Способ прогнозирования качества эмбрионов в программах вспомогательных репродуктивных технологий с учетом генотипа пациенток



Способ прогнозирования качества эмбрионов в программах вспомогательных репродуктивных технологий с учетом генотипа пациенток
Способ прогнозирования качества эмбрионов в программах вспомогательных репродуктивных технологий с учетом генотипа пациенток

 


Владельцы патента RU 2577729:

Федеральное государственное бюджетное учреждение "Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к области методов молекулярно-генетической диагностики в программах вспомогательных репродуктивных технологий (ВРТ) и касается прогнозирования качества получаемых эмбрионов. Сущность способа: пациентку генотипируют по полиморфным локусам, по результатам генотипирования определяют вероятность получения эмбрионов низкого качества по формуле р=1/(1+е-z), где Z=-2236-0,79*AMHT/G - 20,621*AMHG/G +0,993*FSHRA/G+ 0,364*FSHRG/G - 1,206*LHCGR(935 A>G)A/G + 1,164*LHCGR(935 A>G)A/A + 22,888*LHCGR(872 A>G)A/G + 21,6*LHCGR(872 A>G)A/A. При значениях p больше 0,5 прогнозируют получение эмбрионов низкого качества, а при значениях р меньше 0,5 не прогнозируют получение эмбрионов низкого качества. Изобретение может быть полезным в выборе персонализированной схемы стимуляции суперовуляции, разработке индивидуальной тактики эмбриологического этапа в ходе лечения пациентки методом экстракорпорального оплодотворения (ЭКО). Генотипирование может служить малоинвазивным, доступным, недорогим тестом, применяемым однократно перед началом проведения программы ВРТ. 1 пр., 1 табл., 1 ил.

 

Изобретение относится к области клинико-лабораторной диагностики, целью которой является прогнозирование качества получаемых эмбрионов (а именно эмбрионов низкого качества) и оптимизация проводимого лечения бесплодия у пациенток методом экстракорпорального оплодотворения (ЭКО). Под эмбрионами низкого качества подразумеваются эмбрионы класса C согласно классификации Istanbul consensus workshop on embryo assessment (ESHRE 2011) [1].

Как известно, необходимость во вспомогательных репродуктивных технологиях (ВРТ) непрерывно возрастает. Однако несмотря на постоянные усилия, направленные на повышение вероятности наступления беременности, эффективность программы ЭКО по-прежнему остается около 30-35% на цикл [2]. В свою очередь, благоприятный исход программы ВРТ, а именно рождение живого здорового ребенка, зависит от множества факторов, одним из наиболее значимых является качество полученных эмбрионов. Способность прогнозировать качество получаемых эмбрионов позволит изначально выбрать правильный подход к ведению пациенток, а также персонифицированную тактику эмбриологического этапа. В связи с этим требуются все новые технологии, позволяющие повысить эффективность проводимого лечения, так как прогнозирование качества получаемых ооцитов и эмбрионов представляет собой одну из наиболее важных проблем в современной репродуктологии. Использующиеся на сегодняшний день маркеры исходов программ ВРТ не являются универсальными и зависят от множества сопутствующих факторов, в том числе и экзогенных. С этой точки зрения изучение генетической предрасположенности представляется важным биологическим фактором, предопределяющим многие процессы репродуктивной функции.

Исследование генотипа в отличие от многих других маркеров может проводиться однократно, так как данные, полученные в результате генотипирования пациентки, не меняются в течение жизни, не зависят от веса, от дня менструального цикла и так далее. Изучение ассоциации генетических маркеров со многими биологическими процессами представляется крайне актуальным как с научной, так и с практической точки зрения.

В литературе описаны исследования, согласно которым четко прослеживается ассоциация генотипа пациенток с качеством получаемых эмбрионов. Так, например, показана связь полиморфизма гена ESR1-351 A>G [XBaI] с качеством эмбрионов (Ayvaz et al. (2009)) [3]. Однако в большинстве из них выводы основаны на проведенном однофакторном анализе, не позволяющем оценить значение сочетания генотипов полиморфизма генов. Также недостатками однофакторных моделей являются низкая прогностическая значимость и противоречивость данных [4].

