Способ повышения продуктивности цыплят-бройлеров путем внутримышечных инъекций лиозолей наноформ железа и меди в смеси со стабилизированным электрохимически активированным водным раствором католита

Изобретение относится к сельскому хозяйству, а именно к способу повышения продуктивности цыплят-бройлеров при совместном применении внутримышечных инъекций наноформ железа и меди с электрохимически активированным католитом. Способ включает внутримышечные инъекции в бедро цыплят-бройлеров в 15-суточном возрасте лиозолей наночастиц железа с размером частиц 80,5±5 мкм в дозировке 2 мг/кг живой массы, и по достижении 29-суточного возраста им проводится внутримышечная инъекция лиозолей наночастиц меди с размерностью 40±0,5 мкм в дозировке 2 мг/кг живой массы. Причем в составе лиозолей наноформ железа и меди электрохимически активированный водный раствор католита стабилизирован аминокислотой глицин в количестве не менее 0,01 мас. % с целью сохранения свойств католита с редокс-потенциалом Eh=600 мВ и водородным показателем рН 9. Использование изобретения позволит повысить продуктивность птицы и качество мяса. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к сельскому хозяйству, в частности к животноводству, и может быть использовано при внедрении нанотехнологий в отрасли птицеводства.

Высокодисперсные формы эссенциальных металлов при введении в организм обеспечивают прохождение их в сосуды и распределение по всем органам лимфо- и кровотоком. Благодаря своей электронейтральности и минимальной токсичности [1, 2, 3], более высокой биодоступностью из наноформ частицы металлов легко проникают в ткани и влияют на жизненно важные процессы [4], стимулируют обменные процессы и т.д. [5, 6].

Введение в рацион сельскохозяйственных животных и птицы наночастиц железа и меди стимулирует повышение продуктивности [5, 7, 8, 9, 10].

Ранее проведенные исследования показали, что внутримышечное введение наночастиц железа [11, 12, 10] и меди [13, 14, 15, 10] способствует повышению продуктивности цыплят-бройлеров и повышению уровня аргенина в печени, который является носителем азота и основным фактором, регулирующим максимальный рост молодых животных [16].

С целью возможного дальнейшего повышения продуктивности птицы перспективно использование совместимых и синергически усиливающих свое действие [10, 19] при внутримышечных разовых лиозолей наночастиц железа в 15-дневном возрасте [11] и при достижении 29-дневного возраста - препарата частиц меди [14, 15]. Лиозоли частиц железа и меди готовятся в смеси с электрохимически активированным (ЭХА) водным раствором католита [17], стабилизированного для сохранения длительности его свойств до конца эксперимента [18]. ЭХА католит обладает способностью стимулировать регенерацию органов и тканей, обладает иммуностимулирующим эффектом на продукцию [17, 20, 21].

Предлагаемый авторами способ включает внутримышечные инъекции в бедро цыплят-бройлеров препарата наночастиц железа размером 80,5±5,5 мкм в дозировке 2 мг на кг живой массы в возрасте 15 суток [11], и по достижении 29-дневного возраста им проводили внутримышечную инъекцию препарата наночастиц меди размером 40±0,5 мкм в дозе 2 мг на кг живой массы птицы [14, 15], что в конечном счете обеспечило суммарное достоверное повышение продуктивности на 14,6% при росте показателя общего белка в сыворотке крови на 14,9%.

Лиозоли препаратов железа и меди для инъекций раздельно готовили путем смешивания частиц с электрохимически активированным (ЭХА) водным раствором католита с редокс-потенциалом Eh=-600 мВ и водородным показателем рН 9, стабилизированного аминокислотой, выбранной из группы, включающей глицин, в количестве не менее 0,01 мас. % [18] - табл. 1.

По литературным источником новизна предлагаемого авторами способа не представлена.

ЭХА католит при проведении опыта готовили в электроактиваторе «Эсперо 1» производства НПФ «Эсперо» (г. Ташкент).

