиг.1-3.

На фиг.1 представлена графическая модель нейронной сети - многослойного (в данном примере - четырехслойного) перцептрона. Нейронная сеть характеризуется рядом параметров: количеством слоев перцептронов - в примере слои обозначены как X, Y, Z, Q, количеством перцептронов в каждом слое - L, M, N для соответствующих слоев X, Y, Z, связями между перцептронами - обозначены стрелками:

- X(1)-X(L) L перцептронов первого слоя,

- Y(1)-Y(M) M перцептронов второго слоя,

- Z(1)-Z(N) N перцептронов третьего слоя,

- Q1 - перцептрон четвертого слоя,

- V1-V(L) - входные сигналы в виде переменных, характеризующих критерии риска) для соответствующих перцептронов первого слоя X(1)-X(L),

- W1 - выходной сигнал перцептрона Q1.

На фиг.2 представлен в общем виде алгоритм работы нейросетевой модели. Позициями на фиг.2 обозначены: 1 - блок формирования критериев риска и послеоперационных осложнений для обучающей выборки, 2 - блок нейросетевого анализа, 3 - блок формирования массива нейронных сетей, 4 - блок анализа массива нейронных сетей, 5 - блок расчета вероятности прогноза появления осложнений в зависимости от нейросетевой модели, 6 - блок выбора модели нейронной сети.

На фиг.3 представлена ROC-кривая или AUC (area under curve) - площадь под ROC-кривой. Параметр AUC - безразмерная величина, характеризующая вероятность точности прогноза, получаемого при использовании соответствующей модели нейронной сети для оценки развития послеоперационных осложнений. Чем эта величина ближе к 1, тем более точен прогноз.

Поставленная задача по прогнозированию риска осложнений при АКШ сводится к классификации пациентов в группы с осложнениями и без них по заданным переменным посредством нейронной сети, предварительно обученной на ретроспективно составленной выборке историй болезни. В заявляемом способе обучение проводилось на выборке из 74 историй болезни пациентов в возрасте от 42 до 76 лет (мужчин - 59 (79,7%), женщин - 15 (20,3%)), перенесших операции изолированного шунтирования коронарных артерий в условиях искусственного кровообращения в ГУЗ «Областной кардиохирургический центр» г. Саратова. Кроме того, с целью контроля объективности работы предлагаемого способа прогнозирования и достоверности получаемых прогнозов использовалась выборка из 40 полностью сопоставимых по дооперационным характеристикам пациентов независимого центра - ГБУЗ «Самарский областной клинический кардиологический диспансер», г. Самара. По результатам обработки этой независимой выборки были получены показатели, свидетельствующие о достоверности и высокой точности результатов прогнозов, получаемых при осуществлении заявляемого способа прогнозирования послеоперационных осложнений, и отсутствия значимой зависимости его работоспособности от локальных особенностей кардиохирургической клиники.

В качестве входных переменных в заявляемом способе предлагается использовать следующие показатели: возраст (годы), продолжительность искусственного кровообращения (минуты), продолжительность пережатия аорты (мин), систолическое артериальное давление (мм рт.ст.), центральное венозное давление (мм вод.ст.), концентрация молочной кислоты плазмы крови (ммоль/л), парциальное давления кислорода в венозной и артериальной крови (мм рт.ст.), гематокрит (проценты); в качестве выходной переменной выбран факт развития одного или нескольких осложнений в течение 6 суток после операции или их отсутствия. Совокупность данных предикторов риска позволяет оценивать сдвиги в гомеостазе во время искусственного кровообращения, а также оценивать реакцию организма на воздействие искусственного кровообращения и оперативного вмешательства. Данная совокупность параметров является оптимальной и обеспечивает наибольшую точность прогноза нейронной сети. При построении нейронной сети задавались вручную и в автоматическом режиме различные сочетания интраоперационных параметров-предикторов, использование данной комбинации позволило получить нейронную сеть с лучшими операционными характеристиками. Данные параметры являются обязательно определяемыми в процессе операций с искусственным кровообращением, а следовательно, могут быть использованы в любой клинике, проводящий данный вид операций.