Задача настоящего изобретения - создать мультигенную модель прогнозирования качества получаемых эмбрионов в программах ВРТ путем предварительного генотипирования пациенток. Исследование полиморфизма генов может служить малоинвазивным, легкодоступным, дешевым методом, позволяющим анализировать одновременно большое количество образцов крови, применяемым перед началом проведения программы ЭКО.

Цель настоящего изобретения - создание многофакторной молекулярно-генетической модели для предикции качества получаемых эмбрионов, оптимизации проводимого лечения бесплодия методом ВРТ.

Поставленная цель достигается генотипированием пациенток по следующим полиморфным локусам:

АМН 146 G>T (Ile49Ser) [rs10407022]

FSHR 2039 G>A (Ser680Asn) [rs6166]

LHCGR 935 A>G (Asn312Ser) [rs2293275]

LHCGR 872 A>G (Asn291Ser) [rs12470652]

Определяют генотип по данным позициям с применением полимеразной цепной реакции (ПЦР) или аналогичного метода, позволяющего определить указанные генетические маркеры. ГГТТР и определение температуры плавления олигонуклеотидных проб проводят при помощи детектирующего амплификатора ДТ-96 (ООО «НПО ДНК-Технология», Россия). ДНК для генотипирования выделяют из образцов периферической крови, взятой с ЭДТА (этилендиаминтетрауксусная кислота) в качестве антикоагулянта, объемом 0,5 мл, смешивают в микроцентрифужных пробирках (объемом 1,5 мл) типа Эппендорф с лизирующим раствором (0,5 мл), состоящим из 10 мМ Трис-HCl pH 7,5, 0,32М сахарозы, 5 мМ MgCl, 1% Тритона Х-100, центрифугируют. Центрифугирование проводится в течение 1 мин при 10000 об/мин, супернатант удаляется, осадки клеточных ядер двукратно отмывают соответствующим буфером. В последующем протеолиз проводят в буферном растворе (50 мкл), содержащим 10 мМ Трис-HCl pH 8,3, 50 мМ KCl, 0,45% NP40, 045% Твина 20 и 250 мкг/мл протеиназы К, 2,5 мМ MgCl, в течение 20 минут при 37°C. Инактивация протеиназы К производится в течение 20 минут при температурном режиме 98°C. Концентрация ДНК определяется на ДНК-минифлуориметре (Hoefer, США) и составляет около 50-100 мкг/мл. Идентификацию однонуклеотидных полиморфизмов проводят с помощью модифицированного метода «примыкающих проб» (adjacent probes, kissing probes) с использованием оригинальных олигонуклеотидов [5; 6].

Определение полиморфизма генов сначала проводится ПЦР с праймерами, которые связываются с комплементарными последовательностями, и между циклами нагревания (для денатурации ДНК) и охлаждения (для обеспечения синтеза) синтезируются копии данной области гена [7]. Праймеры общие для обоих вариантов нуклеотидной последовательности, после чего температуру реакционной смеси для гибридизации матрицы с олигонуклеотидными пробами понижают. Для определения типа последовательности используют два варианта олигонуклеотидов. В первом случае олигонуклеотиды метят флуорофором, во втором - гасителем флуоресценции. Этот процесс протекает при помощи ферментов, способных соединять нуклеотидные основания и выдерживать необходимые для денатурации температурные режимы [7]. В качестве такого фермента используется Taq-полимераза, блокированная специфическими антителами, чтобы предотвратить неспецифический отжиг праймеров и повысить чувствительность тест-систем.

В режиме реального времени измеряют уровень флуоресценции в процессе температурной денатурации дуплексов олигонуклеотидов и полученных матриц. Генотип определяется путем анализа кривых плавления. В том случае, если анализируемый образец содержит только один тип нуклеотидной последовательности гена, т.е. гомозиготен по данному полиморфизму, температура плавления для пробы, образующей совершенный дуплекс, выше, чем для пробы, образующей несовершенный дуплекс. В том случае, если анализировался гетерозиготный образец, содержащий два типа нуклеотидной последовательности, каждый из вариантов проб может образовать совершенный дуплекс, поэтому температуры плавления одинаковы [7].

