Проницаемый инкубатор из никелида титана

Изобретение относится к области медицины, конкретно к пористым инкубаторам клеточных культур на основе никелида титана, предназначенным для замещения функций поврежденного травмой или заболеванием органа. Проницаемый инкубатор из никелида титана содержит насыщаемый клеточной суспензией объемный массив с пористой структурой, образованный переплетением поверхностно-пористой никелид-титановой нити диаметром от 25 до 40 мкм. Изобретение обеспечивает увеличение относительного объема вмещаемой клеточной суспензии, облегчение процесса насыщения инкубатора клеточной суспензией, уменьшение риска травматичности за счет повышения механической совместимости с мягкотканным окружением, а также пролонгирование срока действия инкубатора за счет замедления инкапсулирования при умеренных темпах иммунной деградации трансплантированных клеток. 3 з.п. ф-лы, 5 ил., 1 табл.

 

Изобретение относится к медицинской технике, конкретно к пористым инкубаторам клеточных культур на основе никелида титана, предназначенным для замещения функций поврежденного травмой или заболеванием органа.

Одним из методов хирургического лечения заболеваний внутренних органов является частичное или полное замещение функций поврежденного органа посредством трансплантации оригиналов или аналогов этого органа. В качестве таких аналогов используют суспензии клеток соответствующих органов, изготовленные по известным технологиям. Разработаны способы и технические средства лечения заболеваний печени, поджелудочной железы, гемопоэтической системы и др., основанные на помещении трансплантированных клеток в проницаемые инкубаторы различного конструктивного оформления. Проницаемые инкубаторы, представляющие собой объемный массив с мелкомасштабной пористой структурой, позволяют решать задачу подавления иммунной реакции организма против чужеродных клеток. Установлено, что при масштабе пористости порядка 0,3 мкм в массиве достаточно свободно осуществляется диффузный обмен веществ и вывод клеточных метаболитов, в то же время исключается проникновение иммунных клеток, имеющих большие размеры.

Известен, в частности, проницаемый инкубатор для хирургического лечения заболеваний внутренних органов (Immunosuppression, macroencapsulation and ultraviolet-Birradiation asimmunoprotection in porcine parcreatic islet xenotransplantation-Pharmacol Toxicol, 1995, Jun/2), содержащий клеточную суспензию, помещенную в объемный массив в виде металлического контейнера с перфорированными стенками. Размер перфораций составляет порядка 0,3 мкм.

Недостаток этого устройства заключается в малом сроке службы вследствие зарастания отверстий и инкапсуляции устройства грубой соединительной тканью.

Увеличение срока службы устройства достигается за счет повышения биосовместимости имплантата с окружающими тканями. Известен проницаемый инкубатор для хирургического лечения заболеваний внутренних органов (пат. РФ №2143867), содержащий насыщаемый клеточной суспензией объемный массив с пористой структурой, отличающийся тем, что он выполнен из никелида титана. Положительный эффект связан с высокой биомеханической совместимостью никелида титана, вследствие чего выполненные из него устройства капсулируются значительно медленнее, и диффузионная способность инкубатора сохраняется длительное время. Известный инкубатор выполняется из пористого никелида титана с преобладанием пор размером 0,3-0,5 мкм.

Проницаемый инкубатор из никелида титана применяют следующим образом. Изготовленную по специальной технологии клеточную суспензию, соответствующую поврежденному органу, помещают в объемный массив из пористого никелида титана (пропитывают последний клеточной суспензией) и имплантируют в тело больного. Объемный массив имеет, как правило, форму, близкую к сферической или уплощенную. Для имплантации выбирают места организма, определенные анатомическими и физиологическими показаниями. Удобным местом является брыжейка кишечника - орган листовой геометрии. Поэтому предпочтительна уплощенная форма инкубатора. В прочих случаях наиболее рациональной по соотношению объема и площади поверхности является сферическая форма инкубатора.

После периода адаптации клетки внутри инкубатора начинают функционировать, замещая частично или полностью функцию поврежденного органа и создавая определенный лечебный эффект. При этом через поры инкубатора осуществляется диффузия метаболитов, и вместе с тем внутрь инкубатора затрудненно проникновение иммунных клеток, поскольку их размеры превышают размеры пор. Со временем эффективность работы устройства увеличивается, т.к. пористая структура прорастает кровеносными и лимфатическими сосудами и пассивная диффузия метаболитов дополняется активным синтезом и экскрецией веществ, присущим натуральным органам в естественных условиях.

