Способ гидрокрекинга углеводородного сырья



Способ гидрокрекинга углеводородного сырья
Способ гидрокрекинга углеводородного сырья

 


Владельцы патента RU 2626397:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) (RU)

Изобретение относится к способу гидрокрекинга углеводородного сырья с получением низкосернистых средних дистиллятов. Изобретение касается способа гидрокрекинга, в котором осуществляют превращение высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм33 в присутствии катализатора, включающего никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где: С6Н5O7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3. Компоненты в катализаторе содержатся в следующих концентрациях, мас. %: [Ni(NH4)x[HyW2O5(C6H5O7)2] – 32,6-39,6, аморфный алюмосиликат - 30,2-47,2; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3-24,2, NiO - 3,0-3,8, аморфный алюмосиликат - 36,0-54,4; γ-Аl2О3 - остальное. Технический результат - высокий выход среднедистиллятных фракций. 2 з.п. ф-лы, 2 табл., 5 пр.

 

Изобретение относится к каталитическим способам получения низкосернистых керосиновых и дизельных фракций с низким содержанием ароматических углеводородов из высококипящего углеводородного сырья.

В настоящее время в российской нефтеперерабатывающей промышленности наблюдаются следующие тенденции: повышение глубины переработки нефти за счет увеличения доли перерабатываемых высококипящего углеводородного сырья и ужесточение экологических требований к моторным топливам. Гидрокрекинг углеводородного сырья позволяет одновременно увеличить глубину нефтепереработки и улучшить экологические показатели моторных топлив, а именно снизить содержание серы и ароматических соединений. В зависимости от условий проведения процесса гидрокрекинга и применяемых катализаторов можно получать преимущественно те или иные продукты гидрокрекинга: углеводородный газ, бензиновую, керосиновую или дизельную фракцию, остаток гидрокрекинга. Наиболее ценными продуктами гидрокрекинга является среднедистиллятные фракции, т.е. керосиновая и дизельная фракции. Существующие процессы гидрокрекинга вследствие низкой селективности используемых катализаторов по отношению к среднедистиллятным фракциям не позволяют достигать высоких выходов среднедистиллятных фракций даже при ужесточении условий проведения процесса гидрокрекинга, например за счет подъема температуры в реакторе. Кроме того, требуется высокая стартовая температура для известных способов гидрокрекинга вследствие низкой активности катализаторов, что приводит к меньшему циклу пробега катализатора до его дезактивации. Таким образом, актуальной задачей является создание новых процессов получения низкосернистых среднедистиллятных фракций из высококипящего углеводородного сырья.

Известны различные способы гидрокрекинга углеводородного сырья, в том числе и сложные многоступенчатые процессы или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является низкий выход среднедистиллятных фракций, обусловленный низкой активностью и низкой селективностью по среднедистиллятным фракциям используемых катализаторов. Существующие процессы гидрокрекинга вследствие низкой селективности используемых катализаторов по отношению к среднедистиллятным фракциям и не позволяют достигать высоких выходов среднедистиллятных фракций даже при ужесточении условий, например увеличении температуры процесса.

Чаще всего гидрокрекинг углеводородного сырья проводят в присутствии катализаторов, содержащих оксиды никеля и молибдена или вольфрама, нанесенные на носитель, содержащий аморфный алюмосиликат, высококремниземистый цеолит Y и оксид алюминия. Так, известен способ гидрокрекинга в присутствии катализатора [РФ X» 2540071], наиболее предпочтительно содержащего 10-20 мас. % вольфрама или молибдена, 1-6 мас. % никеля, а его носитель содержит суммарно 10-50 мас. % цеолитов Y и бета, а остальное составляет аморфный алюмосиликат, причем содержание цеолита бета составляет 0,5-10 мас. %. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг*л-1-1. Основным недостатком способа проведения процесса гидрокрекинга является низкий выход среднедистиллятных фракций.