Наночастицы железа и меди при проведении эксперимента были синтезированы методом высокотемпературной конденсации на установке Миген-3 а Институте энергетических проблем химической физики РАН г. Москва [22].

Исследования были проведены в условиях экспериментально-биологической клиники (вивария) ФГБОУ ВПО «Оренбургский государственный университет» на цыплятах-бройлерах «Смена-7». Для эксперимента было отобрано 36 голов 11-дневных цыплят-бройлеров, которых методом аналогов разделили на 3 группы (n=12). Во время эксперимента вся птица находилась в одинаковых условиях содержания - табл. 1.

Формирование общих рационов (ОР) для подопытной птицы в ходе исследований проводилось с учетом рекомендаций ВНИТИП [23].

Микроклимат в помещении соответствовал требованиям ВНИТИП. Кормление опытной птицы проводилось 2 раза в сутки, учет поедаемости - ежесуточно. Поение осуществлялось вволю.

Птице I группы проводились внутримышечные (в/м) инъекции в бедро лиозолей наночастиц железа в дозе 2 мг/кг живой массы разово в возрасте 15 и 29 суток. Птице II группы производились инъекции в 15-дневном возрасте лиозолей наночастиц железа и при достижении 29-дневного возраста - лиозолей наночастиц меди в дозах 2 мг/кг живой массы птицы - табл. 1.

Препараты железа и меди для инъекций готовили путем смешивания частиц с ЭХА католитом объемом 200 мкл. Полученный препарат обрабатывали ультразвуком (частота 35 кГц; мощность 300 (450) Вт, амплитуда колебаний 10 мкм). Продолжительность ультразвуковой обработки 30 мин. Дозировка железа и меди составила 2 мг/кг живой массы птицы и обосновывалась ранее проведенными исследованиями [23].

Следует учесть, что при внутримышечной инъекции наночастиц железа и меди повышается усвояемость корма и повышается содержание уровня эссенциальных и условно эссенциальных элементов в мясе птицы, что повышает экологические показатели качества мяса, при этом снижается содержание ряда токсичных элементов [13, 14, 15].

Таким образом, результаты исследования показали, что совместное последовательно-раздельное использование наночастиц железа, меди и ЭХА католита является эффективным способом повышения прироста живой массы цыплят-бройлеров (табл. 2)

Сочетание наночастиц железа, меди и ЭХА католита может быть рекомендовано как способ для повышения продуктивности сельскохозяйственной птицы.

Список литературы

1. Zhang J, Wang H, Yan X, Zhang L. 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. LifeSci. Jan 21; 76 (10): 1099-109.

2. Hao L, Wang Z, Xing B. 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinuscarpio). J EnvironSci (China).; 21 (10): 1459-66.

3. Wang H, Sun X, Liu Z, Lei Z. 2014. Creation of nanopores on gra-phene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale. May 7.

4. Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB. 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J Nutr. Mar; 137 (3): 614-9.

5. World Health Organization 2008. Global Database on Anaemia, World Health Organization, Geneva, Switzerla

6. Cancelo-Hidalgo M.J., Castelo-Branco C, Palacios S., Haya-Palazuelos J., Ciria-Recasens M., Manasanch J., -Edo L. 2013. Tolerability of different oral iron supplements: a systematic review. Curr. Med. Res. Opin. 29, 291-303.

7. -Rosas Juan P., De-Regil Luz M., Dowswell Т., Viteri Fernando E. 2012. Daily oral iron supplementation during pregnancy. In Cochrane Database of Systematic Reviews, John Wiley & Sons, Ltd., Chichester, UK. Zimmermarnn M.В., С

8. Zimmermann M.B., Chassard C, Rohner F., E., Nindjin C, Dostal A., Utzinger J., Ghattas H., Lacroix C, Hurrell R. F. 2010. The effects og iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote . Am. J. Clin. Nutr. 92., 1406-1415.