Бинарная логистическая регрессия рассчитывает вероятность наступления события (в данном случае получение эмбрионов низкого качества класса С согласно классификации Istanbul consensus workshop on embryo assessment (ESHRE 2011) [1]) в зависимости от значений независимых переменных (в данном случае полиморфизма исследуемых генов).

Вероятность наступления события (получения эмбрионов низкого качества) (р) для некоторого случая рассчитывается по формуле, имеющий общий вид

p = 1/(1 + e z ) (1) ,

где

р - искомая вероятность наступления события;

z (классифицирующая дискриминантная функция) = а+b1*X1+b2*X2+…+bn*Xn,

а - некоторая константа; X1 - независимые переменные; b1 - коэффициенты, расчет которых является задачей бинарной логистической регрессии.

Если для p получается значение меньшее 0,5, то можно предположить, что событие не наступит; в противном случае предполагается наступление события.

В бинарной логистической регрессионной модели исходом считается факт получения эмбрионов низкого качества, предикторами - полиморфизм генов АМН 146 G>T (Ile49Ser), FSHR 2039 G>A (Ser680Asn), LHCGR 935 A>G (Asn312Ser) и LHCGR 872 A>G (Asn291Ser).

При построении бинарной логистической регрессионной модели используют метод обратной селекции. Качество приближения регрессионных моделей при каждом последующем шаге оценивают при помощи функции подобия. Мерой правдоподобия служит отрицательное удвоенное значение логарифма этой функции (-2LL). В качестве начального значения для -2LL применяется значение, которое получается для регрессионной модели, содержащей только константы. После добавления переменной влияния значение -2LL равно 180,962. Разность между значением -2LL начальной и конечной модели составила 22,807 (p=0,004). Подобное снижение величины означает улучшение полученной модели.

Мера определенности показывает ту часть дисперсии, которую можно объяснить с помощью логистической регрессии. Мера определенности по Коксу и Шелу имеет тот недостаток, что значение равное 1 является теоретически не достижимым; этот недостаток устранен благодаря модификации данной меры по методу Наделькеркеса. Часть дисперсии, объяснимой с помощью логистической регрессии, в данном уравнении составляет 18,5% (вычисляется по методу Наделькеркеса).

Результаты рассчитанных коэффициентов в логистической регрессии и проверка их значимости приведены в таблице (табл. 1).

Проверка значимости отличия коэффициентов от нуля проводится при помощи статистики Вальда, использующей распределение хи-квадрат, которое представляет собой квадрат отношения соответствующего коэффициента к его стандартной ошибке.

Согласно полученной константе и согласно значимым коэффициентам для прогнозирования вероятности получения эмбрионов низкого качества (р) классифицирующая дискриминантная функция имеет вид:

Z=-22,36-0,79*AMHT/G-20,621*AMHG/G+0,993*FSHRA/G+0,364*FSHRG/G-1,206*LHCGR (935 A>G)A/G+1,164*LHCGR (935 A>G)A/A+22,888*LHCGR (872 A>G)A/G+21,6*LHCGR (872 A>G)A/A,

где

AMHT/G - наличие у пациентки генотипа АМН: 146 T/G (1 - да, 0 - нет),

АМНG/G - наличие у пациентки генотипа АМН: 146 G/G (1 - да, 0 - нет),

FSHRA/G - наличие у пациентки генотипа FSHR: A/G (1 - да, 0 - нет),

FSHRG/G - наличие у пациентки генотипа FSHR: G/G (1 - да, 0 - нет),

LHCGR (935 A>G)A/G - наличие у пациентки генотипа LHCGR: 935 A/G (1 - да, 0 - нет),

LHCGR (935 A>G)A/A - наличие у пациентки генотипа LHCGR: 935 А/А (1 - да, 0 - нет),

LHCGR (872 A>G)A/G - наличие у пациентки генотипа LHCGR: 872 A/G (1 - да, 0 - нет),

LHCGR (872 A>G)A/A - наличие у пациентки генотипа LHCGR: 872 А/А (1 - да, 0 - нет).