Известен еще один способ гидрокрекинга в присутствии катализатора [РФ №2366505], наиболее предпочтительно содержащего 21 мас. % WО3, 5 мас. % NiO, а его носитель наиболее предпочтительно содержит суммарно 20-80 мас. % суммарно ультрастабильного цеолита Y и низкокремнеземного цеолита Y либо цеолита бета, либо цеолита ZSM-5, а остальное связующее в виде аморфного алюмосиликата и оксида алюминия, причем содержание низкокремнеземного цеолита Y, цеолита бета, цеолита ZSM-5 составляет 0,5-10%. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 250-2000 нл/кг и объемной скорости подачи сырья 0,5-5 кг*л-1-1. Основным недостатком способа проведения процесса гидрокрекинга является низкий выход среднедистиллятных фракций.

С целью увеличения выхода дизельной фракции процесс гидрокрекинга можно проводить в присутствии катализаторов, содержащих в качестве гидрирующих компонентов трехкомпонентную систему (Ni+Mo+W), в качестве кислотного компонента фтористый алюминий, а в качестве промоторов оксид бора, оксид циркония или их смесь.

Так, известен способ гидрокрекинга в присутствии катализатора [РФ №2245737], содержащего, мас. %: гидрирующие компоненты 15-30% (оксиды никеля, молибдена и вольфрама при массовом соотношении 25:35:40), кислотный компонент (фтористый алюминий) 20-40 промотор (оксид бора и/или циркония) 1-4, связующее (оксид алюминия, алюмосиликат, глину или их смесь) до 100%. При этом процесс гидрокрекинга ведут при температуре 380-430°С, давлении 3-10 МПа, при соотношении водород/сырье 250-1000 нм33 и объемной скорости подачи сырья 1-3 ч-1. Основным недостатком такого способа проведения процесса гидрокрекинга является низкий выход среднедистиллятных фракций.

Наиболее близким по своей технической сущности к заявляемому способу гидрокрекинга является способ гидрокрекинга углеводородного сырья [WO 2013092806 A1, B01J 21/12, C10G 47/12, 27/06/2013] в присутствии катализатора, включающего в свой состав никель, молибден или вольфрам, носитель на основе аморфного алюмосиликата и полигидроксисоедниения С312. Компоненты в катализаторе наиболее предпочтительно содержатся в следующих концентрациях, мас. %: никель 3-6, молибден 10-16 или вольфрам 15-22, сукроза и/или глюконовая кислота 5-20. Причем катализатор после нанесения активных металлов сушат при температуре не более 200°С. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг*л-1-1. Основным недостатком прототипа, также как и других известных процессов, является низкий выход среднедистиллятных фракций.

Изобретение решает задачу создания улучшенного способа гидрокрекинга углеводородного сырья, характеризующегося высоким выходом среднедистиллятных фракций при достаточно мягких условиях проведения процесса.

Задача решается проведением процесса гидрокрекинга высококипящего углеводородного сырья при температуре при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм33 в присутствии катализатора, содержащего никель, вольфрам, алюминий и кремний. При этом вольфрам и никель содержатся в форме биметаллического комплексного соединения Ni(NH4)x[HyW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас. %: Ni(NH4)x[HyW2O5(C6H5O7)2] - 32,6-39,6, аморфный алюмосиликат - 30,2-47,2; γ-Аl2О3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3-24,2, NiO - 3,0-3,8, аморфный алюмосиликат - 36,0-54,4; γ-Аl2О3 - остальное. При этом катализатор имеет объем пор 0,50-0,82 см3/г, удельную поверхность 193-249 м2/г и средний диаметр пор 9,8-13,3 нм и представляет собой частицы с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа. В качестве аморфного алюмосиликата могут использоваться алюмосиликаты с массовым отношением Si/Al от 0,6 до 0,85, характеризующиеся рентгенограммами, содержащими широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

