Способ получения бис(2-гидроксифенил)ового эфира олигоэтиленгликоля в виде моногидрата

Изобретение относится к способу получения бис(2-гидрокси-фенил)ового эфира олигоэтиленгликоля в виде моногидрата - промежуточного продукта для синтеза симметричного и несимметричного дибензо-краун-эфиров, которые используют в качестве селективного экстрагента катионов различных металлов, в том числе радиоактивных, а также в различных областях химии, техники, биологии и медицины. Способ заключается во взаимодействии избытка пирокатехина с дихлорзамещенным олигоэтиленгликолем в присутствии щелочного агента в среде органического растворителя при нагревании. При этом в качестве щелочного агента используют гидроксид натрия, в качестве органического растворителя - ДМФА, а процесс ведут при температуре 100-105°С в присутствии катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного. Предлагаемый способ позволяет получить целевые продукты с высоким выходом при значительном упрощении аппаратурного оформления процесса. 7 пр.

 

Изобретение относится к способу получения бис(2-гидрокси-фенил)ового эфира олигоэтиленгликоля формулы 3, промежуточного продукта для синтеза симметричного и несимметричного дибензо-краун-эфиров. Последние находят применение в качестве селективного экстрагента различных катионов металлов, в том числе радиоактивных [Успехи химии, 2000, т.69, №9, с. 769-782].

Описан метод получения соединения формулы 3b,с в две стадии - на первой стадии из монобензилового эфира пирокатехина и дитозилзамещенного олигоэтиленгликоля синтезируют монобензиловый эфир соединения 3b,с, который на второй стадии восстанавливают водородом на Pd-C до соединения 3b,с. Выход составляет 73-74% [J. Chem. Soc. Perkin Trans. II, 1985, р. 607-624]. Недостатком данного способа является сложное аппаратурное оформление процесса.

Описан способ получения соединения формулы 3а-с по реакции Вильямсона [патент РФ №1047917] в одну стадию - взаимодействием эквимолярных количеств пирокатехина 1 и хлорпроизводного олигоэтиленгликоля 2а-с в воде в присутствии щелочи при температуре 95-103°С. Для предотвращения образования побочных продуктов процесс ведут в токе инертного газа. По окончании реакции (продолжительность реакции не указана) целевой продукт очищают хроматографически на оксиде алюминия, а затем перегоняют в вакууме (выход соединений формулы 3а-с не указан). Недостатками данного способа являются сложное аппаратурное оформление процесса и двухстадийная очистка целевых продуктов.

Известен метод синтеза соединения 3а нагреванием пирокатехина 1 и 1,5-дихлор-3-оксапентана (β,β′-дихлорэтилового эфира) 2а в смеси абсолютных метанола и бутанола в присутствии метилата натрия в токе инертного газа с выходом 34% в виде кристаллогидрата [ЖОрХ, 1978, т.14, вып.10, с. 2228]. В патенте РФ №2479567 взаимодействие пирокатехина 1 и 1,5-дихлор-3-оксапентана 2а осуществляют в этаноле при кипении в присутствии воды, с использованием в качестве основания гидроксида натрия, а в качестве катализатора Ν,Ν,Ν-триэтилбензиламмоний хлорид. Время реакции 24 часа. Соединение 3а выделяют экстрагированием технического продукта гексаном. Выход целевого соединения 3а составляет 51%. Недостатками данных способов являются необходимость использования инертного газа, значительная длительность процесса, сложность выделения, и низкий выход целевого продукта 3а.

В патенте РФ №2483055, который выбран в качестве прототипа, описан способ получения 1,5-бис(2-гидроксифенокси)-3-оксапентана 3а взаимодействием пирокатехина 1 с 1,5-дихлор-3-оксапентаном 2а в токе инертного газа в среде глицерина и в присутствии карбоната калия при 145-150°С. Предварительно пирокатехин при интенсивном перемешивании обрабатывают карбонатом натрия в среде глицерина в токе инертного газа при температуре 60-80°С для получения мононатриевой соли пирокатехина (время образования соли не указано). Затем температуру реакции повышают до 145-150°С и в течение 2 часов прибавляют 1,5-дихлор-3-оксапентан 2а. Технический продукт высаживают водой, очищают путем его превращения в калиевую соль (обработка спиртового раствора 3а водным раствором КОН) с последующей ее нейтрализацией (обработка раствором НСl). Выход продукта 3а в виде моногидрата составляет 82.5%. К основным недостаткам этого метода следует отнести необходимость использования инертного газа, сложную очистку целевого продукта, а также использование гигроскопичного глицерина как органического растворителя. Кроме того, нагревание реакционной массы до 145-150°С может способствовать увеличению количества побочных продуктов.