9. Яушева Е.В. Использование наночастиц металлов-микроэлементов в животноводстве: перспективы и угрозы (обзор) // Вестник мясного скотоводства. - 2013. - т 3. - №81. - С. 7-11.

10. Яушева Е.В., Мирошников С.А. Исследование влияния высокодисперсных частиц металлов на гомеостаз показателей общего белка и интенсивность роста цыплят-бройлеров // Современные проблемы науки и образования. - №2, 2014.

11. Патент на изобретение RU №2601812. Опубликовано 14.10.2016 (прототип).

12. Патент на изобретение RU №2593366. Опубликовано 11.07.2016.

13. Патент на изобретение RU №2468595. Опубликовано 10.12.2012.

14. Нестеров Д.В., Сипайлова О.Ю., Сизова Е.А., Шейда Е.В. Сравнительная оценка влияния различных способов введения наночастиц меди на обмен токсичных элементов в мышечной ткани цыплят-бройлеров // Актуальные проблемы транспортной медицины. - №3 (37). 2014. - С. 146-150.

15. Вишняков А.И. Особенности элементного статуса красного костного мозга цыплят-бройлеров при введении в организм нанопорошка меди. Ученые записки Казанской государственной академии ветеринарной медицины им Н.Э. Баумана. 2011. №207. - С 105-110.

16. Nairz М, Schleicher U, Schroll A, Sonnweber Т, Theurl I, Ludwiczek S, Talasz H, Brandacher G, Moser PL, Muckenthaler MU, Fang FC, Bogdan C, Weiss GJ 2013. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. ExpMed. May 6; 210 (5): 855-73. doi: 10.1084/jem.20121946. Epub 2013 Apr 29.

17. Алехин C.A., Байбеков И.М., Гариб Ф.Ю., Гительман Д.С. и др. «Живая» вода - мифы и реальность. Сборник статей №6. Ташкент: МИС-РТ, 1998.

18. Патент на изобретение RU №2234945. Опубликовано 27.08.2004.

19. Дерябин Д.Г., Алешина Е.С., Дерябина Т.Д., Ефремова Л.В. 2011. Биологическая активность ионов, нано- и микрочастиц Cu и Fe в тесте ингибирования бактериальной биолюминисценции // Вопросы биологической, медицинской и фармацевтической химий. №6. - 31-36.

20. Авилова А.В., Алексеева Д.Н., Ширяев О.Ю., Резников К.М. Сравнительный анализ динамики выраженности психосимптоматики и показателей качества жизни больных шизофренией, осложненной алкоголизмом, при назначении кветиапина и католита // Прикладные информационные аспекты медицины, №1, 2007. - С. 76-79

21. Авилова А.В., Ширяев О.Ю., Баженова Е.В. Особенности влияния католита на биохимические и иммунологические показатели крови больных шизофренией, осложненной алкогольной зависимостью // Научно-медицинский вестник центрального черноземья, №32, 2008. - С. 3-6.

22. Ген М.Я., Миллер А.В. Авторское свидетельство СССР №814432. Опубликовано 1981.

23. Фисинин В.И., Имангулов Ш.А., Егоров И.А., Околелова Т.М. и др. Рекомендации по кормлению сельскохозяйственной птицы. Сергиев Посад, 2000. - 67 с.

1. Способ повышения продуктивности цыплят-бройлеров при совместном применении внутримышечных инъекций наноформ железа и меди с электрохимически активированным католитом, включающий внутримышечные инъекции в бедро цыплят-бройлеров в 15-суточном возрасте лиозолей наночастиц железа с размером частиц 80,5±5 мкм в дозировке 2 мг/кг живой массы, и по достижении 29-суточного возраста им проводится внутримышечная инъекция лиозолей наночастиц меди с размерностью 40±0,5 мкм в дозировке 2 мг/кг живой массы, что обеспечивает суммарное достоверное повышение продуктивности птицы на 14,6%

2. Способ повышения продуктивности цыплят-бройлеров по п. 1, отличающийся тем, что в составе лиозолей наноформ железа и меди электрохимически активированный водный раствор католита стабилизирован аминокислотой глицин в количестве не менее 0,01 мас. % с целью сохранения свойств католита с редокс-потенциалом Eh=600 мВ и водородным показателем рН 9.