Отличительным признаком предлагаемого способа гидрокрекинга углеводородного сырья по сравнению с прототипом является то, что процесс гидрокрекинга проводят при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм33 в присутствии катализатора, содержащего, мас. %: Ni(NH4)x[HyW2O5(C6H5O7)2] - 32,6-39,6, аморфный алюмосиликат - 30,2-47,2; γ-Аl2О3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3-24,2, NiO - 3,0-3,8, аморфный алюмосиликат - 36,0-54,4; γ-Аl2О3 - остальное. Выход содержания и массового отношения компонентов катализатора за заявляемые границы приводит к уменьшению активности катализатора в целевых реакциях гидрокрекинга и к уменьшению селективности катализатора по отношению к среднедистиллятным фракциям.

Технический эффект предлагаемого способа гидрокрекинга складывается из следующих составляющих:

1. Проведение процесса гидрокрекинга в присутствии катализатора, имеющего заявляемый химический состав, что обеспечивает образование гидрирующего компонента, имеющего повышенный уровень активности в реакциях гидрирования и, как следствие, обеспечивающего высокий выход среднедистиллятной фракции.

2. Проведение процесса гидрокрекинга в присутствии катализатора, содержащего аморфный алюмосиликат в заявляемых концентрациях, что обеспечивает высокую активность в гидрокрекинге углеводородного сырья.

3. Использование в процессе гидрокрекинга катализатора, содержащего биметаллическое комплексное соединение никеля и вольфрама после сульфидирования, обеспечивающего наличие высокоактивных центров гидрирования, десульфуризации и деазотирования, что впоследствии приводит к повышенной активности катализаторов в гидрокрекинге за счет большего гидрирования ароматических соединений, уменьшения дезактивации катализатора органическими азотсодержащими соединениями и к уменьшению содержания серы и ароматических соединений в получаемых среднедистиллятных фракциях.

Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, неприсущего признакам в разобщенности, то ecть поставленная задача достигается не суммой эффектов, а новым сверхэффектом суммы признаков.

Описание предлагаемого технического решения.

Гидрокрекинг тяжелого вакуумного газойля с содержанием серы 0,96 мас. %, азота 0,13 мас. %, температурой дистилляции 10% об. 380°С и температурой дистилляции 95% об 544°С проводят при температуре 420°С, давлении 16 МПа, объемном расходе сырья 0,71 ч-1, объемном соотношение водород/сырье - 1200 н. нм33 в присутствии катализатора, содержащего, мас. %: Ni(NH4)xyW2O5(C6H5O7)2] - 32,6-39,6, аморфный алюмосиликат - 30,2-47,2; γ-Аl2О3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3-24,2, NiO -3,0-3,8, аморфный алюмосиликат - 36,0-54,4; γ-Аl2О3 - остальное.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. (Согласно известному техническому решению).

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия АlOOН, имеющего структуру псевдобемита, и 42,7 г порошка аморфного алюмосиликата. К смеси добавляют 90 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя с влагоемкостью 0,81 мл/г.

Готовят пропиточный раствор, для чего добавляют к 43 мл воды 22,84 г МоО3, 4,56 г NiO, 8,53 г 80% водного раствора ортофосфорной кислоты. Полученную смесь кипятят в течение одного часа, в результате получают прозрачный зеленый раствор. К полученному раствору добавляют 17,5 г 50% водного раствора глюконовой кислоты. Полученный раствор кипятят 15 мин, раствор приобретает темно-синий с зеленоватым оттенком цвет. Раствор разбавляют до 57 мл и пропитывают им 70 г носителя. После этого катализатор сушат при температуре 100°С в течение 12 ч.

Полученный катализатор содержит в пересчете на сухие вещества мас. %.: Ni - 3,5, Мо - 15,0, Р - 2,2, глюконовая кислота - 8,53, носитель до 100%.

