Меченные тритием наноалмазы и способ их получения


 


Владельцы патента RU 2538862:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации (RU)

Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха. При проведении реакции с атомарным тритием температуру стенок реакционного сосуда поддерживают в интервале 291-298 К, а его дно охлаждают до 77 К. Введение газообразного трития и его активацию на вольфрамовой нити проводят 5-15 сек, после чего остаточный тритий удаляют. Стадию введения газообразного трития и его активации повторяют от одного до восьми раз. Получают меченные тритием наноалмазы, в которых тритий связан с наноалмазом по связи C-H, характеризующиеся удельной радиоактивностью не менее 1 ТБк/г. 2 н. и 3 з.п. ф-лы, 3 пр.

 

Область техники

Изобретение относится к изотопно-меченным веществам и может быть использовано для введения радиоактивной метки в наноалмазы детонационного синтеза с целью изучения их поведения в различных системах, включая биологические.

Уровень техники

В биохимических и физико-химических исследованиях широко применяются меченные тритием вещества в качестве индикатора их количества. Метод введения тритиевой метки в физиологически активные соединения с помощью метода термической активации трития впервые был использован в работе [Шишков А.В., Филатов Э.С., Симонов Е.Ф. и др. // Докл. АН СССР. 1976. Т.228. С.1237-1241]. В настоящее время этот метод применяется для введения тритиевой метки в различные органические вещества. Метод был использован для введения радиоактивной метки в гуминовые вещества с равномерным распределением трития по компонентам сложной смеси молекул, входящих состав этих веществ [Бадун Г.А., Позднякова В.Ю., Чернышева М.Г., Куликова Н.А., Перминова И.В., Шмит-Копплин Ф. Способ получения меченных тритием гуминовых и гуминоподобных веществ. Патент на изобретение №2295510. Заявка №2005139586. Приоритет изобретения 19.12.2005]. Типичные условия для введения трития в молекулы веществ различных классов с помощью метода термической активации трития: температура стенок реакционного сосуда 77 К (охлаждение жидким азотом), давление газа в системе 0,5-2 Па, температура атомизатора (вольфрамовой проволоки) 1500-2000 К, время экспозиции от 10 секунд до нескольких минут.

В работах [Алдобаев В.Н., Еременко Л.А., Мазанова А.А., Пронин А.С., Бикетова Д.Х., Дядищев Н.Р., Боровик Р.В., Квачева Л.Д., Червонобродов С.П., Бурчак Г.Ф., Бадун Г.А., Тясто З.А., Чернышева М.Г. // Сб. тезисов докладов научно-технических секций международного форума по нанотехнологиям. 2008. С.314-315] и [Лисичкин Г.В. // Международ. научн. конф. «Наноструктурные материалы-2010: Беларусь-Россия-Украина». Мат.-Киев. 2010. С.538] показана принципиальная возможность введения радиоактивной метки в углеродные наноматериалы с помощью метода термической активации трития на примерах углеродных нанотрубок и наноалмазов. Также была показана принципиальная возможность использования полученных таким образом веществ в физико-химических [Мясников И.Ю. // Междун. научн. конф. студентов, аспирантов и молодых ученых «Ломоносов». 18-я. - М. 2010; Yakovlev RJu., Badun G.A, Chernysheva M.G., Selezenev N.G., Leonidov N.B. // Int. Symp.«Modern problems of surface chemistry and physics». Kyiv. Ukraine. 2010. P.439-440; M.G.Chernysheva, I.Yu. Myasnikov, G.A.Badun // Mend. Comm. 2012. V.22. P.290-291] и биохимических [Алдобаев B.H., Еременко Л.А., Мазанова А.А., Бикетова Д.Х., Дядищев Н.Р., Рыбалкин С.П., Квачева Л.Д., Бадун Г.А., Червонобродов С.П., Мурадян В.Е., Масликов А.А. // Нанотехнологии и охрана здоровья. 2011. Т.3, №2. С.16-23] исследованиях.

Описанные в прототипе [Yakovlev R.Ju., Badun G.A, Chernysheva M.G., Selezenev N.G., Leonidov N.B. // Int. Symp. «Modern problems of surface chemistry and physics». Kyiv. Ukraine. 2010. P.439-440; M.G.Chernysheva, I.Yu.Myasnikov, G.A.Badun // Mend. Comm. 2012. V.22. P.290-291] меченные тритием наноалмазы были получены при обработке атомами трития порошка алмазов. Радиоактивная метка была введена в СН-связи на поверхности наноалмаза с помощью метода термической активации трития. Удельная радиоактивность продукта составила 34 ГБк/г.

