Способ получения гранулированного сорбента


 


Владельцы патента RU 2552449:

Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) (RU)

Изобретение относится к решению проблем охраны окружающей среды. Способ получения гранулированного сорбента заключается в том, что отходы ОГЖ в дисперсном состоянии подвергают высушиванию и суспендируют в грануляторе с мешалкой и внутренним оребрением со скоростью 300-2000 оборотов в течение 5-10 минут в аполярной среде с добавлением полярного водного раствора полимера до получения гранул, которые затем отфильтровывают и сушат при температуре от 20 до 100°C. В качестве полярного водного раствора полимера используют поливиниловый спирт в количестве 0,3 до 0,5 мас.%. В качестве аполярной среды используют нонан, или октан, или нефрас, или четыреххлористый углерод, взятые с дисперсным порошком оксид-гидроксида железа в соотношении не менее 5:1 соответственно. Изобретение позволяет получить не уплотняющийся в процессе эксплуатации гранулированный сорбент на основе ОГЖ с высокой сорбционной способностью по отношению к нефтепродуктам и фенолу и с повышенной механической прочностью. 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к решению проблем охраны окружающей среды и касается утилизации отходов оксигидроксида железа (ОГЖ), выделенного на водозаборах при обезжелезивании артезианской воды, и получения на его основе гранулированного сорбента, пригодного для очистки водных сред от нефтепродуктов и фенола.

Известен способ получения гранулированного комбинированного наноструктурированного сорбента на основе глауконита и фуллеренсодержащего шунгита (пат. №2482911), включающий смешивание исходных компонентов с последующим добавлением связующего, испарение влаги до образования пластической массы, гранулирование массы, термическую обработку гранул с последующим их охлаждением. Недостатком известного способа является сложность технологического процесса, а также относительно низкая сорбционная способность, обусловленная добавлением в качестве связующего бентонитовой муки, необходимой для гранулированию сорбента.

Наиболее близким к предложенному изобретению является способ получения адсорбента комплексного действия (пат. №2343971 от 20.01.2009 г.), включающий смешивание сферозолы с осадком оксид-гидроксида железа (ОГЖ), выделенным на станциях обезжелезивания подземных вод и подвергутым термической обработке при температуре 180-350°C в течение 4-5 часов. Недостатком данного адсорбента является то, что ОГЖ используется в дисперсном состоянии и при фильтрации происходит, во-первых, уплотнение осадка и образование пробки, затрудняющей фильтрование, и, во-вторых, дисперсный ОГЖ вымывается и нарушается состав фильтрующей системы, приводящей к ухудшению адсорбционных свойств двухкомпонентного адсорбента.

В основу предлагаемого изобретения положена техническая задача, заключающаяся в разработке способа получения не уплотняющегося в процессе эксплуатации гранулированного сорбента на основе ОГЖ, выделенного из отходов станций обезжелезивания подземных вод с высокой сорбционной способностью по отношению к нефтепродуктам и фенолу и с повышенной механической прочностью.

Поставленная задача достигается тем, что отходы ОГЖ в дисперсном состоянии (размер частиц 30-50 нм) подвергают высушиванию и суспендируют в грануляторе с мешалкой и внутренним оребрением со скоростью 300-2000 оборотов в течение 5-10 минут в аполярной среде с добавлением полярного водного раствора полимера до получения гранул, которые затем отфильтровывают и сушат при температуре от 20 до 100°C.

В качестве полярного водного раствора полимера используют поливиниловый спирт (ПВС) в количестве 0,3 до 0,5 мас.%. ПВС придает гранулам повышенную механическую прочность, что не дает возвожности гранулам раскрашиваться при длительной эксплуатации. В качестве аполярной среды используют нонан, или октан, или нефрас, или четыреххлористый углерод, взятые с дисперсным порошком оксид-гидроксида железа в соотношении не менее 5:1 соответственно.

Пример 1

К навеске дисперсного порошка ОГЖ в количестве 30 грамм (71,4 мас.%), высушенного при температуре 250°C, добавляют 18 мл 1% водного раствора ПВС (0,5 мас.%) и диспергируют в аполярной дисперсионной среде, в качестве которой используют нефрас в количестве 500 мл при перемешивании мешалкой со скоростью 300 об/мин в течение 10 мин. Полученные гранулы размером 0,2-4,5 мм отфильтровывают, сушат при температуре 100°C. Полученные результаты по сорбционной способности в отношении к нефтепродуктам и фенолу представлены в таблице.