Порцию катализатора объемом 30,8 см3 смешивают с 120 см3 карбида кремния (0,2-0,6 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3,5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°С, а затем 4 ч при 260°С и затем 8 ч при 340°С. Далее проводят гидрокрекинг тяжелого вакуумного газойля с содержанием серы 0,96 мас. %, азота 0,13 мас. %, температурой дистилляции 10% об. 380°С и температурой дистилляции 95% об. 544°С. Процесс гидрокрекинга проводят при температуре 420°С, давлении 16 МПа, объемном расходе сырья 0,71 ч-1, объемном соотношение водород/сырье - 1200 н. нм33. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 2.

Примеры 2-5 иллюстрируют предлагаемое техническое решение.

Пример 2.

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: порошок аморфного алюмосиликата с массовым отношением Si/Al=0,6 содержащий широкий пик в области 16,5-33,5° с максимумом 23,1° прокаливают при температуре 700°С в течение 4 ч. Готовят носитель, содержащий 70 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 28,0 г порошка гидроксида алюминия АlOOН, имеющего структуру псевдобемита, и 59,0 г прокаленного порошка аморфного алюмосиликата с массовым отношением Si/Al=0,6. К смеси добавляют 105 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме четырехлистинка с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г носителя, имеющего влагоемкость 1,02 мл/г.

Готовят водный раствор, содержащий 33,8 г Ni(NH4)[HW2O5(C6H5O7)2], для чего в 30 мл воды при 70°С и перемешивании последовательно растворяют 15,74 г моногидрата лимонной кислоты C6H8O7⋅H2O, 4,48 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O, 19,83 г паравольфрамата аммония (NH4)6W7O24×4H2O. Далее добавлением воды объем раствора доводят до 71 мл. ИК спектр полученного раствора содержит пики, характерные для Ni(NH4)[HW2O5(C6H5O7)2] (таблица 1). 70 г носителя пропитывают по влагоемкости 71 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,6.

Полученный катализатор содержит, мас. %: Ni(NH4)[HW2O5(C6H5O7)2] - 32,6; аморфный алюмосиликат - 47,2; γ-Аl2О3 - 20,2%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3; NiO - 3,0; аморфный алюмосиликат - 54,4; Аl2О3 - остальное.

Катализатор имеет объем пор 0,82 см3/г, удельную поверхность 249 м2/г и средний диаметр пор 13,3 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,04 МПа. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 2.

Пример 3.

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия АlOOН, имеющего структуру псевдобемита и 44,3 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,85, имеющего широкий пик в области 16,5-33,5° с максимумом 23,4°. К смеси добавляют 105 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя имеющего влагоемкость 1,06 мл/г. Готовят водный раствор, содержащий 33,8 г Ni(NH4)[HW2O5(C6H5O7)2] аналогично примеру 2. Добавлением воды объем раствора доводят до 74 мл. 70 г носителя пропитывают по влагоемкости 74 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: Ni(NH4)[HW2O5(C6H5O7)2] - 32,6; аморфный алюмосиликат - 33,7; γ-Аl2О3 - 33,7%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3; NiO - 3,0; аморфный алюмосиликат - 38,8: Аl2О3 - остальное.

Катализатор имеет объем пор 0,62 см3/г, удельную поверхность 208 м2/г и средний диаметр пор 9,8 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,27 МПа. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 2.

Пример 4.

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 50 мас. % аморфного алюмосиликата аналогично примеру 3. Готовят водный раствор, содержащий 45,8 г Ni(NH4)[HW2O5(C6H5O7)2], для чего в 40 мл воды при 70°С и перемешивании последовательно растворяют 21,33 г моногидрата лимонной кислоты C6H8O7⋅H2O, 6,07 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O, 26,87 г паравольфрамата аммония (NH4)6W7O24×4H2O. Добавлением воды объем раствора доводят до 74 мл. 70 г носителя пропитывают по влагоемкости 74 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: Ni(NH4)[HW2O5(C6H5O7)2] - 39,6; аморфный алюмосиликат - 30,2; γ-Аl2О3 - 30,2%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 24,2; NiO - 3,8; аморфный алюмосиликат - 36,0; Аl2О3 - остальное.