Согласно способу перечисленные параметры определяют на 25-35-й минуте с момента начала искусственного кровообращения. На предварительном этапе при помощи статистических методов анализа (дискриминантного анализа, регрессионного анализа, непараметрического сравнения групп) опытным путем была определена наибольшая точность прогноза развития послеоперационных осложнений при использовании значений показателей, определяемых в указанном диапазоне времени, по сравнению с 05-10 минутами с начала ИК, 55-65 минутами с начала ИК, показателями на момент окончания ИК.

Осложненным считали ранний (1-6 суток с момента оперативного вмешательства) послеоперационный период при наличии хотя бы одного из следующих состояний:

- развитие почечной недостаточности - повышение уровня креатинина крови более 200 мкмоль/л или более 50% от дооперационного уровня;

- развитие дыхательной недостаточности, требующей применения продленной искусственной вентиляции легких;

- развитие пароксизма фибрилляции предсердий;

- нестабильность гемодинамики, требующая применения инотропной или вазопрессорной поддержки и/или методов вспомогательного кровообращения;

- признаки острого инфаркта миокарда;

- симптомы энцефалопатии и признаки острого нарушения мозгового кровообращения (ОНМК).

Таким образом, в качестве входных данных в способе использованы количественные показатели, а выходных данных - качественный показатель, представляемый в бинарном виде (есть/нет осложнение). Осложнения отмечались у 32 пациентов, гладкое течение послеоперационного периода - у 42 пациентов.

Сформированная обучающая начальная выборка критериев риска (параметров) подвергается нейросетевому анализу с использованием соответствующего программного обеспечения (ПО), например, с помощью программного пакета Statistica 6.1 StatSoft., Inc, или других программ, обеспечивающих построение нейросетей и нейросетевой анализ.

Апробация заявляемого способа была осуществлена с использованием нейронного модуля пакета прикладных программ Statistica 6.1 RUS (технология работы с нейронной сетью в данной программе подробно представлена в книге «Statistica Neural Network: Методология и технология современного анализа данных» под ред. В.П. Боровикова, 2008, алгоритм построения сети схематично представлен на фиг.2), с помощью которого была получена модель нейронной сети. В данном нейронном модуле в ручном режиме случайным образом выборка пациентов была поделена на три группы: обучающую, контрольную и тестовую в приблизительном соотношении 80%, 15%, 5%.

На первом этапе был сформирован некоторый начальный набор критериев риска и прогнозируемых послеоперационных осложнений для «обучающей» выборки (см. фиг.2), в качестве которых использовались перечисленные выше параметры, характеризующие состояние пациента непосредственно в момент проведения операции, параметры, полученные до проведения операции, и сведения о наличии или отсутствии послеоперационных осложнений. «Обучающая» выборка готовилась по ранее известным результатам, собранным в клинической практике, при этом, чем большее число результатов будет использовано при анализе, тем выше точность прогнозирования осложнений.

На следующем этапе, в результате работы соответствующего ПО, получили цифровое значение вероятности развития послеоперационных осложнений, для соответствующей нейросетевой модели. Цифровое значение вероятности и соответствующую ей модель нейронной сети сохраняли в массиве моделей нейросетей.

Далее, производили коррекцию параметров обучающей начальной выборки критериев риска, повторный анализ в ПО и сохранение вновь полученных цифровых значений вероятности развития послеоперационных осложнений для соответствующей нейросетевой модели в массиве моделей нейросетей.

После проведения процессов коррекции всех параметров критериев риска завершали формирование массива моделей нейросетей. Из полученного массива моделей нейросетей выбирали одну или несколько нейросетевых моделей с самыми высокими значениями точности прогнозирования вероятности развития осложнений).

По итогам нейросетевого анализа в качестве сетей были выбраны многослойные перцептроны с порогом принятия решения 0,5, характеризующим вероятность наступления каждого из исходов. Данный параметр был выбран исходя из того, что при решении задачи прогнозирования послеоперационных осложнений ложноположительные ответы модели являются менее критичными ошибками для клинической практики, чем ложноотрицательные. Из предложенных мастером решений вариантов моделей нейронных сетей была выбрана модель с наибольшей производительностью и минимальной ошибкой классификации.