По отношению к известному проницаемому инкубатору в качестве ведущей служила концепция малости пор в сравнении с размерами иммунных клеток, то есть предпочтительным считался размер пор в пределах от 0,3 до 0,5 мкм.

Опыт применения проницаемых инкубаторов из никелида титана по пат. РФ №2143867 выявил присущие ему недостатки.

1. Мелкопористая структура ограничивает суммарный коэффициент пористости величиной порядка 60%, что соответственно ограничивает относительный объем вмещаемой клеточной культуры.

2. Мелкопористая структура затрудняет процесс насыщения проницаемого массива клеточной суспензией.

3. Объемный массив пористого никелида титана не полностью механически совместим с мягкотканым окружением, что создает риск травматичности при непредвиденных механических нагрузках.

4. Мелкопористая структура инкубатора, так же как и у других известных аналогов, способствует постепенному формированию соединительнотканной оболочки (инкапсулированию инкубатора) и прекращению диффузии питательных веществ и метаболитов. В связи с этим концепция непроницаемости мелких пор для иммунных клеток утрачивает доминантную роль, принуждая исследователей к установлению компромисса между сохранением скорости диффузии метаболитов и темпом деградации полезных клеток вследствие иммунных процессов.

Задачей изобретения является повышение эффективности функционирования проницаемых инкубаторов из никелида титана. Техническим результатом изобретения в рамках указанной задачи является увеличение относительного объема вмещаемой клеточной суспензии, облегчение процесса насыщения инкубатора клеточной суспензией, уменьшение риска травматичности за счет повышения механической совместимости с мягкотканным окружением, а также пролонгирование срока действия инкубатора за счет замедления инкапсулирования при умеренных темпах иммунной деградации трансплантированных клеток.

Технический результат достигается тем, что известный проницаемый инкубатор из никелида титана, содержащий насыщаемый клеточной суспензией объемный массив с пористой структурой, отличается тем, что в нем объемный массив представлен переплетением поверхностно-пористой никелид-титановой нити диаметром от 25 до 40 мкм. По условиям применения вариантами выполнения объемного массива из указанной нити являются:

- комкообразно спутанная нить;

- многослойный тампон из сплетенной из нити сетки, скрепленный швами из той же нити;

- рулон, свернутый из указанной сетки, скрепленный швами из той же нити.

Достижимость технического результата обусловлена следующим.

Поверхностно-пористая никелид-титановая нить (см., например, пат. РФ №2280094) проявляет высокую степень биосовместимости и адаптации к тканям организма. Переплетение поверхностно-пористой никелид-титановой нити представляет собой массив, приближающийся по проницаемости и смачиваемости к традиционным волокнистым ватно-марлевым материалам типа тампонов. В отличие от пористого никелида титана массив из нити не содержит полузакрытых (изолированных) пор, доступ в которые для жидкой клеточной культуры затруднен. Вместо этого массив переплетенной нити проницаем в любых направлениях, что придает ему преимущества увеличения проницаемости и облегчения смачиваемости по сравнению с пористым материалом.

Переплетение поверхностно-пористой никелид-титановой нити обладает повышенным относительным объемом вмещаемой клеточной суспензии - до 90-95%, недостижимым для пористого никелида титана из-за угрозы утраты механической прочности. Пористый никелид титана с такой высокой степенью пористости обладал бы недопустимо низкой прочностью по отношению к деформациям из-за наличия в нем хрупких перегородок. Сравнительно с этим, переплетенная нить при аналогичных деформациях образованного ею объемного массива испытывает незначительные локальные деформации изгиба, далеко отстоящие от предельных для никелида титана обратимых деформаций.

Улучшение деформационных свойств обеспечивает лучшую механическую совместимость массива из нити с мягкотканным окружением. Этим он выгодно отличается от массива пористого материала, который для указанного окружения остается жестким, в связи с чем существует риск повреждения тканей при различных нагрузках (напряжение, удар, падение и т.п.).

Пролонгирование срока действия инкубатора из нити в сравнении с пористым инкубатором обусловлено увеличением относительного объема насыщающей его клеточной суспензии и меньшей интенсивностью капсулирования при умеренной скорости деградации клеточной культуры в результате иммунной реакции. Достигаемое повышение пористости от типичной для пористых структур величины 60% до 90-95% составляет полуторакратное увеличение количества функционирующих клеток при тех же габаритах инкубатора. Снижение интенсивности капсулирования связано с большей величиной просветов между переплетенными нитями, образующими массив инкубатора. Снижение скорости деградации трансплантированных клеток обусловлено большим числом мелкоразмерных непроницаемых для иммунных клеток лакун в области соприкосновения нитей друг с другом.