 

Похожие патенты:

Использование: для использования при создании твердотельных лазеров, включая волоконные лазеры, и люминесцентных оптических материалов. Сущность изобретения заключается в том, что оптическая наностеклокерамика с ионами хрома относится к литий-калий-алюмоборатной системе с ионами трехвалентного хрома и имеет следующий состав (мол.%): Li2O 0-15,0; Al2O3 20,0-30,0; K2O 10,0-20,0; B2O3 40,0-60,0; Sb2O3 0-6,0; Cr2O3 0,05-0,2.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения системы для доставки противоопухолевого препарата в клетки опухоли, включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, с органическим соединением, химически связывающимся с наночастицами и обеспечивающим селективное проникновение наночастиц внутрь клеток опухоли, и водным раствором противоопухолевого препарата с последующим отделением полученных модифицированных наночастиц центрифугированием, отличающийся тем, что в качестве модифицированных полимером наночастиц используют наночастицы, полученные путем нагрева до 120°C в атмосфере инертного газа при перемешивании смеси дифенилового эфира, олеиновой кислоты, олеиламина и 1,2-гексадекандиола, введения в смесь пентакарбонила железа, выдерживания полученной смеси с последующим введением раствора, содержащего смесь тригидрата золотохлористоводородной кислоты и олеиламина в дифениловом эфире, предварительно выдержанного в атмосфере инертного газа, повторного нагрева смеси в атмосфере инертного газа от 120°C до 250°-260°C, выдерживания смеси при 250°-260°C в течение 25-30 мин и ее охлаждения до комнатной температуры, проводимыми в атмосфере инертного газа, выдерживания смеси при комнатной температуре в присутствии воздуха, добавления в смесь одноатомного спирта и отделения наночастиц магнетита центрифугированием, с последующей их обработкой раствором полимера, выбранного из группы, включающей триблок-сополимер, состоящий из центрального блока полипропиленгликоля со степенью полимеризации 56 и двух концевых блоков полиэтиленгликоля со степенью полимеризации 101 каждый, 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[карбокси(полиэтиленгликоль) - 2000] и триблок-сополимер, состоящий из центрального блока полипропиленгликоля со степенью полимеризации 30 и двух концевых блоков полиэтиленгликоля со степенью полимеризации 78 каждый, в органическом растворителе, затем ультразвуком, с последующим удалением растворителя, введением воды, повторной обработкой ультразвуком и отделением модифицированных наночастиц центрифугированием, в качестве противоопухолевого препарата используют доксорубицин, в качестве органического соединения, обеспечивающего селективное проникновение наночастиц внутрь клеток аденокарциномы предстательной железы человека, используют низкомолекулярный лиганд простатического специфического мембранного антигена, причем наночастицы вначале обрабатывают раствором доксорубицина, затем раствором низкомолекулярного лиганда простатического специфического мембранного антигена.
Изобретение относится в области нанотехнологии и пищевой промышленности. Способ получения нанокапсул розмарина характеризуется тем, что в качестве оболочки нанокапсул используют каррагинан, а в качестве ядра - розмарин, при этом розмарин добавляют в суспензию каррагинана в бутаноле в присутствии 0,01 г Е472с, затем перемешивают при 1300 об/с, после приливают 3 мл бензола, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1 или 1:3.

Изобретение относится к порошковой металлургии, в частности к обработке металлических порошков для улучшения их термохимических свойств. Может быть использовано для повышения реакционной способности порошков алюминия при горении, спекании, в технологиях порошковой металлургии, 3D печати, а также для активирования процессов синтеза интерметаллидов, процессов горения твердых топлив и пиротехнических составов, взаимодействия с водой и получения водорода.

