Способ имплантации интрастромальных роговичных сегментов при лечении кератоконуса

Изобретение относится к офтальмохирургии и может быть применимо для имплантации интрастромальных роговичных сегментов при лечении кератоконуса. Формируют интрастромальный роговичный туннель кольцевидной формы путем фемтодиссекции стромы роговицы на глубине от 300 до 400 мкм в радиальном направлении от 0 до 360°. Формируют два сквозных входных разреза для введения интрастромального роговичного сегмента. Сквозные входные разрезы производят перпендикулярно сформированному роговичному туннелю длиной 1,0-1,3 мм, асимметрично от планируемой установки роговичного сегмента. Устанавливают роговичный сегмент так, чтобы его края были как можно дальше удалены от зоны входных разрезов. Способ позволяет уменьшить риск протрузии роговичного сегмента. 2 з.п.ф. лы, 2 ил.

 

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано при хирургическом лечении кератоконуса.

Кератоконус - дегенеративное заболевание роговой оболочки с асимметричным прогрессирующим течением, приводящее к структурным изменениям всех слоев роговицы, ее истончению и формированию конусовидной формы. Следствием этих изменений является смещение центра роговицы и появление неправильного астигматизма.

Известен способ лечения кератоконуса - интрастромальная кератопластика - заключающийся в имплантации роговичных сегментов в предварительно сформированный круговой тоннель в 5 мм зоне роговицы (Colin J. et al. Keratoconus: current surgical options // J. Fr. Ohptaimo Feb. 28(2):205-17, French (2005); Colin J. et al. Correcting keratoconus with intracomeal rings // J. Cataract Refract Surg. - 2000 Aug; 26 (8):1117-1122). Способ выполняют при начальном кератоконусе при отсутствии трещин десцеметовой оболочки с целью создания дополнительного «ребра жесткости», укрепляющего ослабленную роговицу.

Известен способ хирургического лечения кератоконуса роговицы, заключающийся в том, что вначале производят интрастромальную кератопластику, имплантируя роговичный сегмент в предварительно сформированный круговой тоннель в 5 мм зоне роговицы, а через 12-18 месяцев проводят секторальную лазерную термокератопластику, воздействуя на роговицу излучением лазера на иттербий-эрбиевом стекле с длиной волны 1,54 мкм (1540 нм), с глубиной воздействия 600-700 мкм, при этом коагуляты накладываются в шахматном порядке на периферии роговицы в виде полукольца с диаметром 8,0-10,0 мм, что приводит к укреплению юны эктазии и выравниванию сферичности роговицы (патент RU 2425662 С1, опубл. 10.08.2011).

Недостатком известного способа является высокий риск побочных осложнений, в частности протрузия роговичного сегмента.

С целью уменьшения побочных осложнений при интрастромальной кератопластике и возможности дозирования рефракционного эффекта в конце 90-х предлагалось введение жидкого геля в интрастромальный туннель, однако дальше клинических испытаний эта методика распространения не получила (Latest development in cataract IOL and refractive surgery: Part II // Highlights Ophthalmol. - 1998. - Vol.26, №3. - P.26-30).

На сегодняшний день ни один из способов имплантации интрастромальных роговичных сегментов (ИРС) не исключает такого послеоперационного осложнения, как протрузия ИРС. Так, по данным Pinero (Pinero DP, et.al. Refractive and aberrometric outcomes of intracomeal ring segments for keratoconus: mechanical versus femtosecond assisted procedures. Ophthalmology 2009; 116:1675-1687) протрузия ИРС при формировании туннеля механическим трепаном составляет 8.33% и 10.52% при использовании ФС лазера, в то же время статистика реимплантации составляет обратные величины: 20.83% и 10.53% соответственно.

Данное осложнение обусловлено многофакторными причинами. Одной из ключевых характеристик правильности выполнения имплантации является глубина расположения ИРС в роговице, соответственно более поверхностное расположение ИРС повышает риск этого осложнения. Во вторых, учитывая геометрию ИРС, основное давление на роговицу после имплантации происходит по краям сегмента и если данное биомеханическое действие происходит в зоне входного разреза для имплантации ИРС, то протрузия, как правило, происходит в данной области.