Выбор верхнего предела диаметра нити 40 мкм обусловлен нарастающей с диаметром жесткостью, ведущей к проявлению раздражающего действия свободных концов нити. Выбор нижнего предела диаметра нити 25 мкм обусловлен, наряду с технологическими ограничениями, снижением эластичности массива инкубатора до утраты формообразующих свойств и неконтролируемого сплющивания.

Выполнение инкубатора в виде массива спутанной нити придает ему подобие ватному тампону со свойственным ему удобством применения в конкретном расположении.

Выполнение инкубатора в виде многослойного тампона из сплетенной из нити сетки придает ему подобие аналогичному марлевому тампону со свойственным ему удобством применения в конкретном расположении.

Выполнение инкубатора в виде рулона, свернутого из указанной сетки, придает ему подобие аналогичной марлевой турунде со свойственным ей удобством применения в конкретном расположении.

Прошивка тампона и рулона из никелид-титановой нити той же самой нитью обеспечивает их целостность без дополнительных явлений, связанных с присутствием разнородных материалов.

Изобретение поясняется иллюстрациями фиг. 1-5.

На фиг. 1 схематически изображен объемный массив в виде комкообразно спутанной поверхностно-пористой никелид-титановой нити.

На фиг. 2 схематически изображен объемный массив в виде многослойного тампона из сетки, сплетенной из поверхностно-пористой никелид-титановой сетки.

На фиг. 3 схематически изображен объемный массив в виде рулона из указанной сетки.

На фиг. 4 изображены варианты реализации инкубаторов из комкообразно спутанной нити.

На фиг. 5 изображен образец сетки, используемой для изготовления инкубаторов.

Цифрами обозначены: 1 - никелид-титановая нить, 2 - сетка, 3 - скрепляющие швы.

Проницаемый инкубатор из никелида титана в соответствии с заявляемым изобретением содержит насыщаемый клеточной суспензией объемный массив с пористой структурой. Отличие состоит в том, что объемный массив образован переплетением поверхностно-пористой никелид-титановой нити 1 диаметром от 25 до 40 мкм. В зависимости от условий применения предпочтительно выполнять объемный массив с пористой структурой в виде комкообразно спутанной нити; многослойного тампона из сплетенной из нити сетки 2, скрепленного швами 3 из той же нити; рулона, свернутого из указанной сетки 2, скрепленного швами 3 из той же нити.

Пористый инкубатор из никелида титана применяют следующим образом. Объемный массив, образованный сплетением поверхностно-пористой никелид-титановой нити, пропитывают заранее приготовленной суспензией клеточной культуры, замещающей нефункционирующие клетки поврежденного органа, и помещают в наименее травмируемую область тела больного (в брыжейку кишки, в жировую ткань в области живота, или иной наиболее доступный иммуннопривилегированный орган). По анатомо-физиологическим особенностям инкубатор выполняют в виде комкообразно спутанной нити, многослойного тампона из сплетенной из нити сетки или рулона, скатанного из указанной сетки. Клеточная суспензия удерживается внутри инкубатора капиллярными силами. Через проницаемую структуру инкубатора свободно осуществляется диффузия метаболитов. Вследствие высокой биомеханической совместимости никелида титана устройство не капсулируется, и диффузная способность инкубатора сохраняется длительное время. Благодаря высокой гибкости, проявляемой никелид-титановой нитью, инкубатор не оказывает травматического действия при любых непредвиденных механических нагрузках, например ударах, падениях и т.п. Множественные контакты между пересекающимися участками поверхностно-пористой нити создают локальные микроразмерные ниши, где фрагменты клеточной культуры укрываются от атаки иммунных клеток организма.

Работоспособность предлагаемого пористого инкубатора из никелида титана подтверждается типовым экспериментом по определению вместимости и выживаемости клеток костного мозга и опухолевых клеток аденокарциномы Эрлиха для различных вариантов инкубатора. Концентрация засева клеток костного мозга составляла 2.5×106 кл/мл, концентрация засева клеток аденокарциномы Эрлиха 1×106 кл/мл. Результаты эксперимента приведены в таблице.