Настоящее изобретение предлагает способ получения меченных тритием наноалмазов с удельной радиоактивностью продукта не менее 1 ТБк/г с целью их визуализации в различных системах.

Раскрытие изобретения

Задачей, решаемой авторами настоящего изобретения, является разработка способа получения меченных тритием наноалмазов с высокой удельной радиоактивностью.

Технический результат настоящего изобретения заключается в повышении удельной радиоактивности меченных тритием наноалмазов с 34 ГБк/г до по крайней мере 1 ТБк/г, в частности до 2,6 ТБк/г. Предлагаемый метод позволяет получить меченный тритием наноалмаз с прочносвязанной меткой за счет того, что связывание трития происходит по связи C-H.

Указанный технический результат достигается благодаря тому, что для введения трития используют не порошок наноалмаза, а водную суспензию наноалмаза с концентрацией от 0,15 до 0,61 мг/мл и средним размером частиц не более 125 нм по данным динамического светорассеяния. Кроме того, при проведении реакции мечения часть сосуда, не содержащую наноалмазы, охлаждают до температуры 77 К, при этом стенки сосуда с нанесенными наноалмазами поддерживают при температуре 290-298 К, а атомизацию трития осуществляют короткими (до 5-15 секунд) импульсами, что обеспечивает увеличение удельной радиоактивности меченого продукта в 30-76 раз.

Поставленная задача решается тем, что способ получения меченных тритием наноалмазов методом термической активации трития включает: приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда с последующей лиофилизацией и удалением воздуха, причем упомянутый сосуд содержит установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, охлаждение дна сосуда, не содержащего наноалмазы, до температуры 77 К, при этом стенки сосуда с нанесенными наноалмазами поддерживают при температуре 290-298 К, введение газообразного трития и его активацию на вольфрамовой нити в течение 5-15 сек, удаление остаточного трития.

Также поставленная задача решается тем, что стадию введения газообразного трития и его активации повторяют от одного до восьми раз.

Частным вариантом настоящего изобретения является упомянутый выше способ, характеризующийся тем, что активацию трития на вольфрамовой нити проводят в течение 10 сек.

Также поставленная задача решается предоставлением меченных тритием наноалмазов, в которых тритий связан с наноалмазом по связи C-H, характеризующихся удельной радиоактивностью не менее 1 ТБк/г.

Частным вариантом настоящего изобретения являются упомянутые выше меченные тритием наноалмазы, характеризующиеся удельной радиоактивностью, равной 2,6 ТБк/г.

Для введения трития в наноалмазы их суспензию вносят в реакционный сосуд цилиндрической формы, равномерно распределяют по стенкам, быстро замораживают и воду удаляют лиофилизацией под вакуумом. Дальнейшие процедуры заключаются в удалении воздуха из реакционного сосуда на специальной вакуумной установке для работы с газообразным тритием. Газообразный тритий напускают в реакционный сосуд через палладиевый фильтр, очищающий тритий от гелия и других газов. Атомизацию трития проводят нагреванием вольфрамовой проволоки электрическим током до 2000 К при давлении газа 1-1,5 Па. Для увеличения радиоактивности наноалмазов реакцию прекращают через 5-15 секунд, удаляют остаточный газ, напускают новую порцию трития и повторяют процедуру метки. Обработанные тритием наноалмазы извлекают из реакционного сосуда с использованием воды при воздействии на стенки ультразвука. Полученную суспензию переносят в стеклянную колбу и через сутки растворитель удаляют с помощью роторного испарителя. Процедуру повторяют 2-3 раза, затем наноалмазы суспендируют в этаноле, переносят в пробирки, центрифугируют, отбирают супернатант и добавляют новую порцию этанола и процедуру центрифугирования повторяют еще раз. Указанные стадии очистки позволяют удалить полностью лабильную метку и радиоактивные примеси. В результате можно получить меченные тритием наноалмазы с удельной радиоактивностью от 1,0 до 2,6 ТБк/г.

Реализация предложенного изобретения описана в Примерах.