Точность прогнозирования качества эмбрионов с использованием полиморфизма генов АМН 146 G>T (Ile49Ser), FSHR 2039 G>A (Ser680Asn), LHCGR 935 A>G (Asn312Ser) и LHCGR 872 A>G (Asn291Ser) составляет 82,9%.

Провели ROC-анализ для валидации полученной модели (фиг. 1). Чувствительность составила 82,9%, специфичность 40%, значение AUC (площадь под кривой) для данной модели составляет 0,699, 95% доверительный интервал - от 0,616 до 0,783.

Пример.

Прогнозирование получения эмбрионов низкого качества класса С провели у пациентки М. 32 лет, обратившейся для проведения программы ЭКО по поводу бесплодия трубного происхождения. Из анамнеза: беременностей 2, родов 0, абортов 0. В 2010 г. левосторонняя трубная беременность, проведена лапароскопия, тубэктомия слева. В 2012 г. правосторонняя трубная беременность, проведена лапароскопия, тубэктомия справа. Данная попытка ЭКО первая.

Кровь для генотипирования у пациентки М. брали натощак из локтевой вены в стерильную пробирку. Определяли замены однонуклеотидных последовательностей с применением ПЦР. ПЦР и определение температуры плавления олигонуклеотидных проб проводили при помощи детектирующего амплификатора ДТ-96 (ООО «НПО ДНК-Технология», Россия). Центрифугирование проводили в течение 1 мин при 10000 об/мин, супернатант удалялся, осадки клеточных ядер двукратно отмывали соответствующим буфером. В последующем протеолиз проводили в буферном растворе (50 мкл), содержащем 10 мМ Трис-HCl pH 8,3, 50 мМ KCl, 0,45% NP40, 045% Твина 20 и 250 мкг/мл протеиназы К, 2,5 мМ MgCl, в течение 20 минут при 37°C. Концентрация ДНК определяли на ДНК-минифлуориметре (Hoefer, США). Идентификацию однонуклеотидных полиморфизмов проводили с помощью модифицированного метода «примыкающих проб» (adjacent probes, kissing probes) с использованием оригинальных олигонуклеотидов.

Определение полиморфизма генов сначала проводили ПЦР с праймерами, которые связываются с комплементарными последовательностями, и между циклами нагревания (для денатурации ДНК) и охлаждения (для обеспечения синтеза) синтезируются копии данной области гена.

Результат генотипирования пациентки М.:

АМН 146 G>T (Ile49Ser) - T/G

FSHR 2039 G>A (Ser680Asn) - A/G

LHCGR 935 A>G (Asn312Ser) - A/G

LHCGR 872 A>G (Asn291Ser) - A/G

Значение дискриминантной функции составило:

z=-22,36-0,79*1+0,993*1-1,206*1+22,888*1=-0,475.

Вероятность (р) получения незрелых ооцитов у данной пациентки расчитывали по формуле 1:

р=1/(1+е-0,475)=0,622.

Рассчитанная вероятность р указывает на исполнение прогноза, в данном случае - на получение эмбрионов низкого качества класса С с вероятностью 62,2%.

В результате проведения программы ВРТ у пациентки всего было получено 8 эмбрионов, из них 5 эмбрионов - класса С, 3 эмбриона класса В (согласно классификации Istanbul consensus workshop on embryo assessment (ESHRE 2011) [1]).

Согласно полученным данным, предикция получения эмбрионов низкого качества при проведении программ ВРТ на основании молекулярно-генетических маркеров носит статистически достоверный характер.

Полученный результат свидетельствует о независимой генетической детерминации процессов эмбриогенеза. Следовательно, способ прогнозирования качества эмбрионов в программах вспомогательных репродуктивных технологий с учетом генотипа пациенток может быть использован в клинико-лабораторной практике с целью предикции исходов программы ЭКО.

Фиг.1

ROC-анализ ассоциации полиморфизма генов АМН 146 G>T (Ile49Ser), FSHR 2039 G>A (Ser680Asn), LHCGR 935 A>G (Asn312Ser) и LHCGR 872 A>G (Asn291Ser) с получением эмбрионов класса С (sensitivity - чувствительность; specificity - специфичность).