С целью создания способа получения, который сочетал бы экологическую безопасность и возможность его промышленного использования, предлагается новый способ получения соединений 3а-с, отличающийся использованием гетерогенного катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного.

Новый способ получения бис(2-гидрокси-фенил)овых эфиров олигоэтиленгликолей 3а-с осуществляют путем взаимодействия пирокатехина 1 с дихлорзамещенным олигоэтиленгликолем 2а-с в присутствии щелочного агента и катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного, в среде ДМФА при одновременном добавлении хлорекса при температуре 70°С, дальнейшего нагревания реакционной массы в течение 4-6 часов при 100-105°С с последующим подкислением реакционной массы до рН 3 и высаживанием готового продукта 3а-с водой. Выходы продуктов 3а-с составляют 46.4-85.0%.

Предлагаемый способ отличается от способа-прототипа использованием гетерогенного катализатора - оксида металла или элемента, что значительно повышает хемоселективность процесса.

В работе [Изв. АН Сер. Хим., 2010, №11, с. 2068-2071] показано, что использование наноразмерных оксидов металлов значительно повышает хемоселективность реакции Вильямсона с участием ароматических альдегидов или кетонов и хлорпроизводного олигоэтиленгликоля 2а-с. Это происходит за счет особых свойств нанооксидов - развитой поверхности и наличия активных центров различной природы. Сорбция реагентов способствует их активации и прохождению реакции в нужном направлении, а также ингибированию побочных процессов [Кинетика и катализ, 2010, №4, с. 590-596]. Использование этого явления в заявляемом изобретении позволяет достичь технического результата, заключающегося в увеличении хемоселективности реакции, что выражается в увеличении выхода целевого соединения, а также значительном упрощении аппаратурного оформления процесса.

В предлагаемом способе исходный пирокатехин, так же как и в прототипе, берется в избытке 6-10%, реакция ведется в присутствии гидроксида натрия (щелочного агента), а дихлорзамещенный олигоэтиленгликоль 2а-с вводится в один прием. Основными отличиями от прототипа являются использование в качестве растворителя ДМФА и гетерогенного катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного, что позволяет смягчить условия реакции - снизить температуру реакции, отказаться от использования инертного газа, а также упростить выделение и очистку целевого продукта. Реакционную массу разбавляют водой, подкисляют до рН 3, готовый продукт 3а-с отфильтровывают, промывают водой и сушат. Получают чистое соединение 3а-с в виде моногидрата с выходом 46.4-85% (2а - 85%, 2b - 62%, 2с - 46.4%). Содержание основного вещества в соединении 3а-с составляет более 99% по данным газожидкостной хроматографии. Физико-химические свойства соединения 3а-с соответствуют литературным данным. Изобретение иллюстрируется следующими примерами.

Пример 1. В реактор загружают 150 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 4.07 г (0.5 ммоль) наноразмерного ZnO, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана (β,β′-дихлорэтилового эфира) 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 85.0%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 2. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 2.02 г (0.5 ммоль) наноразмерного MgO, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 85.0%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 3. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина и 8.8 г (2.20 моль) гидроксида натрия и 1.40 г (0.5 ммоль) наноразмерного SiO2, реакционную массу перемешивают при температуре 60-70°С до образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 14.30 г (1.0 ммоль) 1,5-дихлор-3-оксапентана 2а, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 26.21 г чистого 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата 3а с выходом 84.8%, считая на 1,5-дихлор-3-оксапентан 2а.

Пример 4. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2.20 моль) гидроксида натрия и 5.10 г (0.5 ммоль) наноразмерного Al2O3, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 18.70 г (1.0 ммоль) 1,8-дихлор-3,6-диоксаоктана 2b, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 21.84 г чистого 1,8-бис(2-гидроксифенокси)-3,6-диоксаоктана моногидрата 3b с выходом 62.0%, считая на 1,8-дихлор-3,6-диоксаоктан 2b.

Пример 5. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2.20 моль) гидроксида натрия и 7.77 г (0.5 ммоль) наноразмерного ВаО, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 18.70 г (1.0 ммоль) 1,8-дихлор-3,6-диоксаоктана 2b, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 21.84 г чистого 1,8-бис(2-гидроксифенокси)-3,6-диоксаоктана моногидрата 3b с выходом 62.0%, считая на 1,8-дихлор-3,6-диоксаоктан 2b.