Выбранная нейронная сеть представляла собой четырехслойный перцептрон МП 9-40-33-1, условные обозначения которого описывают характеристики нейронной сети и соответствуют выражению МП X-Y-Z-Q, где: МП - многослойный перцептрон, X-Y-Z-Q - обозначение нейронных узлов в соответствующих слоях многослойного перцептрона - Х - в первом слое, Y - во втором слое, Z - в третьем слое, Q - в четвертом слое. Таким образом, обозначение МП 9-40-33-1 характеризует нейронную сеть типа многослойный перцептрон с 4 слоями, в котором имеются 9, 40, 33 и 1 нейронов в слоях 1, 2, 3 и 4 соответственно, т.е., модели нейронной сети содержат сведения о количестве слоев перцептрона и количестве нейронных узлов в каждом слое: на первом (входном) слое которой было использовано 9 нейронов (L=9), во втором слое - 40 (M=40), в третьем - 33 (N=33), в выходном - 1 нейрон (см. фиг.1). Производительность данной модели нейронной сети на обучающей группе составила - 1, на контрольной - 1; ошибка обучения составила 0,027, контрольная ошибка - 0,045. Площадь под ROC-кривой составила 0,985863, что характеризует высокую прогностическую точность (см. фиг.3). Т.о. модель нейронной сети, в целом, правильно классифицирует развитие осложнений в выборке, верно объясняя около 98% наблюдений.

В Таблице 1 представлена классификация наблюдений в исходной выборке нейронной сетью.

Таблица 1
Классификация
осложнения без осложнений
Всего 32,00000 42,00000
Правильно 29,00000 41,00000
Ошибочно 3,00000 1,00000
Неизвестно 0,00000 0,00000
% правильных 90,62500 97,61905
% ошибочных 9,37500 2,38095
% неизвестно 0,00000 0,00000

В таблице 1 отражены результаты классификации исходной выборки, полученной нейронной сетью. Из 74 включенных в выборку пациентов, осложнения были у 32. Далее указаны результаты распознавания объектов нейронной сетью и соотнесение результатов прогноза с известными исходами. Так из 32 пациентов, имевших осложнения, нейронной сетью были верно распознаны и спрогнозировано развитие осложнений 31 (90,625%). Из числа пациентов с неосложненным течением (42 человека) 41 был правильно распознан нейронной сетью. Таким образом, точность прогноза для этой группы составила 97,619%. Полученная модель нейронной сети работает следующим образом: на входной слой нейронов подаются значения выбранных показателей критериев риска, нейроны первого слоя, имеющие линейную функцию активации, передают данные после линейного преобразования на второй и третий слои с гиперболическими функциями активации нейронов, где после гиперболического преобразования передаются на выходной слой, выполняющий логистическое преобразование и выдающий информацию в виде бинарного признака: есть осложнение (значение 1) или нет осложнения (значение 2).

Заявляемый способ также может быть реализован с помощью программы для ЭВМ (свидетельство о государственной регистрации программы для ЭВМ №2013616971 дата регистрации от 30.07.2013). Настоящая программа используется в клинической практике при проведении операции АКШ. В процессе проведения операции данная программа запускается на компьютере, пользователь вводит параметры критериев риска, и практически сразу получает прогноз появления осложнений после операций в виде одного из сообщений: «1» - возможны послеоперационные осложнения или «2» - послеоперационные осложнения маловероятны. В зависимости от полученного прогноза, можно немедленно, при еще продолжающейся операции, принимать решение о необходимости и объеме послеоперационного наблюдения и лечения пациента.

Примеры применения предлагаемого способа прогнозирования послеоперационных осложнений:

Пример 1. Пациентка К., 58 лет. EuroSCORE=3,83%. Выполнено маммарно-коронарное шунтирование передней межжелудочковой ветви левой коронарной артерии (ПМЖВ) + аортокоронарное шунтирование 3 артерий (АКШ 3). Время ИК составило 79 минут, длительность пережатия аорты - 30 мин., на 30 минуте ИК определены следующие показатели: АД=49 мм рт.ст., ЦВД=7 мм рт.ст., концентрация лактата в крови = 2,3 ммоль/л; paO2=204 мм рт.ст., pvO2=39 мм рт.ст., гематокрит 25%. Программный прогноз - «Возможны послеоперационные осложнения». В послеоперационном периоде отмечена нестабильность гемодинамики, потребовавшая поддержки дофамином в дозе 12 мкг/кг-мин в течение более чем 8 часов.