Пример 2

К навеске дисперсного порошка ОГЖ в количестве 20 грамм (60,4 мас.%) высушенного при температуре 250°C, добавляют 13 мл 1% водного раствора ПВС (0,3 мас.%) и диспергируют в аполярной дисперсионной среде, в качестве которой используют нонан в количестве 300 мл при перемешивании мешалкой со скоростью 1000 об/мин в течение 7 мин. Полученные гранулы размером 0,2-4,5 мм отфильтровывают, сушат при температуре 50°C. Полученные результаты по сорбционной способности в отношении к нефтепродуктам и фенолу представлены в таблице.

Пример 3

К навеске дисперсного порошка ОГЖ в количестве 30 грамм (58,6 мас.%) высушенного при температуре 250°C, добавляют 21 мл 1% водного раствора ПВС (0,4 мас.%) и диспергируют в аполярной дисперсионной среде, в качестве которой используют октан в количестве 300 мл при перемешивании мешалкой со скоростью 350 об/мин в течение 10 мин. Полученные гранулы размером 0,2-4,5 мм отфильтровывают, сушат при температуре 70°C. Полученные результаты по сорбционной способности в отношении к нефтепродуктам и фенолу представлены в таблице.

Пример 4

К навеске дисперсного порошка ОГЖ в количестве 90 грамм (90 мас.%) высушенного при температуре 25°C, добавляют 10 мл 5% водного раствора ПВС (0,5 мас.%) и диспергируют в аполярной дисперсионной среде, в качестве которой используют четыреххлористый углерод в количестве 500 мл при перемешивании мешалкой со скоростью 2000 об/мин в течение 5 мин. Полученные гранулы размером 0,2-4,5 мм отфильтровывают, сушат при температуре 20°С. Полученные результаты по сорбционной способности в отношении к нефтепродуктам и фенолу представлены в таблице.

Таблица
Пример Аполярная среда, мл ОГЖ, г Температура сушки ОГЖ, °C Раствор ПВС Размер гранул, мм Прочность гранул, МПа Степень извлечения в статических условиях, %
мл Концентрация, % НП фенол
1 Нефрас, 500 30 250 18 1 0,2-4,5 0,45-0,79 90 91
2 Нонан,300 20 250 13 1 0,2-4,5 0,4-1,6 90 92
3 Октан,300 30 250 21 1 0,2-4,5 0,37-0,69 90 92
4 Четыреххлористый углерод, 500 90 25 10 5 0,2-2,5 0,78-1,51 90 90

1. Способ получения гранулированного сорбента, включающий высушивание дисперсного порошка оксид-гидроксида железа, в качестве которого используют осадок, выделенный из подземных вод на станциях обезжелезивания, отличающийся тем, что дисперсный порошок суспендируют в аполярной среде с добавлением полярного водного раствора полимера путем перемешивания мешалкой со скоростью 300-2000 оборотов в минуту в течение 5-10 мин до получения гранул.

2. Способ по п.1, отличающийся тем, что в качестве полярного водного раствора полимера используют поливиниловый спирт в количестве 0,3 до 0,5 мас.%.

3. Способ по п.1, отличающийся тем, что в качестве аполярной среды используют нонан, или октан, или нефрас, или четыреххлористый углерод, взятые с дисперсным порошком оксид-гидроксида железа в соотношении не менее 5:1 соответственно.

4. Способ по п.1, отличающийся тем, что полученные гранулы отфильтровывают и сушат при температуре от 20 до 100°C.



 

Похожие патенты:

Группа изобретений относится к сорбентам и их применению. Сорбент анионов сурьмы содержит частицы или гранулы оксида циркония и характеризуется коэффициентом распределения анионов сурьмы, по меньшей мере, 10000 мл/г при рН в диапазоне от 2 до 10, причем указанные частицы имеют средний размер от 10 нм до 100 мкм, для которых скорость потока составляет от 100 до 10000 объемов слоя в час и указанные гранулы имеют средний размер от 0,1 до 2 мм, для которых скорость потока составляет от 10 до 50 объемов слоя в час.

Изобретение относится к области получения ферромагнитных углеродных сорбентов, предназначенных для очистки вод. Целлюлозосодержащее сырье пропитывают водным раствором соли железа, отделяют избыток влаги и полученную смесь подвергают пиролизу.
Изобретение относится к технологии получения магнитных сорбентов. Сорбент содержит полимерное связующее в виде гуминовых кислот и магнитный наполнитель-магнетит.