Пример 6. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2,20 моль) гидроксида натрия и 2.39 г (0.5 ммоль) ТiO2, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 23.10 г (1.0 ммоль) 1,11-дихлор-3,6,9-триоксаундекана 2с, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 15.85 г чистого 1,11-бис(2-гидроксифенокси)-3,6,9-триоксаундекана моногидрата 3с с выходом 46.0%, считая на 1,11-дихлор-3,6,9-триоксаундекан 2с.

Пример 7. В реактор загружают 80 мл ДМФА, 23.56 г (2.14 ммоль) пирокатехина, 8.8 г (2,20 моль) гидроксида натрия и 3.98 г (0.5 ммоль) наноразмерного СuО, реакционную массу перемешивают при температуре 60-70°С до завершения образования мононатриевой соли пирокатехина (30 мин). После чего добавляют 23.10 г (1.0 ммоль) 1,11-дихлор-3,6,9-триоксаундекана 2с, температуру реакционной массы поднимают до 100-105°С и продолжают интенсивно перемешивать в течение 4-6 часов. Реакционную массу охлаждают, фильтруют от катализатора, разбавляют водой (300 мл), подкисляют НСl до рН 3. Выделившийся осадок отделяют фильтрованием, промывают тремя порциями дистиллированной воды по 50 мл и сушат на воздухе. Получают 15.85 г чистого 1,11-бис(2-гидроксифенокси)-3,6,9-триоксаундекана моногидрата 3с с выходом 46.4%, считая на 1,11-дихлор-3,6,9-триоксаундекан 2с.

Способ получения бис(2-гидроксифенил)ового эфира олигоэтиленгликоля в виде моногидрата взаимодействием избытка пирокатехина с дихлорзамещенным олигоэтиленгликолем в присутствии щелочного агента в среде органического растворителя при нагревании, отличающийся тем, что в качестве щелочного агента используют гидроксид натрия, в качестве органического растворителя - ДМФА, а процесс ведут при температуре 100-105°С в присутствии катализатора - оксида кремния или оксида металла (амфотерного или основного), преимущественно наноразмерного.



 

Похожие патенты:

Изобретение относится к новым соединениям формулы I, в которой R1 и R2 являются одинаковыми или разными и выбраны из алкильной или алкенильной углеводородной цепи, значения группы R3, которая отщепляется липазой, определены в формуле изобретения.
Изобретение относится к области химико-фармацевтической и пищевой промышленности. Предложен каталитический способ синтеза восстановленной формы коэнзима Q10 (убихинола), который может быть использован для экспрессного получения убихинола и создания на его основе различных фармацевтических композиций и биологически активных добавок к пище, обладающих антиоксидантной и антигипоксантной активностью.

Настоящее изобретение относится к новым соединениям структурной формулы где R1=Cl, R2, R3, R4, R5=H O-(2,3-дигидроксипроп-1-ил)-2-хлорфенол; R3=Cl, R1, R2, R4, R5=H O-(2,3-дигидроксипроп-1-ил)-4-хлорфенол; R1, R4=Cl, R2, R3, R5=H O-(2,3-дигидроксипроп-1-ил)-2,5-дихлорфенол; R1=CH3, R3=Cl, R2, R4, R5=H O-(2,3-дигидроксипроп-1-ил)-2-метил-4-хлорфенол; R1, R3 ,R5=Cl, R2, R4=H O-(2,3-дигидроксипроп-1-ил)-2,4,6-трихлорфенол; R1, R3, R4=Cl, R2, R5=H O-(2,3-дигидроксипроп-1-ил)-2,4,5-трихлорфенол, применяемым для борьбы с сорными растениями семейства Злаковые.

Предлагаются соединения общей формулы I, где значения радикалов указаны в описании, обладающие ингибирующим действием на натрий-зависимый котранспортер глюкозы SGLT.
Изобретение относится к способу получения бис-2-гидроксиэтилового эфира 4,4'-диоксидифенил-2,2-пропана, который может быть использован для модификации полиэфирных волокон, а также при производстве поликарбонатов.
Изобретение относится к способу получения 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата, являющегося промежуточным продуктом при синтезе краун-эфиров, которые обладают комплексообразующими и сольватирующими свойствами и широко применяются в различных областях химии, техники, биологии и медицины.
Изобретение относится к области синтеза бис-[ -(2-оксифеноксиэтил)]оксида, который может быть использован в качестве полупродукта для синтеза фармацевтических препаратов.

Изобретение относится к новым этоксикомбретастатинам формулы (I), обладающим противораковой активностью, к фармацевтической композиции, содержащей предлагаемые соединения, а также к способам получения некоторых из предлагаемых соединений.

Изобретение относится к способу получения 2,6-ди-трет-бутил-4-метоксиметилфенола, являющегося неокрашивающим антиоксидантом полимерных материалов, смазочных масел, а также исходным сырьем для синтеза высокоэффективных многоядерных стабилизаторов.