Наиболее ближайшим к заявляемому способу - прототипом, является способ имплантации интрастромальных роговичных сегментов у пациентов с кератоконусом, включающий формирование интрастромального роговидного туннеля фемтосекундным (ФС) лазером посредством двухэтапной резекции, при этом сначала производят кольцевые разрезы на заданной глубине от 100 до 400 мкм (внутренний диаметр кольцевых разрезов 5,0-5,1 мм, внешний диаметр 6,7-6,8 мм), далее выполняют симметричный сквозной входной разрез длиной от 0,8 до 1,5 мм в радиальном направлении, начиная на глубине тоннеля и заканчивая на наружной поверхности роговицы. Ширина кольцевого тоннеля определяется параметрами планируемых для имплантации роговичных сегментов. Ось входного разреза задают в зависимости от исходных параметров роговицы от 0 до 360° (патент RU 2375025 С1, опубл. 10.12.2009).

Недостатками данного способа является выполнение так называемых «симметричных» входных разрезов в зависимости от топографии установки ИРС, что может привести к биомеханическому давлению сегмента в данной прослабленной зоне и, в конечном счете, выходу сегмента в разрез или протрузии.

Задачей изобретения является разработка безопасного, прогнозируемого и эффективного способа имплантации ИРС при лечении кератоконуса.

Технический результат: уменьшение побочных осложнений.

Поставленная техническая задача достигается предлагаемым способом, заключающимся в следующем.

Фемтосекундный лазер программируют в зависимости от исходных данных выраженности и развития кератоконуса. Определяют наименьшее значение толщины роговицы в зоне планируемой имплантации, которое используют для расчета глубины формирования туннеля. Роговичный туннель формируют на глубине 75-80% от минимального получерного значения толщины роговицы в области имплантации.

Ширина кольцевого тоннеля определяется параметрами планируемых для имплантации роговичных сегментов. Расчет ширины формируемого роговичного туннеля проводят по формуле: С=А+В, где С - коэффициент ширины роговичного туннеля в мкм, А - ширина основания, В - толщина имплантируемого ИРС в мкм. Схематическое изображение расчета коэффициента ширины роговичного туннеля для имплантации ИРС представлено на фиг.1.

После проведения разметки геометрического центра роговицы, устанавливают вакуумное кольцо и выполняют процесс стыковки. Затем, выполнив центрацию и достигнув оптимальной компрессии роговицы интерфейсом, производят фемтодиссекцию стромы роговицы с формированием кольцевидного туннеля на глубине предпочтительно 300-380 мкм с внутренним диаметром кольцевой резекции, равным 4,9 мм и внешним диаметром, равным 6,2 мм. Далее в радиальном направлении формируют асимметричные сквозные входные разрезы длиной 1,0-1,3 мм, перпендикулярные к туннелю. Ось входного разреза задают в зависимости от исходных параметров роговицы от 0 до 180° - асимметрично от планируемой установки ИРС. Энергия импульса, используемого для создания кольцевидного туннеля и входного разреза, составляет 1,5-1,8 мкДж. В сформированный таким образом тоннель имплантируют ИРС, изготовленный из полиметилметакрилата, представляющий собой часть кольца с дугой в 160°, диаметром 5,0 мм, толщиной 200-250 мкм, с поперечным срезом в виде полусферы и основанием 0,6 мм. Располагают ИРС согласно топографическим данным в «красной» зоне кератэктазии.

Определяющим отличием заявляемого способа от прототипа является то, что что сквозные входные разрезы производят перпендикулярно сформированному роговичному туннелю длиной 1,0-1,3 мм, асимметрично от планируемой установки роговичного сегмента, таким образом, чтобы края имплантируемого сегмента были как можно дальше удалены от зоны входных разрезов, что позволяет значительно уменьшить риск протрузии ИРС, увеличить безопасность и предсказуемость операции.

Схема топографии традиционного (а) и «асимметричного» (б) расположения входных разрезов и техника введения ИРС представлены на фиг.2.

Изобретение иллюстрируется следующим примером конкретного выполнения.

Пример

Пациент Ш., 24 года, обратился за консультацией в НФ МНТК «МГ» с жалобами на низкое зрение правого глаза. Из анамнеза выяснено, что ухудшение зрения происходило около 5 лет. Очковая коррекция не проводилась. Пациенту проведено полное офтальмологическое обследование.