Список использованных источников

1. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting // Human reproduction. - 2011. - Vol. 26. - №6. - P. 1270-1283.

2. Серебренникова К.Г. и т.д. Современные технологии лечения бесплодия у женщин с оперированными яичниками // Международный журнал экспериментального образования. 2010. - №9. С. 115-117.

3. Ayvaz О.U., Ekmekci A., Baltaci V., Onen Н.I., Unsal Е. Evaluation of in vitro fertilization parameters and estrogen receptor alpha gene polymorphisms for women with unexplained infertility // Journal of assisted reproduction and genetics. - 2009. - Vol. 26. - №9-10. - P. 503-510.

4. van Disseldorp J., Franke L., Eijkemans R., Broekmans F., Macklon N., Wijmenga C, Fauser B. Genome-wide analysis shows no genomic predictors of ovarian response to stimulation by exogenous FSH for IVF // Reproductive biomedicine online. - 2011. - Vol. 22. - №4. - P. 382-388.

5. Кофиади И.А., Ребриков Д.В. Методы детекции однонуклеотидных полиморфизмов: аллель-специфичная ПЦР и гибридизация с олигонуклеотидной пробой // Генетика 2006. - Т. 42 (1). С. 22-32.

6. Lyon Е. Mutation detection using fluorescent hybridization probes and melting curve analysis // Expert Rev Mol Diagn. - 2001. - Vol. 1. - №1. - P. 92-101.

7. Элдер К., Дэйл Б. Экстракорпоральное оплодотворение. М.: МЕДпресс-информ, 2008. - 276 с.

Способ прогнозирования качества эмбрионов в программах вспомогательных репродуктивных технологий, характеризующийся тем, что пациентку генотипируют по полиморфным локусам:
АМН 146 G>T (Ile49Ser) [rs10407022],
FSHR 2039 G>A (Ser680Asn) [rs6166],
LHCGR 935 A>G (Asn312Ser) [rs2293275],
LHCGR 872 A>G (Asn291Ser) [rs12470652],
выявленным генотипам присваивают следующие значения:
AMHT/G - наличие у пациентки генотипа АМН: 146 T/G (1 - да, 0 - нет),
AMHG/G - наличие у пациентки генотипа АМН: 146 G/G (1 - да, 0 - нет),
FSHRA/G - наличие у пациентки генотипа FSHR: A/G (1 - да, 0 - нет),
FSHRG/G - наличие у пациентки генотипа FSHR: G/G (1 - да, 0 - нет),
LHCGR (935 A>G)A/G - наличие у пациентки генотипа LHCGR: 935 A/G (1 - да, 0 - нет),
LHCGR (935 A>G)A/G - наличие у пациентки генотипа LHCGR: 935 А/А (1 - да, 0 - нет),
LHCGR (872 A>G)A/G - наличие у пациентки генотипа LHCGR: 872 A/G (1 - да, 0 - нет),
LHCGR (872 A>G)A/A - наличие у пациентки генотипа LHCGR: 872 А/А (1 - да, 0 - нет),
по результатам генотипирования определяют вероятность получения эмбрионов низкого качества по формуле
р=1/(1+е-z), где
Z=-2236-0,79*AMHT/G-20,621*AMHG/G+0,993*FSHRA/G+0,364*FSHRG/G-1,206*LHCGR(935 A>G)A/G+1,164*LHCGR(935 A>G)A/A+22,888*LHCGR(872 A>G)A/G+21,6*LHCGR(872 A>G)A/A,
и при значениях p больше 0,5 прогнозируют получение эмбрионов низкого качества, а при значениях р меньше 0,5 не прогнозируют получение эмбрионов низкого качества.