Из приведенных результатов следует, что вместимость предлагаемого инкубатора из никелид-титановой нити при одинаковых размерах превышает вместимость известного инкубатора из пористого никелида титана в 1,5-1,6 раза, причем выживаемость клеток в предлагаемом инкубаторе также превышает выживаемость в известном инкубаторе.

Лабораторные испытания подтвердили высокую эффективность предложенного технического решения при компенсации дисфункции поджелудочной железы в условиях искусственно вызванного сахарного диабета у подопытных животных. В сравнении с инкубаторами, изготавливаемыми из пористого никелида титана, отмечено увеличение срока службы заявляемого инкубатора не менее чем в 1.5 раза.

1. Проницаемый инкубатор из никелида титана, содержащий насыщаемый клеточной суспензией объемный массив с пористой структурой, отличающийся тем, что объемный массив образован переплетением поверхностно-пористой никелид-титановой нити диаметром от 25 до 40 мкм.

2. Проницаемый инкубатор из никелида титана по п. 1, отличающийся тем, что в нем объемный массив с пористой структурой выполнен в виде комкообразно спутанной нити.

3. Проницаемый инкубатор из никелида титана по п. 1, отличающийся тем, что в нем объемный массив с пористой структурой выполнен в виде многослойного тампона из сплетенной из нити сетки, скрепленного швами из той же нити.

4. Проницаемый инкубатор из никелида титана по п. 1, отличающийся тем, что в нем объемный массив с пористой структурой выполнен в виде рулона, свернутого из указанной сетки, скрепленного швами из той же нити.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к ортопедии, травматологии и трансплантологии, и предназначено для изготовления протезов, скаффолдов и биоимплантатов для замещения костно-хрящевых дефектов.
Изобретение относится к медицине, в частности к способу получения пористого гидроксиапатит-коллагенового композита, который характеризуется тем, что гидроксиапатит, полученный конденсационным способом с использованием гидроакустического преобразователя, смешивают с коллагеном, полученную гидроксиапатит-коллагеновую смесь гомогенизируют в ультразвуковом поле с частотой (22÷44) кГц, плотностью мощности (1÷10) Вт/см3 в течение (10÷400) с.

Группа изобретений относится к области создания пористых структур для медицинских имплантатов. Способ изготовления пористой структуры включает в себя этап создания модели пористой структуры, а также этап ее изготовления в соответствии с созданной моделью путем воздействия на плавкий материал источником энергии.

Изобретение относится к области медицины, в частности к способам получения материала для тканеинженерных конструкций, состоящих из волокон биорезорбируемых полиэфиров, полученных методом электроформования из растворов вышеуказанных полимеров для получения биологически активных материалов, резорбируемых в теле человека, которые могут найти применение для получения тканеинженерных конструкций различных конфигураций, имитирующих внеклеточный матрикс, обладающих контролируемой биорезорбцией, применяемых для создания различных имплантатов, в том числе, биорезорбируемых протезов кровеносных сосудов, а также противоспаечных материалов и раневых покрытий.

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и жидкость - водный 30-60% раствор фосфата магния, при следующем соотношении компонентов, масс.
Группа изобретений относится к медицине. Описан композиционный имплантат для компенсации костных дефектов, который выполнен из пористого композиционного материала, содержащего углеродную матрицу, армирующий каркас из углеродных волокон и открытые поры, объем которых не менее 5% от объема материала, а поры композиционного материала частично или полностью заполнены раствором органического йодсодержащего вещества, не вызывающим токсического действия на организм человека в количестве 0,01-0,1 г на 1 кг массы человека, при этом содержание вещества составляет не менее 3 мг в 1 см3 композиционного материала.

Изобретение относится к медицине и представляет собой способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов, включающий приготовление текучего гидрогеля, содержащего альгинат натрия и кальцийфосфатный наполнитель, нанесение гидрогеля на платформу, формирование трехмерного каркаса с последующей фиксацией структуры.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.
Группа изобретений относится к медицине, конкретно к пористому двухфазному материалу фосфата кальция/гидроксиапатита (ФК/ГАП) в качестве заменителя кости, содержащему спеченный ФК стержень и по меньшей мере один однородный и замкнутый эпитаксически выращенный слой нанокристаллического ГАП, нанесенный поверх спеченного ФК стержня, при этом эпитаксически выращенные нанокристаллы имеют такой же размер и структуру, как и костный минерал человека, т.е.