Катализатор имеет объем пор 0,50 см3/г, удельную поверхность 193 м2/г и средний диаметр пор 10,2 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,30 МПа. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 2.

Пример 5.

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 60 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 37,3 г порошка гидроксида алюминия АlOOН, имеющего структуру псевдобемита и 53,2 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,85, имеющего широкий пик в области 16,5-33,5° с максимумом 23,4°. К смеси добавляют 110 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 минут и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя имеющего влагоемкость 1,05 мл/г.

Готовят водный раствор, содержащий 33,8 г Ni(NH4)[HW2O5(C6H5O7)2] аналогично примеру 2. Добавлением воды объем раствора доводят до 74 мл. 70 г носителя пропитывают по влагоемкости 74 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: Ni(NH4)[HW2O5(C6H5O7)2] - 32,6; аморфный алюмосиликат - 33,7; γ-Аl2O3 - 33,7%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3; NiO - 3,0; аморфный алюмосиликат - 38,8; Аl2О3 - остальное.

Катализатор имеет объем пор 0,75 см3/г, удельную поверхность 232 м2/г и средний диаметр пор 12,9 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,15 МПа. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 2.

Таким образом, как видно из приведенных примеров, предлагаемый способ гидрокрекинга углеводородного сырья обеспечивает значительно больший выход среднедистиллятных фракций, чем известный способ.

1. Способ гидрокрекинга углеводородного сырья, заключающийся в превращении высококипящего сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм33 в присутствии гетерогенного катализатора, отличающийся тем, что используемый катализатор содержит никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где: С6Н5О7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: Ni(NH4)x[HyW2O5(C6H5O7)2] - 32,6-39,6, аморфный алюмосиликат - 30,2-47,2; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: WO3 - 19,3-24,2, NiO - 3,0-3,8, аморфный алюмосиликат - 36,0-54,4; γ-Al2O3 – остальное.

2. Способ по п. 1, отличающийся тем, что используемый катализатор содержит аморфный алюмосиликат со следующим массовым отношением кремния к алюминию Si/Al от 0,6 до 0,85, характеризующийся рентгенограммой, содержащей широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

3. Способ по п. 1, отличающийся тем, что используемый катализатор имеет объем пор 0,50-0,82 см3/г, удельную поверхность 193-249 м2/г и средний диаметр пор 9,8-13,3 нм и представляет собой частицы с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа.



 

Похожие патенты:

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья, ориентированным на получение низкосернистых среднедистиллятных фракций. Описан катализатор, включающий в свой состав никель, вольфрам, алюминий и кремний, при этом он содержит никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где C6H5O7 - частично депротонированная форма лимонной кислоты; x=0, 1 или 2; y=2-x; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3.

Изобретение относится к способам гидроочистки дизельных топлив, основанным на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°C, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 м3/м3 в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, серу и носитель, при этом молибден и кобальт содержатся в катализаторе в форме смеси комплексных соединений Co(C6H6O7), H4[Mo4(C6H5O7)2O11], H3[Co(OH)6Mo6O18], сера содержится в форме сульфат-аниона SO42-, в следующих концентрациях, мас.

Изобретение относится к регенерированному катализатору гидроочистки дизельного топлива, который имеет объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающий в свой состав молибден, кобальт, серу и носитель.

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас.

Изобретение относится к самоактивирующемуся катализатору гидропереработки для обработки тяжелого углеводородного сырья. При этом указанный катализатор содержит прокаленную частицу, включающую гомогенизированную смесь, полученную гомогенизацией порошка неорганического оксида, порошка триоксида молибдена и соединения никеля, а затем формованием указанной гомогенизированной смеси в частицу, которую прокаливают для получения в результате указанной прокаленной частицы, причем упомянутый неорганический оксид выбирают из группы, которую составляют оксид алюминия, диоксид кремния и двойной оксид алюминия и кремния, при этом указанная прокаленная частица включает молибден, который присутствует в количестве, составляющем от 1 до 10% масс.

