Способ нанесения массивов углеродных нанотрубок на металлические подложки

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода. Полученные углеродные нанотрубки не содержат примесей сажи и фуллеренов, имеют хороший контакт с подложкой. Упрощается аппаратурное оформление процесса. 1 ил.

 

Изобретение относится к области получения углеродных наноструктур, а именно массивов углеродных нанотрубок на металлических подложках.

Углеродные наноматериалы имеют широкий спектр применения. Одно из важных направлений их практического использования - это создание автоэлектронных эмиттеров на основе массивов углеродных нанотрубок на токопроводящих подложках.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Wu Z. Transparent conductive carbon nanotube films. Science, 2004, v. 305, p. 1273-1276] - аналог. Нанотрубки наносят на металлические подложки из растворов путем вакуумной фильтрации через мембрану с последующим удалением поверхностно-активных веществ. Основным недостатком аналога является сложность, которая обусловлена необходимостью изготовления наноструктурированных мембран и приготовления жидких растворов углеродных нанотрубок. Кроме того, следует отметить плохую воспроизводимость процесса, а также загрязнение массива углеродных нанотрубок поверхностно-активными веществами.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Kaempgen М. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv. Mater., 2008, v. 20, p. 616-620]. Нанотрубки наносят на металлические подложки ультразвуковым распылением жидких растворов. Создание раствора на основе смеси углеродных нанотрубок и поверхностно-активных веществ для получения высококачественных пленок требует значительных усилий, поэтому сложность процесса является основным недостатком аналога. Следует отметить, что загрязнение углеродных нанотрубок поверхностно-активными веществами и веществом растворителя также нужно отнести к недостаткам процесса-аналога.

Наиболее близким по технической сущности к предлагаемому является способ нанесения углеродных нанотрубок на металлическую подложку (Патент RU 2471706, кл. С01В 31/02, 10.01.2013 г.), позволяющий осаждать упорядоченные массивы УНТ на подложки из электротехнических нелегированных сталей в атмосфере инертного газа. Изготавливаемые на этом устройстве структуры «подложка - массив УНТ» являются токопроводящими.

Однако эти структуры не пригодны для изготовления автоэлектронных эмиттеров по причине плохого контакта металлическая подложка - углеродные нанотрубки и показывают плохие характеристики в части, касающейся срока службы и плотности тока. Заявленное устройство позволяет размещать подложки исключительно вблизи дуги, и для поиска оптимального расстояния для получения токопроводящих структур, пригодных для изготовления автоэлектронных эмиттеров, требуется специальное приспособление, позволяющее перемещать металлические подложки (изготовление катода с большим количеством отверстий для крепления подложек на разных расстояниях приводит к изменению потоков углеродсодержащего пара и отсутствию нанотрубок в слое сажи на металлических подложках).

Задачей предлагаемого способа является упрощение процесса нанесения массивов углеродных нанотрубок на металлические подложки без примеси сажи и фуллеренов, что обеспечивало бы хороший контакт углеродных нанотрубок с металлической подложкой и получение структуры, пригодной для изготовления автоэлектронных эмиттеров.

Эта задача решается в способе нанесения массивов углеродных нанотрубок на металлические подложки, включающем осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, при этом металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород 8-10 об.% и гелий - остальное.

Сепарация нанотрубок от примесей (углеродных наночастиц, сажи и фуллеренов) основана на разном парциальном давлении углеродных наноматериалов в плазме дугового разряда в атмосфере гелия и, как следствие, на наличии градиента концентрации этих примесей в объеме, окружающем дуговой разряд. В атмосфере гелия на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, на металлические подложки преимущественно конденсируются сажа, фуллерены и углеродные нанотрубки. Дальнейшие опыты показали, что получение массивов углеродных нанотрубок на металлических подложках без примеси сажи и фуллеренов возможно при введении в атмосферу гелия 8-10% (об.) водорода.

Массивы углеродных нанотрубок на металлических подложках, полученные предложенным способом, являются токопроводящими и пригодны для изготовления автоэлектронных эмиттеров, что подтверждается вольт-амперными характеристиками Фиг. 1, снятыми при комнатной температуре. На Фиг. 1 кривая 1 получена при повышении напряжения, кривая 2 - при понижении напряжения от 1000 В.

Примеры.

1. Осаждение массивов углеродных нанотрубок на металлические подложки проводили в процессе горения дуги в атмосфере смеси, содержащей водород - 7% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

2. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 11% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

3. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.

4. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 9,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

5. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 12,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.

6. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 10d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.

Способ нанесения массивов углеродных нанотрубок на металлические подложки для автоэлектронных эмиттеров, включающий осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, отличающийся тем, что металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород - 8-10 об.% и гелий - остальное.



 

Похожие патенты:

Изобретение относится к технологии производства технического кремния в рудно-термических печах и его дальнейшего рафинирования. Способ рафинирования технического кремния осуществляют методом направленной кристаллизации, при этом расплав кремния охлаждают до 1420°С, погружают в него на 3-30 с металлические кристаллизаторы с начальной температурой примерно 150-200°С, выделяют на их поверхностях примеси металлов в виде интерметаллических соединений и твердых растворов с кремнием, после чего кристаллизаторы вместе с примесями удаляют из расплава и перемещают в перегретый флюс для стекания с них кремния, обогащенного примесями.

Изобретение может быть использовано при изготовлении катодных материалов для литий-ионных аккумуляторов, красок, грунтовок, клеев, бетонов, целлюлозных материалов.