Группа изобретений относится к медицине и характеризует пористую структуру для использования в медицинских имплантатах. Данная структура содержит ряд ветвей, причем одна ветвь или ряд ветвей имеют: первый конец, второй конец и непрерывное удлиненное тело между указанными первым и вторым концами, причем указанное тело имеет толщину, длину и изогнутую часть, также содержит ряд соединений, причем по меньшей мере одно соединение содержит пересечение по касательной двух из указанных изогнутых частей, и содержит ряд узлов, причем по меньшей мере один узел имеет три или большее количество указанных соединений.

Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью.
Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного антибактериального покрытия на ортопедические имплантаты из титана и нержавеющей стали, включающему нанесение покрытия на предварительно обработанную поверхность металлического имплантата, при этом поверхность металлических имплантатов из титана и нержавеющей стали подвергают очистке методом ионного травления в герметичной камере, которую предварительно вакуумируют до остаточного давления 9⋅10-5-1⋅10-6 Торр, с последующим заполнением камеры аргоном и вакуумированием камеры до остаточного давления 4⋅10-4-1⋅10-3 Торр, а ионное травление выполняют ионами аргона с энергией 0,7-3,0 кэВ в течение 4-8 мин, затем на поверхность ортопедических имплантатов из титана и из нержавеющей стали наносят дуальным распылением с двух магнетронных источников антиадгезивное антибактериальное покрытие в виде атомов серебра и углерода в виде тетраэдрического алмаза типа ta-C, причем используют магнетронный источник углеродной плазмы с мощностью 95-108 Вт, источник атомов серебра с мощностью 2-20 Вт и ионный источник стимулирования процесса нанесения покрытия ионами аргона с энергией ионов инертного газа аргона от 0,1 до 1,5 кэВ, а процесс нанесения антиадгезивного антибактериального покрытия продолжают в заполненной аргоном и вакуумированной до остаточного давления 4⋅10-4-1⋅10-3 Торр камере, при этом наносят на металлическую поверхность ортопедических имплантатов двухкомпонентное антиадгезивное антибактериальное биосовместимое нанопокрытие толщиной от 9 до 1180 нм, содержащее наногранулы шарообразной формы из высокочистого серебра не ниже 99,9% чистоты размером 4,5-9,5 нм со сформированным на их поверхности сплошным покрытием углерода в виде тетраэдрического алмаза типа ta-C толщиной 0,4-1,2 нм.

Изобретение относится к области медицинской техники, а именно к покрытиям имплантатов на основе титана и его сплавов и способам их получения, и может быть использовано в ортопедической стоматологии.

Настоящее изобретение относится к области биосовместимых компонентов, предназначенных для контакта с живыми клетками и тканью, в частности к имплантатам, предназначенным для имплантации в живую ткань.
Изобретение относится к области медицины, хирургии. При хирургическом лечении пациентов с патологией наружного и среднего уха выполняют санацию полости.

Изобретение относится к медицине. Описан способ, который включает внесение фосфата кальция в 5-20% раствор ортофосфорной кислоты до насыщения, затем имплантат помещают в этот раствор и проводят гальваническое нанесение кальция-фосфатного покрытия при напряжении 80-400 В, частоте импульсов 50-150 Гц, плотности тока 0,2-1,0 А/мм2, в течение 10-60 мин, времени импульсов 50-300 мкс, рН электролита 6,5-8,0 и температуре электролита 25-40°С, и изделие промывают дистиллированной водой, проводят обжиг изделия при температуре 400-1200°С в течение 30-60 мин до образования коралловидной разветвленной структуры покрытия толщиной 5-80 мкм, затем изделие помещают в раствор с метаболитами лактобактерий или колибактерий на 10-30 мин при температуре 18-25°С.

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также для получения носителей катализаторов и композитных материалов.

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек.