Предлагаемое изобретение относится к способу получения диметилового эфира, который используют в газовых приборах бытового назначения и как пропеллент для аэрозолей, методом одностадийного синтеза и его выделения.

Изобретение относится к способу получения диметилового эфира из синтез-газа и может быть использовано в нефтехимической промышленности. Способ заключается в каталитической конверсии синтез-газа в реакторе синтеза диметилового эфира с получением смеси продуктов, содержащей диметиловый эфир, метанол, двуокись углерода и непрореагировавший синтез-газ, с последующим ее разделением и получением целевого продукта конденсацией из газовой фазы.

Изобретение относится к получению синтетических видов топлива. Изобретение касается способа, в котором на первой стадии способа содержащую водяной пар и оксигенаты, такие как метанол и/или диметиловый эфир, исходную смесь на катализаторе превращают в олефипы, эту олефиновую смесь в разделительном устройстве разделяют на богатый C1-C4-углеводородами поток и богатый C5+-углероводородами поток.

Изобретение относится к новым соединениям общей формулы , где R=CH3(CH3)CHCH2CH2-, CH3CH=CHCH2-, , которые обладают акарицидной активностью. Изобретение относится также к способу их получения, который заключается во взаимодействии соответствующих спиртов с четвертичными терпениламмониевыми солями, такими как N-(2,7-диметил-2,7-октадиен-1-ил)аллилдиэтиламмоний бромид, N-(2,7-диметил-2,7-октадиен-1-ил)аллилпиперидиний бромид и N-(2,7-диметил-2,7-октадиен-1-ил)метилдиэтиламмоний йодид, в присутствии NaOH.
Изобретение относится к способу получения 1,5-бис(2-гидроксифенокси)-3-оксапентана моногидрата, являющегося промежуточным продуктом при синтезе краун-эфиров, которые обладают комплексообразующими и сольватирующими свойствами и широко применяются в различных областях химии, техники, биологии и медицины.

Изобретение относится к масляной среде, пригодной для получения диметилового эфира и/или метанола, используемой для реакции синтеза в процессе реакции с суспензионным слоем в качестве среды, содержащей в качестве основного компонента разветвленный насыщенный алифатический углеводород, содержащий 16-50 атомов углерода, 1-7 третичных атомов углерода, 0 четвертичных атомов углерода и 1-16 атомов углерода в разветвленных цепях, связанных с третичными атомами углерода; причем, по меньшей мере, один третичный атом углерода связан с углеводородными цепочками длиной 4 или более атомов углерода, расположенными в трех направлениях.

Изобретение относится к способу получения 1-фенокси-2,2-дихлорциклопропана, который относится к производным циклопропана, проявляющим высокую физиологическую активность.

Изобретение относится к каталитически активному телу для синтеза простого диметилового эфира из синтез-газа. Описано каталитически активное тело для синтеза простого диметилового эфира из синтез-газа, состоящее из: (A) 70-90 мас.% метанолактивного компонента, выбранного из группы, состоящей из оксида меди, оксида алюминия, оксида цинка, аморфного оксида алюминия, тройного оксида или их смесей, (B) 10-30 мас.% кислотного компонента, выбранного из группы, состоящей из алюмосиликата, γ-оксида алюминия и цеолита или их смесей, причем сумма компонентов (А) и (В) составляет в целом 100 мас.% и причем компонент (А) имеет распределение по размерам частиц, характеризуемое значением D-10, равным 5-140 мкм, значением D-50, равным 40-300 мкм, и значением D-90, равным 180-800 мкм, причем компонент (В) имеет распределение по размерам частиц, характеризуемое значением D-10, равным 5-140 мкм, значением D-50, равным 40-300 мкм, и значением D-90, равным 180-800 мкм, и распределение по размерам частиц компонентов (А) и (В) поддерживается в каталитически активном теле. Раскрыт способ получения каталитически активного тела, включающий стадию: с) получения физической смеси, содержащей вышеописанные компоненты (A) и (B). Также раскрыт способ получения простого диметилового эфира из синтез-газа, включающий по меньшей мере стадии: e) восстановления каталитически активного тела, f) контакта каталитически активного тела в восстановленной форме с водородом и по меньшей мере одним из монооксида углерода или диоксида углерода. Применяется каталитически активное тело для получения простого диметилового эфира. Технический результат – получение каталитически активного тела, которое показывает способность преобразования обогащенного CO синтез-газа селективно в простой диметиловый эфир и CO2, посредством чего выход простого диметилового эфира увеличивается. 4 н. и 8 з.п. ф-лы, 2 табл., 3 пр.
Наверх