Пример 2. Пациент С., 49 лет. EuroSCORE=3,5%. Выполнено аортокоронарное шунтирование 3 артерий. Время ИК составило 57 минут, длительность пережатия аорты - 30 мин, на 30 минуте ИК определены следующие показатели: АД=47 мм рт.ст., ЦВД=-1 мм рт.ст., концентрация лактата в крови = 2,20 ммоль/л; paO2=103 мм рт.ст., pvO2=36 мм рт.ст., гематокрит 34%. Программный прогноз - «Без послеоперационных осложнений». В послеоперационном периоде - гладкое течение.

В обоих случаях пациентам группы среднего риска по EuroSCORE выполнялись сходные оперативные вмешательства, в течение ИК мониторируемые показатели не выходили за пределы нормальных, однако в послеоперационном периоде в первом случае развилось осложнение. Эти случаи практически не возможно разделить «на глаз», тогда как тактика ведения этих больных в послеоперационном периоде и, вероятно, на выходе из ИК, должна быть различной. Таким образом, использование предлагаемого способа прогнозирования послеоперационных осложнений позволяет повысить точность прогнозирования исходов в ситуации, когда невозможно выделить основной патогенетический фактор, приводящий в итоге к развитию клинически значимых патологических состояний. Это особенно важно, когда «сдвиги» параметров мониторинга не выходят за пределы нормальных диапазонов.

Способ интраоперационного определения риска развития органных дисфункций в раннем периоде после проведения операции изолированного шунтирования коронарных артерий в условиях искусственного кровообращения, включающий измерение через 25-35 минут после начала искусственного кровообращения следующих показателей: уровня артериального давления, центрального венозного давления, парциального давления кислорода в венозной артериальной крови, концентрации лактата в крови, уровня гематокрита, а также измерение длительности искусственного кровообращения и длительности пережатия аорты по завершении процедуры искусственного кровообращения; анализ измеренных величин с помощью компьютерной программы типа «нейронные сети», предварительно обученной построению прогнозов послеоперационных рисков развития органных дисфункций с использованием измеренных показателей и имеющихся клинических данных о наличии или отсутствии органных дисфункций в раннем периоде после проведения операции, формирование по результатам анализа заключения о наличии или отсутствии риска развития осложнений.



 

Похожие патенты:

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, анестезиологии и реаниматологии, и может быть использовано при прогнозировании развития осложнений в виде органных дисфункций в раннем послеоперационном периоде (в первые 6 суток после операций) у пациентов при выполнении операции шунтирования коронарных артерий (АКШ) в условиях искусственного кровообращения.

Изобретение относится к медицине, в частности к клинической физиологии, физической культуре и спорту, кардиологии. Для оценки гипо-нормо-гиперволемии сосудистого русла вычисляют отклонение объема циркулирующей крови (ОЦК) от должного объема циркулирующей крови (ДОЦК) (Ооцк, в %) по математической формуле.

Изобретение относится к области медицинской диагностики, в частности к профилактической медицине, и может быть использовано для оценки жировой массы тела у мужчин-механизаторов сельского хозяйства при гигиенических исследованиях и выработки индивидуальных рекомендаций для профилактики заболеваний.

Изобретение относится к животноводству, в частности к способу диагностики и лечения рогатого скота. Способ характеризуется использованием капсулы, вводимой оральным путем в кишечную полость животного.

Группа изобретений относится к медицинской технике. Система для оптического исследования ткани содержит полую иглу, которая содержит концевую часть, часть держателя, стержень, а также волокна, способные проводить свет, при этом стержень содержит дистальный конец, соединенный с концевой частью, и проксимальный конец, соединенный с частью держателя, причем концевая часть содержит скос, режущие грани, и, по меньшей мере, один канал для размещения волокна, при этом концевая секция волокна расположена в канале, а концевая поверхность волокна расположена на одной из режущих граней.