Диагноз: Кератоконус II степени правого глаза, I степени левого глаза.

Диагностические данные до операции:

Острота зрения:

правый глаз 0,04 с корр. Sph - 0,0 cyl - 6,0 ax 45=0,3

левый глаз 0,3 с корр. Sph - 0,5 cyl - 1,75 ax 110=1,0

Рефрактометрия:

правый глаз Sph - 0,0 cyl - 5,75 ax 30

левый глаз Sph - 0,5 cyl - 1,75 ax 110

Кератометрия:

правый глаз Вер.Мер. 48,00 ax 115 Гор.Мер. 42,5 ax 25

левый глаз Вер.Мер. 46,25 ax 37 Гор.Мер. 44,25 ax 127

Пахиметрия:

правый глаз, центр 513 мкм

левый глаз, центр 510 мкм

Пациенту с целью стабилизации процесса и коррекции астигматизма была предложена операция лечения кератоконуса с имплантацией ИРС на правом глазу.

После предварительного расчета параметров глубины и ширины формирования роговичного туннеля пациенту под местным обезболиванием с помощью фемтосекундного лазера Femtec проведена процедура формирования интрастромальных роговичных туннелей со следующими параметрами: глубина тоннеля 360 мкм (что равнялось 75% от толщины роговицы в области имплантации), диаметр внутреннего кольца 4,9 мм, диаметр внешнего кольца 6,2 мм. Затем сформированы два асимметричных сквозных входных разрезов на 155° и 345°, перпендикулярно сформированному роговичному туннелю, длиной 1,2 мм. Затем в сформированный туннель через входной разрез на 345° с помощью пинцета введен один из концов ИРС, который постепенно проталкивают по тоннелю с помощью крючка Сински до полного ввода в тоннель. Затем через разрез на 155° крючком Сински продвигают сегмент в обратном направлении, насколько возможно, т.е. таким образом, чтобы края имплантируемого ИРС были равно удалены от зоны разрезов. Окончательную позицию сегменту задают путем механического давления с помощью изогнутого круглого сепаратора через разрез на 155°. ИРС представляет собой часть кольца с дугой 160°, выполненный из полиметилметакрилата, диаметром 5,0 мм, толщиной 250 мкм, с поперечным срезом в виде полусферы и основанием 0,6 мм. Располагают ИРС согласно топографическим данным в «красной» зоне кератэктазии. Послеоперационный период протекал без осложнений. После операции местно применяли тобрекс и дексаметазон в течение трех недель.

При диагностическом обследовании на следующий день после операции острота зрения правого глаза без коррекции составила 0,5.

Через 1 месяц после операции острота зрения без коррекции 0,7.

Рефрактометрия:

правый глаз Sph - 0,75 cyl - 0,75 ax 87

Кератометрия:

правый глаз Вер.Мер. 44,5 ax 34 Гор.Мер. 45,25 ax 124

Таким образом, формируя роговичный туннель с асимметричными входными разрезами для имплантации ИРС, исключено такое серьезное послеоперационное осложнение, как протрузия роговичного сегмента.

Использование предлагаемого способа позволит перераспределить биомеханическое давление, оказываемое ИРС, из «прослабленной» зоны входных разрезов, выполняемых при традиционном симметричном варианте выполнения, в интактную зону роговицы при асимметричном варианте. Таким образом, имплантация ИРС в сформированный роговичный туннель через асимметричные входные разрезы позволит значительно уменьшить риск протрузии ИРС, увеличить безопасность и предсказуемость операции при сохранении высокого рефракционного и лечебного эффекта операции.

1. Способ имплантации интрастромальных роговичных сегментов при лечении кератоконуса, включающий формирование интрастромального роговичного туннеля кольцевидной формы путем фемтодиссекции стромы роговицы на глубине от 300 до 400 мкм в радиальном направлении от 0 до 360°, а затем формирование двух сквозных входных разрезов для введения интрастромального роговичного сегмента, отличающийся тем, что сквозные входные разрезы производят перпендикулярно сформированному роговичному туннелю длиной 1,0-1,3 мм, асимметрично от планируемой установки роговичного сегмента, при этом роговичный сегмент устанавливают так, чтобы его края были как можно дальше удалены от зоны входных разрезов.