Изобретение относится к материалам для адсорбционной сероочистки углеводородных топлив. Предложен адсорбент для удаления сераорганических соединений из жидкого углеводородного топлива на основе γ-оксида алюминия, модифицированного оксидом цинка в количестве 0,1-10% масс.
Изобретение относится к биотехнологии и медицине, в частности, может быть использовано для сорбции аэробных микроорганизмов при изготовлении стерильных растворов, очистке воды или нефтезагрязненных почв, а также при лечении различных ран.
Изобретение относится к получению адсорбента для удаления сероводорода из газообразных потоков. Предложен адсорбент, состоящий из смеси железомарганцевых конкреций, гамма-оксида алюминия и поливинилового спирта.
Группа изобретений относится к десульфуризации углеводородов. Способ включает стадии: (i) пропускание смеси углеводорода и водорода через катализатор десульфуризации с превращением сероорганических соединений, присутствующих в указанном углеводороде, в сульфид водорода, (ii) пропускание полученной смеси через сорбент сульфида водорода, содержащий оксид цинка, со снижением содержания сульфида водорода в смеси, и (iii) пропускание газовой смеси, обедненной сульфидом водорода, через дополнительный десульфуризующий материал.

Изобретение предназначено для нефтяной и газовой промышленности, относится к сорбентам для очистки газов, в том числе попутных нефтяных газов (ПНГ), от сероводорода и может быть использовано при подготовке попутного нефтяного газа к потреблению.

Изобретение предназначено для нефтяной и газовой промышленности, относится к сорбентам для очистки газов, в том числе попутных нефтяных газов (ПНГ) от сероводорода и может быть использовано при подготовке попутного нефтяного газа к потреблению.
Сорбент // 2536989
Группа изобретений относится к сорбционному удалению ртути и мышьяка из текучих сред. Предложен способ получения композиции сорбента, включающий нанесение слоя соединения меди на поверхность подложки путем окунания подложки или распыления на подложку суспензии основного карбоната меди и сушку материала подложки с нанесенным покрытием.

Изобретение относится к фотокаталитическим материалам с адсорбционными и антибактериальными свойствами. Материал содержит текстильную целлюлозосодержащую основу, фотокаталитический слой, представляющий собой комплекс из диоксида кремния, модифицированного алюминат-ионами, и диоксида титана анатазной модификации, и слой адсорбента из оксида алюминия бемитной структуры, который расположен между фотокаталитическим слоем и текстильной основой. Изобретение обеспечивает повышенную адсорбционную способность к полярным и неполярным химическим соединениям и хорошие фотокаталитические и антибактериальные свойства материала. 3 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области получения самоочищающегося тканевого материала, обладающего фотокаталитической активностью под действием ультрафиолетового и видимого излучения и предназначенного для фотокаталитической деструкции опасных органических и неорганических веществ и макромолекул. Способ получения материала включает пропитку отмытой и высушенной тканевой основы водным золем диоксида кремния, сушку на воздухе, промывку дистиллированной водой и повторно сушку. Затем осуществляют пропитку ткани с нанесенным диоксидом кремния раствором сульфата титанила и проводят погружение в водную суспензию фотокатализатора на основе нанокристаллического диоксида титана при обработке ультразвуком. Полученный материал сушат на воздухе, промывают водой и окончательно высушивают. Изобретение обеспечивает получение материала, эффективного для адсорбционной очистки газовых и водных сред, загрязненных органическими и неорганическими веществами, с последующей самоочисткой путем фотокаталитической деструкции. 9 з.п. ф-лы, 1 ил., 3 табл.,10 пр.

Изобретение относится к области неорганической химии. Предложен продукт в виде агломератов оксигидроксидов металлов, выбранных из группы, состоящей из Al, Fe, Mg, Ti или их смеси. Агломераты образованы множеством элементов, имеющих размеры от 200 до 500 нм и представляющих собой низкоразмерные складчатые структуры, имеющие складки и грани неправильной формы. Структуры обладают локально высоким уровнем напряженности электрического поля на упомянутых складках, гранях и ребрах граней, составляющим 106-107 В/м. Изобретение обеспечивает получение агломератов оксигидратов, которые могут быть использованы в качестве сорбентов или в качестве средства, обладающего ранозаживляющей и антибактериальной активностью, а также для угнетения пролиферативной активности опухолевых клеток. 4 н. и 10 з.п. ф-лы, 12 ил., 5 табл., 11 пр.

Изобретение относится к области разработки материалов, обладающих фотокаталитической активностью под действием ультрафиолетового и видимого излучения. Материал представляет собой структурно-организованную систему, состоящую из тканевой основы, на которую нанесен промежуточный слой диоксида кремния и наружный слой фотокаталитически активного нанокристаллического диоксида титана анатазной модификации. Изобретение обеспечивает эффективную адсорбционную очистку газовых и водных сред с возможностью последующей самоочистки путем деструкции накопленных загрязнителей под действием ультрафиолетового и видимого излучения до безвредных компонентов. 1 з.п. ф-лы, 2 ил., 3 табл., 10 пр.