 

Похожие патенты:

Изобретение относится к медицине и представляет собой способ оценки эффективности терапии генитального туберкулеза, включающий контрольные иммунологические обследования, отличающийся тем, что по окончании интенсивной фазы терапии проводят 1-й контроль, который включает определение индекса стимуляции интерферона-гамма (ИФН-γ) с туберкулином очищенным (ППД-Л), определение уровней специфических иммуноглобулинов (IgA, IgM) к микобактерии туберкулеза (МБТ) методом иммуноферментного анализа (ИФА), а 2-й контроль проводят через 6-11 месяцев после окончания основного курса терапии, при этом в случае если индекс стимуляции ИФН-γ с ППД-Л по окончании интенсивной фазы противотуберкулезной терапии был выше 7, 8 - только по ИФН-γ с ППД-Л, в случае если оптическая плотность IgM к МБТ была более 0,600 - только по IgM к МБТ, в случае если оптическая плотность при IgA к МБТ была более 0,450 - контроль проводят только по IgA к МБТ; при этом по результатам контрольных исследований рекомендуют продление, или коррекцию, или окончание терапии.

Изобретение относится к медицине, а именно к экспериментальной биологии, экологии, токсикологии, и касается диагностики клеточного иммунодефицита у экспериментальных животных в условиях экспозиции стронцием.

Группа изобретений относится к медицине, а именно к биотехнологии, и может быть использована для выявления in vitro антитела, обладающего эффекторной функцией. Для этого смешивают естественные клетки-киллеры и опухолевые клетки, добавляют примерно по 104 клеток на 200 мкл в лунки многолуночного планшета.
Изобретение относится к области медицины и представляет собой способ прогнозирования раннего токсикоза тяжелой степени, включающий определение в крови беременных женщин концентрации лептина и фактора роста плаценты (ФРП), отличающийся тем, что дополнительно производят определение значения максимальной амплитуды агрегации тромбоцитов (МААТ), содержания лимфоцитов CD95+ (Л CD95+), уровня общего IgE и концентрации C-реактивного белка (СРБ), и при значении этих показателей в сроки 6-8 недель и 9-12 недель беременности соответственно: концентрации лептина (нг/мл) - 18,9±2,8 и 23,4±3,2; концентрации ФРП (пг/мл) - 55±4,1 и 91±6,2; значении МААТ (%) - 42,6±1,4 и 45,1±1,5; содержании Л CD95+ (%) - 44,2±3,5 и 49,7±3,8; уровня общего IgE (пг/мл) - 295±19 и 322±16; концентрации СРБ (мкг/мл) - 96±4,2 и 108±5,3 прогнозируют ранний токсикоз тяжелой степени.

Изобретение относится к биотехнологии, а именно к способу проведения иммунохроматографического анализа. Способ включает регистрацию окрашенных коллоидным маркером специфических комплексов антиген-антитело на поверхности рабочей мембраны.

Изобретение относится к медицине, а именно офтальмологии, и может быть использовано для диагностики стационарной миопии высокой степени. Для этого при хирургии выделяют фрагмент теноновой капсулы, который измельчают и замораживают в парах жидкого азота до -180°С.

Изобретение относится к медицине, а именно к способу диагностики in vitro повышенной чувствительности к псевдоаллергенам и подбору противоаллергических препаратов. Для этого формируют образцы, содержащие 0,95-1,05×106 лейкоцитов, и доводят их раствором Хенкса до объема 0,69 мл с получением проб крови.
Изобретение касается способа выявления пациента с риском развития расстройства щитовидной железы в результате лечения в режиме, который истощает лимфоциты. Способ включает определение до лечения наличия антител, направленных против пероксидазы щитовидной железы или микросом щитовидной железы, у пациента.

Изобретение относится к области вирусологии и касается штамма вируса африканской чумы свиней. Представленный штамм вируса африканской чумы свиней 8-го серотипа, семейства Asfarviridae, род Asfivirus, адаптирован к перевиваемой культуре клеток COS-1 и депонирован в Коллекции микроорганизмов ГНУ ВНИИВВиМ Россельхозакадемии под №.3096.

Изобретение относится к области медицины, а именно к способу диагностики острого лимфобластного лейкоза у пациента, включающий выявление признаков лейкоза, тестирование клеток крови на лейкоз, инкубирование клеток крови фактором, идуцирующим лейкоз, с тем, чтобы индуцировать экспрессию клеточных поверхностных маркеров, которые являются признаком лейкоза, где фактор, индуцирующий лейкоз - это супернатант Aspergillus flavus, EBV-инфицированный CCL87 супернатант, очищенная EBV культура или их комбинации.