Осуществление изобретения

Пример 1. 0,4 мл водной суспензии наноалмазов с концентрацией 1,5 мг/мл (0,6 мг) со средним диаметром частиц 125 нм равномерно распределяли на стенках реакционного сосуда, замораживали и воду удаляли лиофилизацией. Реакционный сосуд присоединяли к специальной вакуумной системе для работы с газообразным тритием. Воздух из реакционного сосуда удаляли до остаточного давления 0,001 Па. Дно реакционного сосуда, не содержащее наноалмазы, охлаждали жидким азотом (77 К). Реакционный сосуд наполняли смесью водорода и трития (содержание трития 27,5%) до давления 1,3 Па. Нагревали вольфрамовую проволоку до 2000 К электрическим током в течение 10 сек. Остаточный газ откачивали из системы до давления 0,01 Па, наполняли реакционный сосуд новой порцией трития и повторяли процедуру мечения.

Обработанный атомарным тритием порошок наноалмазов суспендировали в воде под действием ультразвука и переносили в стеклянную колбу. Через 1 сутки воду отгоняли под вакуумом с помощью роторного испарителя. Добавляли новую порцию воды, через 1 сутки воду отгоняли. Всего эту процедуру повторили 3 раза. Затем наноалмазы суспендировали в этаноле с помощью обработки ультразвуком, перенесли в пробирку типа эппендорф. Через 1 сутки суспензию центрифугировали в течение 3 часов, отбирали растворитель над осадком и к остатку добавили этанол. Через 1 сутки повторили процедуру центрифугирования. На всех стадиях очистки препарата отбирали пробы суспензии и надосадочной жидкости для измерения их радиоактивности. После проведения очистки получали наноалмазы, меченные тритием, который связан по C-H связи.

Полученная величина удельной радиоактивности составила 1,0 ТБк/г (в пересчете на 100% тритий), что в 30 раз превышает величину, приведенную в прототипе.

Пример 2. Подготовку мишени наноалмазов проводили так же, как в примере 1. Процедуру мечения повторяли 8 раз. Отмывку меченного тритием препарата проводили так же, как в примере 1.

Полученная величина удельной радиоактивности составила 1,8 ТБк/г (в пересчете на 100% тритий), что в 53 раза превышает величину, приведенную в прототипе.

Пример 3. 1 мл водной суспензии наноалмазов с концентрацией 0,15 мг/мл равномерно распределяли на стенках реакционного сосуда, замораживали и лиофилизовали. Процедуру мечения и отмывки меченого препарата проводили так же, как в примере 2.

Удельная радиоактивность меченных тритием наноалмазов составила 2,6 ТБк/г (в пересчете на 100% содержания трития в используемой реакционной смеси), что в 76 раз превышает удельную радиоактивность прототипа.

1. Способ получения меченных тритием наноалмазов методом термической активации трития, включающий приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда с последующей лиофилизацией и удалением воздуха, причем упомянутый сосуд содержит установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, охлаждение дна сосуда, не содержащего наноалмазы, до температуры 77 К, при этом стенки сосуда с нанесенными наноалмазами поддерживают при температуре 290-298 К, введение газообразного трития и его активацию на вольфрамовой нити в течение 5-15 сек, удаление остаточного трития.

2. Способ по п.1, характеризующийся тем, что стадию введения газообразного трития и его активации повторяют от одного до восьми раз.

3. Способ по п.1, характеризующийся тем, что активацию трития на вольфрамовой нити проводят в течение 10 сек.

4. Меченные тритием наноалмазы, в которых тритий связан с наноалмазом по связи C-H, характеризующиеся удельной радиоактивностью не менее 1 ТБк/г.

5. Меченные тритием наноалмазы по п.4, характеризующиеся удельной радиоактивностью, равной 2,6 ТБк/г.



 

Похожие патенты:

Изобретение относится к области фармакологии, биофармации и фармацевтики и касается способа определения биологической неэквивалентности образцов наноалмазов путем сравнительного определения влияния образцов наноалмаза на мембранный потенциал митохондрий животных.