Изобретение относится к медицинской технике, а именно к системам для направлений медицинского устройства в намеченное местоположение. Интервенционная система включает устройство формирования изображения для обеспечения прямого изображения объекта, игольчатое устройство, выполненное с возможностью введения в объект и имеющее положение в объекте, обнаруживаемое на прямом изображении, и обрабатывающее устройство, выполненное с возможностью получения предварительно записанного изображения объекта из баз данных.

Изобретение относится к средствам фотоакустической визуализации. Устройство получения информации о субъекте содержит блок акустического преобразования, выполненный с возможностью принимать акустическую волну, генерируемую при облучении субъекта светом, и преобразовывать акустическую волну в электрический сигнал, и блок обработки, выполненный с возможностью получения поверхностного распределения интенсивности света или поверхностного распределения освещенности от света, падающего на поверхность субъекта, на основании информации о форме поверхности субъекта, получения распределения интенсивности света внутри субъекта на основании поверхностного распределения интенсивности света или поверхностного распределения освещенности и получения распределения оптических свойств внутри субъекта на основании электрического сигнала и распределения интенсивности света внутри субъекта.
Изобретение относится к области медицины, а именно к неврологии, андрологии, сексологии и профессиональной патологии. Проводят реофаллографию с определением показателей интенсивности кровенаполнения кавернозных сосудов и венозного оттока; психологическое тестирование с определением показателя нервно-психического напряжения и астенического состояния.

Изобретение относится к медицине, а именно к гастроэнтерологии, и может быть использовано для прогнозирования риска развития портальной гипертензионной гастропатии при циррозе печени.
Способ относится к области медицины, а именно к клинической диагностике, и предназначен для выявления здоровых лиц с неинфекционными хроническими заболеваниями или предрасположенностью к ним с помощью интегральной оценки факторов риска, субоптимального статуса здоровья и эндотелиальной дисфункции.

Изобретение относится к медицинской технике. Устройство для регистрации артериальной пульсации крови содержит генератор импульсов, источник света, фотоприемник, преобразователь ток/напряжение, усилитель переменного напряжения, синхронный демодулятор, полосовой фильтр. Дополнительно в устройство введены акселерометр, аналого-цифровой преобразователь, микроконтроллер, адаптивный фильтр, блок вычитания. Выход полосового фильтра подключен к первому входу аналого-цифрового преобразователя, выход акселерометра подключен ко второму входу аналого-цифрового преобразователя, выход аналого-цифрового преобразователя подключен к входу микроконтроллера, первый выход микроконтроллера подключен к первому входу блока вычитания, второй выход микроконтроллера подключен к первому входу адаптивного фильтра, выход блока вычитания подключен ко второму входу адаптивного фильтра, выход адаптивного фильтра подключен ко второму входу блока вычитания. Применение изобретения позволит увеличить помехоустойчивость регистрации сигнала артериальной пульсации крови человека в условиях присутствия двигательных артефактов, обусловленных случайными движениями обследуемого. 1 ил.