Настоящее изобретение относится к области биотехнологии. Предложен способ идентификации антитела, которое специфически связывается с интересующим антигеном на клеточной поверхности, предусматривающий иммунизацию животного вектором экспрессии, кодирующим антиген клеточной поверхности; приведение в контакт клеток, содержащих на своей поверхности антитела и выделенных из животного, подвергнутого иммунизации, причем антитела связаны с первой сортируемой меткой, с клетками, экспрессирующими антиген, связанный со второй сортируемой меткой; определение специфического связывания с использованием клеточного сортера по наличию первой и второй сортируемой метки в клеточном комплексе; а также идентификацию участков, определяющих комплементарность с антигеном (CDR), у идентифицированного антитела и прививку CDR на каркасную область акцепторного антитела. Данное изобретение предполагает скрининг антител, специфичных в отношении мембраносвязанных антигенов, что может найти дальнейшее применение в разработке терапевтических и диагностических средств. 3 з.п. ф-лы, 8 ил., 5 табл., 5 пр.

Изобретение относится к области ветеринарной вирусологии и касается штамма вируса африканской чумы свиней. Штамм выделен от убитого кабана в охотхозяйстве «Озерное» Медынского района Калужской области в 2014 г., паспортизирован с названием «Калуга-2014» и депонирован в Государственной Коллекции микроорганизмов ГНУ Всероссийского научно-исследовательского института ветеринарной вирусологии и микробиологии Россельхозакадемии под №3115. Штамм обладает высокой инфекционной активностью, накапливается в культурах клеток костного мозга свиней и лейкоцитах свиней в титре 6,0-7,0 lgГАЕ50/см3. Гибель зараженных свиней наступает с признаками острой формы АЧС через 6-8 суток после проявления клинических признаков болезни. Изобретение может быть использовано в качестве референс-штамма при проведении мониторинговых исследований в РФ с новыми изолятами вируса, циркулирующими в популяции кабанов, а также выделенными от домашних свиней. 3 табл., 3 пр.

Изобретение относится к области аналитической химии и касается способа количественного определения N-нитрозаминов (N-нитрозодиметиламина и N-нитрозодиэтиламина) в крови. Сущность способа заключается в том, что производят отбор пробы крови, подготовку ее к анализу и количественное определение нитрозоамина в пробе методом газохроматографического анализа. При этом подготовку пробы производят путем добавления к ней гидроксида калия при соотношении 1 объемная часть пробы к 1,6 массовой части гидроксида калия, с последующей отгонкой дистиллята с помощью водяного пара и введением в дистиллят гидроксида калия при соотношении 1 объемная часть дистиллята к 1,6 массовой части гидроксида калия. Далее смесь дистиллята и гидроксида калия помещают в замкнутую систему дозатора равновесного пара, где в изотермических условиях осуществляют термостатирование, преимущественно в течение 20 мин, для установления фазового равновесия. Производят отбор газовой фазы над дистиллятом и вводят ее в капиллярную колонку газохроматографа, далее осуществляют газохроматографическое разделение N-нитрозодиметиламина и N-нитрозодиэтиламина. Количество каждого указанного вещества устанавливают по градуировочному графику. 2 з.п. ф-лы, 4 табл.

Изобретение относится к медицине, а именно к гастроэнтерологии, и может быть использовано для диагностики нагноившейся постнекротической псевдокисты поджелудочной железы. Для этого в крови больного определяют активность фагоцитов по уровню экспрессии CD 14+/HLA-DR+ методом проточной цитометрии и статистического ROC-анализа. При содержании CD14+/HLA-DR+ ниже 85% диагностируют нагноившуюся постнекротическую псевдокисту поджелудочной железы. Использование данного способа позволяет диагностировать нагноившуюся постнекротическую псевдокисту поджелудочной железы, что позволяет определять тактику ведения таких больных и осуществлять выбор оперативного вмешательства. 2 пр., 1 табл.