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов авиационных керосинов и дизельных топлив для арктических условий.

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C.

Изобретение относится к способу изготовления композиции катализатора, пригодной в гидропереработке углеводородного сырья. Способ включает подготовку частиц носителя, который представляет собой неорганический оксидный материал; пропитку указанных частиц носителя первым водным пропитывающим раствором, включающим первый компонент с металлом VIII группы, первый компонент с металлом VIB группы и первый компонент с фосфором, с получением тем самым пропитанного металлами носителя; прокаливание указанного пропитанного металлами носителя с получением основного катализатора, включающего активные центры I типа и указанный первый компонент с фосфором; пропитку указанного основного катализатора вторым водным пропитывающим раствором, включающим второй компонент VIII группы, второй компонент VIB группы и второй компонент с фосфором с получением тем самым пропитанного металлами основного катализатора; сушку указанного пропитанного металлами основного катализатора в условиях без прокаливания, которые регулируют так, чтобы получить высушенный промежуточный продукт, содержащий активные центры II типа и указанный второй компонент с фосфором; и сульфидирование указанного высушенного промежуточного продукта без его предварительного прокаливания.

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения нанодисперсной фазы со структурой χ-Al2O3. Изобретение может быть использовано в производстве адсорбентов, носителей и катализаторов на основе оксида алюминия, а также в производстве керамики.

Изобретение относится к области каталитического синтеза и наноматериалов. Описан кобальтовый нанокатализатор синтеза Фишера-Тропша, локализованный в пористом материале.
Изобретение относится к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления оксида углерода, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций.

Изобретение относится к способам получения носителей катализаторов различной геометрической формы на основе оксида алюминия со структурой корунда и может быть использовано в производстве катализаторов.

Изобретение относится к катализатору гидроконверсии, содержащему цеолит, к способу его получения и к способу гидроконверсии углеводородных смесей, при котором применяют этот катализатор.

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля и способу его приготовления. Катализатор содержит, мас.%: оксид кобальта 5,0-9,0, оксид вольфрама 7,0-14,0, оксид молибдена 7,0-14,0, оксид алюминия в виде смеси, состоящей из 30-50 мас.% оксида алюминия в виде бемита и 50-70 мас.% оксида алюминия, полученного предварительной обработкой гидроксида алюминия 4-7%-ным раствором азотной кислоты при температуре раствора 5-10°C и просушенного распылением в токе горячего воздуха при температуре 150-210°C - остальное.

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас.

Изобретение относится к способу приготовления никелевого катализатора, включающему пропитку инертного носителя водным раствором или водной суспензией солей никеля концентрацией 8-12 вес.% из расчета достижения содержания никеля на носителе равном 2.5-7 вес.%, высушивание полученной смеси в течение 5-6 часов при температуре 20-25°С и прокаливание в печи при температуре 230-260°С в течение 40-45 минут при давлении менее 5 Па.

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля. Катализатор содержит, мас.%: оксид никеля 5,0-9,0, оксид молибдена 18,0-24,0, оксид фосфора 1,0-3,0 и носитель, состоящий из оксида алюминия 62,2-70,5, вносимого из мезопористого алюмосиликата и гидроксида алюминия, и оксида кремния 1,8-5,5.

Настоящее изобретение относится к способу получения устойчивого к сере легированного оксида алюминия, подходящего для применения в качестве подложки катализатора для обработки продуктов сгорания из двигателей внутреннего сгорания.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья, ориентированным на получение низкосернистых среднедистиллятных фракций. Описан катализатор, включающий в свой состав никель, вольфрам, алюминий и кремний, при этом он содержит никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где C6H5O7 - частично депротонированная форма лимонной кислоты; x=0, 1 или 2; y=2-x; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3.
Наверх