Изобретение относится к области получения радионуклидного изображения. Техническим результатом является обеспечение получения высококачественного радионуклидного изображения движущегося объекта. Система содержит: входное устройство (14) для приема радионуклидного изображения и морфологических изображений объекта, блок (15) обработки, сконфигурированный для: обработки морфологических изображений для получения информации о редких движениях объекта, получения сокращенного ряда измерений от быстрого обнаружения сигналов вдоль параллельного пучка лучей, параметризации и адаптации модели движения для обеспечения расчета движения пациента из сокращенного ряда измерений, использования информации о редких движениях и модели движения для получения информации о расчетном движении объекта, генерирования варьирующейся в зависимости от времени шкалы ослабления на основе информации о расчетном движении, генерирования радионуклидного изображения с коррекцией движения на основе полученного радионуклидного изображения и варьирующейся в зависимости от времени шкалы ослабления, и выходное устройство (17) для предоставления исправленного радионуклидного изображения. 4 н. и 6 з.п. ф-лы, 2 ил.
Изобретение относится к области медицины, в частности к области физиологии и патологической физиологии, может быть использовано для экспресс-отбора людей перед выходом в горы. Для оценки устойчивости функциональных систем организма к высокогорной гипоксии проводят исследования антропометрических и физиологических данных и определяют показатель устойчивости систем по формуле УГ-ЗДН/(Р+Н), где УГ - показатель устойчивости функциональных систем организма к гипоксии, усл.ед.; Р - масса тела, кг; Н - рост, см; ЗДН - задержка дыхания через одну минуту после 15-кратных отжиманий от пола с прямым корпусом. При значении УГ более 0,15 - хорошая устойчивость; при значении УГ от 0,10 до 0,15 - средняя; при значении УГ менее 0,10 - слабая. Способ позволяет определить наступление стабильной фазы адаптации у лиц в период пребывания в горах с сохранением точности оценки функциональных систем организма человека к условиям высокогорья за счет определения информативных показателей. 3 пр.

Изобретение относится к медицине. Система управления биологической информацией включает в себя измерительное устройство для измерения биологической информации пользователя и устройство управления для управления биологической информацией. При этом измерительное устройство включает в себя средство формирования информации о состоянии измерения и средство вывода для вывода биологической информации и информации о состоянии измерения. Устройство управления включает в себя средство приема для приема информации о состоянии измерения и биологической информации; средство оценки для оценки достоверности биологической информации на основании информации о состоянии измерения и устройство отображения, выполненное с возможностью отображать график, на котором горизонтальная ось представляет дату, а вертикальная ось представляет биологическую информацию. Причем достоверная биологическая информация и недостоверная биологическая информация отображается посредством разных структур согласно результату оценки достоверности. Изобретение позволяет упростить определение достоверности биологической информации за счет отображения достоверной и недостоверной биологической информации в виде графика посредством разных структур согласно результату оценки достоверности. 9 з.п. ф-лы, 22 ил.

Изобретение относится к области сбора медицинских данных о показателях жизнедеятельности. Техническим результатом является повышение точности и надежности измерения показателей жизнедеятельности о состоянии здоровья пациента. Система (100) содержит: блок (120) обработки определения значения параметра, выполненный с возможностью приема сигналов физиологических параметров и выделения множества эпизодов в течение длительности по меньшей мере одного физиологического цикла из сигнала колебаний физиологического параметра; блок (130) обработки оценки качества сигнала, выполненный с возможностью приема физиологических сигналов, оценки качества каждого эпизода колебания физиологических сигналов, выделения признаков колебаний у эпизодов колебаний и генерирования индекса качества сигнала, показывающего оцененное качество физиологических сигналов каждого эпизода на основании выделенных признаков колебаний; и блок (140) маркировки колебаний, выполненный с возможностью связывать индексы качества сигнала с каждым эпизодом колебаний физиологических сигналов. 3 н. и 12 з.п. ф-лы, 8 ил.

Группа изобретений относится к медицинской технике. Устройство для непрерывного анализа целевого вещества в образце жидкости организма содержит чувствительный блок с подкожным сенсором для получения информации в отношении целевого вещества в образце, источник питания для подачи питания к сенсору и часть хранения данных для хранения информации от сенсора. Блок хранения данных устройства для непрерывного анализа разъемно соединен с чувствительным блоком и включает в себя средство хранения. Управляющий блок устройства для непрерывного анализа выполнен с возможностью управления сохранением информации или соответствующих информации данных из части хранения данных в средстве хранения, когда блок хранения данных присоединен к чувствительному блоку, и управления передачей внешнему устройству информации из средства хранения, когда отделенный от чувствительного блока блок хранения данных присоединен к внешнему устройству. Система управления целевым веществом в образце жидкости организма содержит устройство для непрерывного анализа и внешнее устройство, которое имеет средства хранения для хранения информации от сенсора или соответствующих информации данных из средства хранения. Блок хранения данных и внешнее устройство разъемно соединены. Применение группы изобретений позволит повысить точность передачи информации о компонентах в жидкости организма во внешнее устройство. 2 н. и 13 з.п. ф-лы, 11 ил.