2. Способ по п.1, отличающийся тем, что кольцевидный роговичный туннель формируют на глубине 75-80% от минимального значения толщины роговицы в области имплантации.

3. Способ по п.1, отличающийся тем, что кольцевидный роговичный туннель формируют с внутренним диаметром, составляющим 4,9 мм, и внешним диаметром - 6,2 мм.



 

Похожие патенты:
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для профилактики диффузии силиконового масла в переднюю камеру глаза после экстракции катаракты с эндовитреальной тампонадой силиконовым маслом.
Изобретение относится к офтальмохирургии и может быть применимо для персонализированной эксимерлазерной коррекции зрения. Диагностируют аберрации глаза лазерным аберрометром, способным определять аберрации глаза низших и высших порядков.
Изобретение относится к медицине, офтальмологии и предназначено для определения показаний к проведению лазерной коагуляции при миопии различной степени у беременных.
Изобретение относится к медицине, офтальмологии и предназначено для восстановления бинокулярного зрения при содружественном косоглазии. Проводят стимуляцию сетчатки путем наблюдения пациентом четырехточечного лазерного спекла при поляроидном разделении полей зрения на диплоптическом аппарате, при релаксации и нагрузке соответственно положительными, а затем отрицательными сферическими линзами с шагом в 0,5 диоптрий до сохранения бинокулярного слияния.
Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано при хирургическом лечении сквозных макулярных разрывов сетчатки с применением интравитреального красителя.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для профилактики геморрагических осложнений во время проведения эндорезекции внутриглазных новообразований.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для фотодинамической обработки склерального ложа после эндорезекции внутриглазного новообразования.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии для обработки склерального ложа после эндорезекции внутриглазного новообразования.
Изобретение относится к медицине, а именно к офтальмологии и офтальмоонкологии, и может быть использовано для комбинированной обработки склерального ложа после эндорезекции внутриглазного новообразования.
Изобретение относится к офтальмохирургии и может быть применимо для интраоперационной коррекции формы роговицы при выполнении экстракции катаракты. При правильной сферичности роговицы для сохранения ее формы перед экстракцией катаракты выполняют два лимбальных парацентеза шириной, не изменяющей сферичность роговицы, но не более 1,5 мм, и располагают их в любых удобных для проведения операции меридианах роговицы, а тоннельный самогерметизирующийся разрез выполняют для инжекторной имплантации эластичной интраокулярной линзы, шириной, также не влияющей на кривизну роговицы, но не более 2,0 мм, и локализуют его в удобной для имплантации верхней части лимба.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для предотвращения дегидратации роговичного лоскута при проведении LASIK по поводу различных аномалий рефракций. Для этого после завершения этапа формирования роговичного лоскута с его внутренней стороны располагают микротупфер. При этом микротупфер размером 6-7×2-3 мм увлажняют сбалансированным раствором. Микротупфер укладывают между двумя половинами сложенного пополам лоскута параллельно его основанию. Способ обеспечивает одновременную адекватную гидратацию роговичного лоскута и его защиту от лазерного излучения в условиях ограниченного операционного поля, что в свою очередь предотвращает формирование микроострий, некачественную репозицию и нарушение процесса адаптации краев лоскута. 1 пр., 2 ил.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для лечения открытоугольной глаукомы. Воздействуют лазерным излучением на зону трабекулы в два этапа. Один этап - рассечение трабекулы импульсным неодимовым YAG-лазером с длинной волны 1064 нм импульсами 6-36 мВт. Воздействуют в проекциях выхода одного или нескольких эмиссариев до появления крови из шлеммова канала. Другой этап - воздействуют с помощью коагулирующего неодимового YAG-лазера с длиной волны 532 нм, диаметром пятна 50 мкм и экспозицией 0,2 сек. Выполняют коагуляцию трабекулярной ткани по внутренней стенке шлеммова канала до ее сморщивания по всей протяженности трабекулы количеством 90-120 коагулятов. Способ обеспечивает быстрое снижение внутриглазного давления, высокий гипотензивный эффект и устойчивое сохранение внутриглазного давления на уровне нормы за счет деблокады тока жидкости в эмиссариях и шлеммовом канале. 3 ил., 3 пр.