Изобретение относится к области медицины, а именно к кардиологии, и может быть использовано в качестве способа прогнозирования риска прогрессирования стенокардии напряжения, развития гипертрофии левого желудочка и ожирения у больных ишемической болезнью сердца, сочетанной с сахарным диабетом 2-го типа. Сущность способа: выявляют генетический полиморфизм Т1565С гена ITGB3 у пациентов с ИБС, протекающей на фоне сахарного диабета 2-го типа. При обнаружении у больных аллеля С гена ITGB3 прогнозируют повышенный риск прогрессирования стенокардии напряжения, развития гипертрофии левого желудочка и ожирения. Использование изобретения в медицине позволяет прогнозировать с высокой вероятностью развитие осложнений при ишемической болезни сердца, ассоциированной с сахарным диабетом 2-го типа. 1 табл., 4 пр.

Группа изобретений относится к медицине, а именно к лабораторной диагностике, и может быть использована для определения общего периостина. Антитело против периостина содержит последовательности гипервариабельного участка ("HVR") SEQ ID NO: 1 и последовательности HVR SEQ ID NO: 2 или последовательности HVR SEQ ID NO: 3 и последовательности HVR SEQ ID NO: 4. Группа изобретений относится также к способу определения общего периостина и к композиции для его определения. Использование данной группы изобретений позволяет распознавать изоформы периостина с высокой чувствительностью для диагностики астмы у пациента. 6 н. и 14 з.п. ф-лы, 23 ил., 8 табл., 8 пр.
Изобретение относится к медицине, в частности к офтальмологии и представляет собой способ оценки тяжести течения ретинобластомы у детей. Согласно изобретению в сыворотке крови определяют антитела к раннему антигену вируса Эпштейна-Барр и при их наличии оценивают течение как тяжелое. Осуществление изобретения обеспечивает повышение эффективности терапии за счет раннего определения тяжести течения ретинобластомы у детей. 2 пр.

Изобретение относится к медицине, а именно к психиатрии, и может быть использовано для прогноза формирования затяжного течения соматоформных расстройств. Для этого проводится иммунологическое обследование и при одновременном содержании в крови Т-лимфоцитов (CD3+) 59% и менее, цитотоксических Т-лимфоцитов (CD8+) 19% и менее, лимфоцитов с маркерами поздней активации (HLADR+) 20% и более прогнозируют затяжное течение соматоформных расстройств. Использование данного изобретения позволяет прогнозировать течение соматоформных расстройств на более ранних этапах заболевания и целенаправленно проводить психофармакологические мероприятия с включением методов иммунокоррекции. 1 табл., 2 пр.

Группа изобретений относится к медицине и касается способа иммунологического анализа образца крови или компонентов крови на 25-гидроксивитамин D, при котором для высвобождения витамина D из эндогенных связывающих белков добавляют к образцу перфторалкильную кислоту с длиной углеродной цепи от 4 до 12 атомов углерода или ее соли. Группа изобретений также касается набора для проведения иммунологического анализа с применением указанного способа; применения в иммунологическом анализе образца крови или компонентов крови на 25-гидроксивитамин D перфторалкильной кислоты или ее соли с длиной углеродной цепи от 4 до 12 атомов углерода для высвобождения витамина D из эндогенных связывающих белков. Группа изобретений обеспечивает анализ образца крови или компонентов крови на 25-гидроксивитамин D. 3 н. и 9 з.п. ф-лы, 1 пр., 2 ил., 1 табл.

Изобретение относится к медицине, а именно к педиатрии, пульмонологии и может быть использовано для оценки степени нарушения энергетического метаболизма лимфоцитов крови у детей с внебольничной пневмонией (ВП). Для этого методом проточной цитометрии проводят учет лимфоцитов со сниженным мембранным потенциалом митохондрий. При показателях от 0 до 35% диагностируют уровень нормы, 36 до 75% - субкомпенсированные нарушения, не требующие специфической терапии, 76% и более - декомпенсированные нарушения, требующие в комплексном лечении внебольничных пневмоний назначения энерготропных препаратов. Использование данного способа позволяет определить нарушения энергообеспеченности клеток на более раннем этапе, при отсутствии изменений активности сукцинатдегидрогеназы, что позволяет использовать его в клинической практике для выделения групп риска детей с ВП, требующих метаболической коррекции. 1 табл., 4 пр. .
Наверх