Группа изобретений относится к медицине, а именно к пульмонологии, кардиологии, геронтологии и спортивной медицине, и может быть использована для оценки легочного кровотока путем исследования капиллярного кровотока легких и внутрилегочных вено-артериальных шунтов. Для этого измеряют ЧСС в мин, концентрацию гемоглобина (Hb г/л), общее потребление кислорода организмом (ПО2(ОБЩ) мл/мин), насыщение кислородом артериальной крови (SART % или в десятичных долях 1) и насыщение смешанной венозной крови в большом круге кровообращения (БК) (Sv% или в десятичных долях 1). Вычисляют МОК (л/мин) по измеренным значениям Hb, ПО2, SART, SV. Затем по определенным математическим формулам рассчитывают величину капиллярного кровотока легких и величины внутрилегочных вено-артериальных шунтов. Предложенные варианты способа позволяют точно определить вентилляционно-перфузионные отношения в легких, а также исключить сложные прямые инструментальные способы измерения капиллярного кровотока в легких. 2 н.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к медицинской технике и может быть использовано для флуоресцентной диагностики новообразований кожи, а также внутрикожных рецидивов других опухолей. Устройство для флуоресцентной диагностики злокачественных новообразований, включающее светодиодный излучатель, видеокамеру со спектрально-селективной оптической системой и компьютер с монитором, дополнительно содержит переключатель режима работы излучателя и USB-концентратор, при этом один вход переключателя режима работы излучателя соединен с источником питающего напряжения, другой его вход соединен с выходом USB-концентратора, первый вход которого соединен с выходом персонального компьютера, а его второй вход-выход соединен со входом-выходом видеокамеры, при этом выход переключателя режима работы излучателя соединен со входом излучателя. Повышается точность определения границ злокачественного новообразования. 2 ил.
Изобретение относится к медицине, а именно к акушерству и гинекологии. У беременных выявляют наличие следующих фенотипических и висцеральных маркеров дисплазии соединительной ткани: гипермобильность суставов, тонкая кожа, зубы - дефекты в дентине, ямки, желобки; астенический синдром, пролапс митрального клапана, варикозная болезнь вен нижних конечностей, арахнодактилия, гиперрастяжимость кожи, готическое небо, стрии, сколиоз, нейроциркуляторная дистония по гипертоническому или гипотоническому типу, искривление носовой перегородки, систолический шум при аускультации сердца, врожденный вывих бедра, келоидные рубцы. При выявлении наличия двух и более маркеров прогнозируют наличие недифференцированной дисплазии соединительной ткани у беременных. Способ позволяет с высокой точностью при наличии минимального количества маркеров установить диагноз. 1 табл., 3 пр.

Изобретение относится к области медицины, в частности к онкологии, и касается способов прогнозирования возникновения местных рецидивов у больных раком молочной железы в послеоперационном периоде. Определяют степень злокачественности и характер роста опухоли, наличие метастатических лимфатических узлов. В случае наличия 2-3 метастатических лимфатических узлов рассчитывают значение f уравнения регрессии по формуле: fрец = -2,686+2,681·x1+2,3·x2+2,172·x3, где -2,686 - значение коэффициента регрессии свободного члена; х1 - характер роста опухоли: 0 - уницентричный рост, 1 - мультицентричный рост, 2,681 - значение коэффициента регрессии этого признака; х2 - степень злокачественности опухоли: 0 - низкая/умеренная степень, 1 - высокая степень злокачественности, 2,3 - значение коэффициента регрессии этого признака; х3 - оценка состояния регионарных лимфатических узлов N: 1 от 2 до 3 пораженных лимфатических узлов, 2,172 - значение коэффициента регрессии этого признака. Затем вычисляют вероятность прогрессирования заболевания (Р) по формуле: , где е - математическая константа, равная 2,72. При Р<0,5 прогнозируют низкую вероятность развития местных рецидивов, а при Р>0,5 - высокую вероятность развития местных рецидивов. Способ позволяет повысить точность прогноза за счет учета комплекса прогностически значимых признаков.
Наверх