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для лечения открытоугольной глаукомы. Воздействуют лазерным излучением на зону трабекулы в два этапа. Один этап - рассечение трабекулы импульсным неодимовым YAG-лазером с длинной волны 1064 нм импульсами 6-36 мВт. Воздействуют в проекциях выхода одного или нескольких эмиссариев до появления крови из шлеммова канала. Другой этап - воздействуют с помощью коагулирующего неодимового YAG-лазера с длиной волны 532 нм, диаметром пятна 50 мкм и экспозицией 0,2 сек. Выполняют коагуляцию трабекулярной ткани по внутренней стенке шлеммова канала до ее сморщивания по всей протяженности трабекулы количеством 90-120 коагулятов. Способ обеспечивает быстрое снижение внутриглазного давления, высокий гипотензивный эффект и устойчивое сохранение внутриглазного давления на уровне нормы за счет деблокады тока жидкости в эмиссариях и шлеммовом канале. 3 ил., 3 пр.
Изобретение относится к офтальмохирургии и может быть применимо для полной стромэктомии роговицы при кератоконусе. Проводят укрепление роговицы путем проведения роговичного кросслинкинга. Не ранее чем через 1 месяц проводят хирургию, основанную на диагностике. Выполняют оптическую когерентную томографию (ОКТ) и по пахиметрической карте роговицы определяют ось смещения кератоконуса, для этого соединяют центр кератоконуса и оптический центр роговицы, и планируют размер диаметра будущего трепанационного разреза, затем выполняют ОКТ-срез по оси смещения кератоконуса и на полученном срезе делают построение: проводят две вертикальные линии, равноудаленные от центра роговицы на величину 1/2 диаметра будущего трепанационного разреза, далее на срезе определяют меньшую толщину роговицы в зоне трепанационного разреза, измеряют ее. На эту величину, только уменьшенную на 50 мкм, выполняют трепанационный разрез. С помощью Г-образного крючка, заведенного вдоль трепанационного разреза на всю глубину разреза в меридиане с наименьшей толщиной роговицы, делают локальное расслоение стромы, формируя вход для заведения канюли. Затем, сначала вдоль трепанационного разреза, далее через созданный вход, заводят канюлю со срезом для подачи воздуха, продвигают ее параллельно ДМ до центра роговицы, повернув срезом вниз, и подают стерильный воздух, которым отслаивают ДМ в пределах трепанационного разреза. С помощью инструмента поверхностные слои роговицы удаляют на глубину трепанационного разреза. Далее выполняют парацентез и выпускают незначительное количество внутриглазной жидкости из передней камеры. Оставшийся слой стромы над ДМ прокалывают инсулиновой иглой в центральной зоне, делая вкол и выкол, и, приподняв этот слой на игле, его рассекают с помощью лезвия между вколом и выколом. Производят полное удаление остатков стромы в пределах круговой насечки с помощью ножниц. Способ позволяет обеспечить стабильные зрительные функции. 2 з.п. ф-лы.

Группа изобретений относится к медицинской технике. Комплект для системы доставки интраокулярной линзы, в котором система доставки интраокулярной линзы включает корпус и повторно используемый сегмент. Комплект содержит одноразовый сегмент наконечника поршня, механизм крепления, толкающую поверхность, одноразовый инструмент и одноразовый картридж. Одноразовый сегмент наконечника поршня состоит из удлиненной основной части с проксимальным и дистальным концами. Механизм крепления представляет собой выступ или полость или их сочетание на проксимальном конце удлиненной основной части. Толкающая поверхность расположена на дистальном конце удлиненной основной части. Удлиненная основная часть и выступ или полость крепления интегрально отформованы из монополимерного материала. Монополимерный материал имеет модуль упругости при изгибе, равный по меньшей мере 3500 МПа. Применение данной группы изобретений позволит повысить точность проведения офтальмологических операций. 2 н. и 13 з.п. ф-лы, 6 ил.