Изобретения могут быть использованы в химической и металлургической промышленности. Сначала исходные нанотрубки или нановолокна обрабатывают кислотой при 20-100°C, промывают и сушат.

Изобретение может быть использовано при изготовлении сорбентов, носителей катализаторов, материалов для электрических конденсаторов. Для получения мезопористого углеродного материала с высокой удельной поверхностью в качестве прекурсоров используют смеси индивидуальных органических соединений, одним из компонентов которых является фурфурол, а вторым - фенол или гидрохинон.

Изобретение относится к плазменному синтезу наноматериалов. Эндоэдральные фуллерены получают в водоохлаждаемой металлической герметичной камере 1 в плазме высокочастотной дуги при атмосферном давлении с использованием переменного тока.

Изобретение может быть использовано в авто- и авиастроении. Углерод-углеродный композиционный материал получают посредством изготовления преформы из углеродных волокон, уплотнения полученной преформы матрицей из пиролитического углерода, получающегося из прекурсора в газообразном состоянии, по меньшей мере в основной наружной фазе матрицы, и заключительной термообработки при температуре 1400°-1800°С, не вызывая при этом графитизации матрицы из пиролитического углерода.

Изобретение может быть использовано при изготовлении катализаторов, анодов для производства алюминия, процессоров, электронных устройств для хранения данных, датчиков биомолекул, деталей автомобилей и самолётов, спортивных товаров.

Изобретение относится к нанотехнологии и может быть использовано для выделения углеродистого материала, содержащего наночастицы, из потоков отходящих технологических газов электролитического производства алюминия.
Изобретения относятся к химической промышленности и нанотехнологии. Углеродные волокна наматывают на плоскую или круглую вращающуюся шпулю и с двух сторон и изнутри подвергают нейтронному облучению.

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов.

Изобретение относится к способу получения сверхпроводящих керамических материалов различной плотности на основе сложного оксида YBa2Cu3O7-δ, содержащего преимущественно фазу из наноструктурированных порошков, оптимально насыщенную кислородом, для изготовления компонентов электронной техники и электроэнергетики.

Изобретение относится к области создания новых структурированных гибридных металлополимерных нанокомпозиционных материалов на основе электроактивных полимеров с системой полисопряжения и магнитных наночастиц Со и может быть использовано в системах магнитной записи информации, органической электронике и электрореологии, медицине, при создании электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, микроэлектромеханических систем, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, электрокатализаторов, солнечных батарей, дисплеев и других электрохимических устройств.

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора.

Изобретение относится к теплоэнергетике, кроме того, изобретение может быть использовано на предприятиях химической промышленности для получения синтез-газа, метана, аммония, жидких моторных топлив и других ценных химических продуктов и соединений.

Изобретение относится к способам получения наноразмерного порошкообразного стабилизированного диоксида циркония и может быть использовано для изготовления вакуумноплотной наноструктурированной керамики: твердых электролитов, сенсоров полноты сгорания топлива, мембран для твердооксидных топливных элементов; наномодифицированных органических и неорганических материалов; порошковых покрытий на металлах.

Настоящее изобретение относится к способу получения полимерных микросфер, содержащих квантовые точки. Описан способ получения полимерных микросфер, содержащих квантовые точки, включающий приготовление раствора квантовых точек в органическом растворителе, содержащем катионактивное ПАВ, представляющее собой алкилдиметилэтилбензиламмоний хлорид в количестве 1-2 мас.%, с концентрацией квантовых точек в растворе 0,1-1,0 г/л, с последующим добавлением к раствору квантовых точек полимерных микросфер полистирола или полиметилметакрилата, при соотношении полимер:раствор квантовых точек, равном 1:1, полученную смесь подвергают ультразвуковой обработке, затем выдерживают в течение 2-6 часов при комнатной температуре и диспергируют в С2-С4-алифатическом спирте с катионактивным ПАВ, представляющим собой алкилдиметилэтилбензиламмоний хлорид, взятый в количестве 1-2 мас.%, выдерживают в течение 5-15 минут, затем центрифугируют для выделения образовавшегося осадка, состоящего из полимерных микросфер, содержащих квантовые точки.

Изобретение относится в области нанотехнологии, в частности фармацевтике и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к физико-технологическим процессам обработки алмазосодержащих суспензий. Твердую углеродную массу, выделенную после завершения детонационного синтеза, обрабатывают в автоклаве водным раствором нитрата аммония с добавками азотной кислоты при температуре 200-260°С до прекращения газовыделения, при этом концентрация твердой фазы в суспензии составляет 5%, на 1 вес.ч.

Изобретение относится к материалу для изготовления светокорректирующей полимерной пленки, которая может найти широкое применение в качестве светопреобразующего материала.

Изобретение относится к области органических высокомолекулярных соединений, а именно к новым биосовместимым амфифильным статистическим сополимерам, пригодным для создания форм лекарственных препаратов, биологически активных веществ и солюбилизации плохорастворимых веществ, а также к одностадийному способу получения таких сополимеров.

Изобретение относится к синтезу островковых металлических катализаторов и углеродных нанообъектов и может быть использовано в промышленности для производства нанообъектов и наноструктурированных пленок.

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об. и гелий - остальное. Металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода. Полученные углеродные нанотрубки не содержат примесей сажи и фуллеренов, имеют хороший контакт с подложкой. Упрощается аппаратурное оформление процесса. 1 ил.

Наверх