Изобретение относится к области химической технологии и может быть использовано при получении сорбентов сернистых соединений, входящих в состав углеводородных газов и нефтяных фракций. Сорбент включает 37,5-60,0 мас.% оксида цинка, нанесенного на носитель, представляющий собой мезопористый оксид кремния, имеет удельную поверхность 160-790 м2/г с суммарным объемом пор 0,4-1,3 см3/г. Носитель получают из композиций двух составов. Одна из композиций содержит компоненты в мольном соотношении равном 1,0 SiO2 : 0,25 СТАВr : 0,2 ТЭАОН : 40,0 H2O, другая композиция содержит 1,0 ТЭОС : 0,01-0,02 Pluronic F-127 : 5,0-7,0 HCl : 150-250 H2O. Нанесение соединения цинка проводят пропиткой из раствора ацетата цинка или из раствора хлорида цинка в присутствии мочевины. Изобретение обеспечивает повышение эффективности поглощения сероводорода полученным сорбентом за счёт высокой дисперсности активного компонента и пониженного сопротивления газовому потоку. 3 н. и 3 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к сорбционно-фильтрующим материалам и может быть использовано при очистке хозяйственно-питьевых и промышленных сточных вод предприятий различных отраслей промышленности. Зернистый природный материал содержит на поверхности каталитически активный слой, состоящий из смеси Мn2O3, МnО2 и Fe(OH)2 при их массовом соотношении (2-2,5):(5-5,5):(0,5-0,7). Каталитически активный слой закреплён на поверхности фильтрующего путем обработки натрием серноватистокислым. Изобретение обеспечивает получение эффективного материала, пригодного для очистки воды от железа. 4 табл., 2 пр.

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной оболочкой путем гидролитического синтеза включает обработку раствора соли железа (III) раствором аммиака при рН=10 с последующей пептизацией полученного осадка Fe(OH)3 соляной кислотой при рН=9 и температуре 90-95°C. К полученному коллоидному раствору добавляют раствор силиката натрия со скоростью 5-50 ммоль/л·час. Образовавшиеся дисперсные частицы осаждают смесью силиката и хлорида натрия. Затем добавляют раствор силиката натрия, поддерживая значение рН=8 добавлением соляной кислоты. Реакционную смесь с осадком доводят до значения рН=5 и выдерживают температуре 95-100°C в течение 1-5 часов. Отделяют осадок на фильтре, промывают и подвергают термообработке при 100-800°C. Изобретение позволяет расширить диапазон сорбционных и магнитных свойств получаемого материала, повысить экологическую безопасность при одновременном упрощении технологии. 2 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода. Способ включает взаимодействие соли циркония и вещества, образующего гидроксид циркония с добавлением карбоната аммония и перекиси водорода. В качестве вещества, образующего гидроксид циркония, используют оксид цинка, в качестве соли циркония используют основной карбонат циркония, а в качестве связующего используют смесь поливинилового спирта с акриловым лаком в соотношении 1:1. Изобретение позволяет увеличить динамическую активность поглотителя по диоксиду углерода и повысить прочность гранул поглотителя. 1 табл., 8 пр.
Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода (CO2) в составе отходящих газов теплоэнергетических установок, химических и металлургических производств, в биогазе. Изобретение может быть использовано в металлургической, химической отраслях промышленности. Адсорбент для улавливания, концентрирования и хранения диоксида углерода представляет собой носитель - мезопористый сверхсшитый полистирол с удельной поверхностью 1300-1700 м2/г, модифицированный оксидом цинка в количестве 1-1,5 г ZnO на 1 г носителя. Адсорбционная емкость адсорбента составляет 30-31 вес.%. Технический результат - создание модифицированного адсорбента, который более чем в 2 раза по характеристикам емкости по CO2 превосходит известные адсорбенты данного назначения и характеризуется при этом более низкой (150°C) температурой десорбции CO2 (регенерации). 2 пр.
Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур IRMOF-3, MOF-177, HKUST-1 (MOF-199), ZIF-8, MIL-100, MOF-200, MOF-210, MIL-101 или MIL-53. Выбранную основу обрабатывают водным раствором соли цинка и подвергают нагреванию в атмосфере инертного газа до формирования модифицирующей добавки в виде оксида цинка. Содержание модифицирующей добавки в структуре составляет 1-1,5 г ZnO на 1 г металлорганической каркасной структуры. Техническим результатом изобретения является создание модифицированного адсорбента, который в 2 раза по емкости по CO2 при атмосферном давлении превосходит известные адсорбенты. 9 пр.
Наверх