Группа изобретений относится к области медицины. Устройство для введения интраокулярной линзы (ИОЛ) поделено на модули для обеспечения возможности очистки внутренних компонентов после хирургической операции. Устройство включает в себя первый и второй модули корпуса. Эти модули совместно определяют проход, вдоль которого перемещается инжекторный стержень между отведенным положением и выдвинутым положением. Первый модуль дополнительно выполнен с возможностью размещения модуля картриджа для линзы. Модуль картриджа имеет расположенную в нем ИОЛ, установленную соосно с проходом. Таким образом, по мере перемещения стержня из отведенного положения в выдвинутое положение передний участок стержня, который по существу окружен первым модулем в отведенном положении, перемещается в модуль картриджа и смещает ИОЛ. Первый модуль, однако, выполнен с возможностью отсоединения от второго модуля, чтобы тем самым обнажить передний участок стержня в отведенном положении для очистки. Применение данной группы изобретений позволит проводить более качественную очистку внутренних компонентов устройства. 2 н. и 11 з.п. ф-лы, 6 ил.

Группа изобретений относится к области медицины. Система доставки интраокулярной линзы включает в себя корпус инжектора, имеющий канал, окруженный внутренней стенкой. Система далее включает поршень, выполненный с возможностью плотно помещаться внутрь канала. Система также включает в себя множество отклоняемых элементов, присоединенных к поршню и выполненных с возможностью контактировать с внутренней стенкой и отклоняться, когда поршень вводится внутрь канала. Отклоняемые элементы центрируют стержень и, когда они введены внутрь корпуса инжектора, способствуют образованию заранее заданного усилия, противодействующего продвижению поршня при отклонении внутри канала. Применение данной группы изобретений позволит повысить эффективность проведения хирургических процедур. 2 н. и 12 з.п. ф-лы, 3 ил.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при лечении катаракты у пациентов с сопутствующими заболеваниями. Через месяц после факоэмульсификации осложненной катаракты и внутрикапсульной имплантации интраокулярной линзы по краю переднего капсулорексиса наносят 3-4 насечки длиной 2 мм. Воздействие осуществляют с помощью YAG-лазера с длиной волны 1064 мощностью 1-2 мДж. Необходимость нанесения насечек определяют с помощью ультразвукового биомикроскопического исследования при наличии доклинических признаков контрактуры капсулы хрусталика. Способ позволяет повысить эффективность профилактики указанной патологии за счет обеспечения достоверного своевременного выявления контрактуры капсульного мешка хрусталика, причем заявленное воздействие осуществляют выборочно - только у пациентов с наличием доклинических признаков контрактуры по данным ультразвукового биомикроскопического обследования, а так же исключается травмирование капсулы, обусловленное воздействием хирургических инструментов, предотвращается ухудшение зрения у пациентов с сопутствующими заболеваниями. 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для хирургического лечения авитрии. Для этого из витреальной полости аспирируют физиологический раствор. Синхронно восполняют витреальную полость воздухом. Затем замещают введенный воздух раствором биоматериала «Аллоплант для стимуляции регенерации стекловидного тела». Данный биоматериал вводят в витреальную полость в объеме 3-5 мл канюлированным зондом. Причем раствор предварительно готовят в соотношении 100-250 мг биоматериала на 3-5 мл физиологического раствора. Способ обеспечивает восстановление стекловидного тела после его удаления, что, в свою очередь, улучшает метаболизм структур заднего отдела глазного яблока, ответственных за восприятие. 2 пр., 2 ил.
Изобретение относится к офтальмологии и может быть применимо для лечения герпесвирусного поражения внутренних оболочек глаза. Проводят лечебное ретросклеропломбирование глаз биоматериалом «Аллоплант-стимулятором фагоцитоза» или биоматериалами «Аллоплант-стимулятор фагоцитоза» и «Аллоплант-склероукрепляющая пломба», а затем проводят аутолимфосорбцию хориоидеи глаз биоматериалами «Аллоплант для аутолимфосорбции» и «Аллоплант-стимулятор фагоцитоза», при этом аутолимфосорбцию хориоидеи одного глаза проводят через 2-6 месяцев после лечебного ретросклеропломбирования, а второго глаза - через 2-6 месяцев после аутолимфосорбции хориоидеи на первом глазу. Способ обеспечивает длительную, а у части пациентов полную ремиссию. 3 з.п. ф-лы, 5 пр.
Наверх