Изобретения могут быть использованы в химической и ювелирной промышленности. Алмазный материал, легированный азотом, полученный по технологии CVD, или представляющий собой монокристалл или драгоценный камень, проявляет различие абсорбционных характеристик после воздействия излучения с энергией по меньшей мере 5,5 эВ, в частности УФ-излучения, и термической обработки при температуре 798 К.
Изобретение относится к химической промышленности и может быть использовано для получения технических или ювелирных изделий. Ионы углерода с разноименными зарядами взаимодействуют между собой в течение 20-30 часов при температуре 850-950 °C в высокочастотном электрополе в диапазоне частот 40-80 кГц в присутствии железа в качестве катализатора.
Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60; связующая добавка - остальное.

Изобретение может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики и биомедицины. Способ определения угла разориентированности кристаллитов алмаза в композите алмаза включает помещение композита алмаза в резонатор спектрометра электронного парамагнитного резонанса (ЭПР), измерение спектров ЭПР азотно-вакансионного NV-дефекта в композите алмаза при разных ориентациях композита алмаза относительного внешнего магнитного поля, сравнение полученных зависимостей линий ЭПР с рассчитанными положениями линий ЭПР NV-дефекта в монокристалле алмаза в магнитном поле, определяемыми расчетным путем.
Изобретение относится к получению поликристаллического алмаза, который может быть использован при изготовлении водоструйных сопел, гравировальных резцов для глубокой печати, скрайберов, алмазных режущих инструментов, скрайбирующих роликов.

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С.

Изобретение относится к области взрывных технологий синтеза материалов, в частности алмазов. Устройство включает прочный сосуд 1 с герметичной крышкой 3, размещенную внутри сосуда смесь взрывчатого вещества с высокой удельной энергией и графитом или углеродосодержащим взрывчатым веществом с отрицательным кислородным балансом, инициирующее устройство 5, неразрушаемую цилиндрическую преграду 6 в виде трубы, размещенную соосно сосуду 1, внутри него, при этом смесь графита и взрывчатого вещества и устройство инициирования 5 помещены в центре преграды 6.

Настоящее изобретение относится к области фармакологии, наноматериалов и нанотехнологии и касается способа селективной доочистки наноалмазов от примесей нитрат-ионов и соединений, содержащих серу, которые могут использоваться в фармацевтике, заключающегося в том, что очищенный от шихты порошок наноалмаза обрабатывают водным раствором щелочи с концентрацией 0,01-1 моль/л при 20-100°C с последующей декантацией или центрифугированием образующейся суспензии, промывкой полученного осадка водой с применением ультразвуковой обработки, его отделением и сушкой.

Изобретение относится к дроблению алмазов при изготовлении алмазного породоразрушающего инструмента. .

Изобретение относится к области фармакологии, биофармации и фармацевтики и касается способа определения биологической неэквивалентности образцов наноалмазов путем сравнительного определения влияния образцов наноалмаза на мембранный потенциал митохондрий животных.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели.

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно вакуумируют, продувают аргоном в течение 10-12 мин и нагревают до 900-1150 °С.
Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных.
Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра.

Изобретение относится к медицине, а именно к урогинекологии. Устройство выполнено в виде кольцевого элемента из силиконовой резины с содержанием 2-4 мас.ч.

Изобретение относится к композиционным лакокрасочным материалам для антикоррозионной защиты металлоконструкций в агрессивных средах. Антикоррозионный лакокрасочный материал включает многослойные углеродные нанотрубки от 0,2 до 2 мас.%, эпоксидное связующее от 38,1 до 54,9 мас.%, отвердитель от 5,8 до 10 мас.%, в качестве наполнителя антикоррозийную добавку, дизаэрирующую добавку и сиккатив от 2,3 до 4,7 мас.%, 2-этоксиэтанол до 100 мас.%.

Изобретение относится к производству композиционного материала. Композиционный материал содержит металлический компонент металлической матрицы (201, 211) и расположенный в металлической матрице (201, 211) армирующий компонент (202) и дополнительный армирующий компонент.

Изобретение относится к композиционному наноматериалу для химических источников тока, состоящему из порошка оксидов сложного состава, смешанного с электропроводной углеродной добавкой и связующим.

Изобретение относится к способу получения углеродных нановолокон и/или углеродных нанотрубок. Способ включает пиролиз дисперсного целлюлозного и/или углеводного субстрата, импрегнированного соединением элемента или элементов, металл или сплав которых, соответственно, способен образовывать карбиды, в по существу свободной от кислорода атмосфере, содержащей летучее соединение кремния, необязательно в присутствии соединения углерода.
Наверх