Изобретение относится к медицине. Описан способ получения покрытий на элементах эндопротезов крупных суставов человека, выполненных из титана и его сплавов, включающий помещение имплантата в ванну с раствором электролита, содержащего ионы Са и Р, подключение имплантата и вспомогательного электрода к источнику питания, охлаждение электролита теплообменником, при этом готовят электролит, для чего растворяют в дистиллированной воде гидроксид кальция Са(OH)2, затем добавляют метасиликат натрия пятиводного Na2SiO3×5H20 и перемешивают до образования белого дисперсного взвешенного осадка, затем добавляют натрий фосфорнокислый двузамещенный двенадцативодный Na2HPO4×12H2O и перемешивают до полного его растворения, причем для обработки титана марок ВТ1-0, Grade 2, 3, 4, электролит готовят из расчета массы сухого вещества в граммах на литр состава: Са(OH)2 - 1,6; Na2SiO3×5H2O - 8,0; Na2HPO4×12H2O - 5,0; а для обработки сплавов ВТ6 (Ti-6Al-4V) и Ti-6Al-7Nb исходный электролит, применяемый для титана марок ВТ1-0, Grade 2, 3, 4, разбавляют дистиллированной водой в соотношении 2 части электролита и 1 часть воды; а для защиты не предназначенных для обработки частей элементов эндопротезов на них наносят маскирующую изолирующую оснастку на основе поливинилсилоксанового силикона аддитивного отверждения, далее проводят микродуговое оксидирование в течение 10-30 мин в мягком анодно-катодном режиме с синусоидальной формой тока плотностью 0,1±0,02 А/см2, причем на первой минуте используют анодный режим включения при соотношении анодного и катодного токов не менее 10:1.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе.

Группа изобретений относится к медицине. Способ изготовления имплантата для протезирования костей черепа, повторяющего геометрию костей черепа, подлежащих протезированию, и прилегающего к краям отсутствующей части черепа, то есть дефекта черепа, заключается в том, что включает следующие стадии: делают компьютерную томографию черепа с дефектами; со снимков, полученных с томограммы, создают объемное изображение черепа с дефектами, подлежащими редактированию, то есть цифровую трехмерную модель черепа при помощи программного обеспечения; осуществляют редактирование объемного изображения, виртуально вырезая по меньшей мере часть черепа с отсутствующей частью кости с получением цифровой трехмерной модели и ее файла; виртуально проектируют на основе томограммы отсутствующую часть кости черепа с получением ее цифровой трехмерной модели и ее файла; на основе полученных файлов цифровых трехмерных моделей на 3D-принтере изготавливают трехмерную пластиковую модель отсутствующей части кости черепа и трехмерную пластиковую модель по меньшей мере части черепа с отсутствующей частью кости черепа; изготавливают сетчатую перфорированную плоскую заготовку со сквозными отверстиями из титана или титанового сплава по размеру поверхности полученной пластиковой модели отсутствующей части кости черепа с нахлестом, отрезая, при необходимости, излишек; полученную плоскую заготовку имплантата изгибают методом пластической деформации по поверхности сборки, состоящей из пластиковой модели отсутствующей части кости черепа и из пластиковой модели по меньшей мере части черепа с отсутствующей частью кости черепа, формируя перед проведением операции изогнутую сетчатую перфорированную пластину со сквозными отверстиями в виде изогнутого тела. Имплантат для протезирования костей черепа, полученный вышеуказанным способом, представляет собой изогнутое тело, выполненное в виде сетчатой перфорированной пластины из титана или титанового сплава со сквозными отверстиями, являющимися крепежными элементами, повторяющей геометрию костей черепа, подлежащих протезированию, и точно прилегающей к краям дефекта черепа - отсутствующей части черепа, имеющей перемычки между отверстиями сетчатой пластины и в которой по меньшей мере один крайний ряд отверстий откалиброван по наружному периметру, при этом изогнутая сетчатая пластина со сквозными отверстиями прикреплена к костям черепа при помощи крепежных средств через сквозные отверстия сетчатой пластины, зеркально замещающей любые кости головного и лицевого черепа. Изобретения обеспечивают повышение точности прилегания имплантата к краям части черепа вокруг отсутствующей части черепа (иначе говоря, дефекта) и исключение необходимости изгиба пластины во время операции и ее подгонки под размер дефекта, что резко снижает трудоемкость операции в целом. 2 н. и 22 з.п. ф-лы, 15 ил.

Изобретение относится к области медицины, конкретно к пористым инкубаторам клеточных культур на основе никелида титана, предназначенным для замещения функций поврежденного травмой или заболеванием органа. Проницаемый инкубатор из никелида титана содержит насыщаемый клеточной суспензией объемный массив с пористой структурой, образованный переплетением поверхностно-пористой никелид-титановой нити диаметром от 25 до 40 мкм. Изобретение обеспечивает увеличение относительного объема вмещаемой клеточной суспензии, облегчение процесса насыщения инкубатора клеточной суспензией, уменьшение риска травматичности за счет повышения механической совместимости с мягкотканным окружением, а также пролонгирование срока действия инкубатора за счет замедления инкапсулирования при умеренных темпах иммунной деградации трансплантированных клеток. 3 з.п. ф-лы, 5 ил., 1 табл.

Наверх