Изобретение относится к области лазерной медицины и, конкретно, к восстановительной хирургии. Описан биосовместимый наноматериал для лазерного восстановления целостности рассеченных биологических тканей, содержащий водную дисперсионную основу белка альбумина, углеродные нанотрубки и медицинский краситель - индоцианин, отличающийся тем, что в качестве углеродных нанотрубок используют многослойные углеродные нанотрубки и дополнительно содержит бычий белок коллагена при следующем соотношении компонентов, мас.%: альбумин от 15 до 20, многослойные углеродные нанотрубки от 0,02 до 0,2, медицинский краситель - индоцианин от 0,005 до 0,01, бычий белок коллагена в концентрации от 0,3 до 3, дистиллированная вода - остальное.

Изобретение относится к фармацевтической промышленности и может быть использовано для терапии рака молочной железы в виде препарата для внутривенного введения без какого-либо внешнего воздействия (нагревания, действия магнитного поля и т.д.).

Изобретение относится к областям судебной экспертизы и наноструктур, а именно, к выявлению невидимых либо слабовидимых следов пальцев рук, оставленных на различных следовоспринимающих поверхностях на основе ультрадисперсного наноматериала, при проведении идентификации личности человека.

Использование: для управления созданием нанокристаллических структур на основе распознавания их оптических спектров. Сущность изобретения заключается в том, что способ управления созданием нанокристаллических структур на основе распознавания их оптических спектров заключается в регистрации оптического спектра, генерируемого создаваемой нанокристаллической структурой, сравнении оптического спектра с эталонными спектрами и формировании по результатам сравнения сигналов управления, при этом сигналы управления формируют путем повышения или снижения концентраций компонентов, входящих в химический состав нанокристаллической структуры.

Изобретение относится к области физико-химического анализа материалов, более конкретно к определению термодинамической активности (в дальнейшем активности) компонентов в поверхностном слое наночастицы, находящейся в матрице в бинарной системе в равновесных условиях.

Использование: для нанолитографических рисунков с кристаллической структурой со сверхразвитой поверхностью. Сущность изобретения заключается в том, что путем механического воздействия зонда на кремниевую подложку формируют пространственный профиль в виде области шириной 7 мкм и глубиной 800 нм, после чего дополнительно на поверхность подложки в рамках метода гидротермального синтеза наносят эквимолярный раствор ацетата цинка Zn(O2C2H3)2, гексаметилтетрамина C6H12N4 и N-цетил-N,N,N-триметиламмоний бромид.

Изобретение относится к области ветеринарии и представляет собой препарат для лечения пальцевого дерматита и язвы подошвы крупного рогатого скота в виде мази, состоящий из мазевой основы и действующего вещества - медного купороса, цинка оксида, отличающийся тем, что действующее вещество дополнительно содержит салициловую кислоту, морскую соль и микрочастицы серебра при следующем соотношении компонентов, мас.%: медный купорос 35-45; цинка оксид 7-9; салициловая кислота 2-2,5; морская соль 1-1,5; микрочастицы серебра 0,0001; мазевая основа - остальное.

Группа изобретений относится к области медицины и ветеринарии, а именно к способу получения полимер-композитного состава, состоящего из наночастиц меди в матрице гиперразветвленного полиэфирполиола третьей генерации на основе 2,2-дигидроксиметилпропановой кислоты с 32 гидроксильными группами, включающему стадии предорганизации ионов меди(II) в составе сульфата меди в матрице указанного полиэфирполиола в мольном соотношении CuSO4:полиэфирполиол на первой стадии 1:16, выдерживания смеси при постоянном интенсивном перемешивании в течение 3 ч и восстановления реакционной смеси CuSO4-полиэфирополиол 5%-ным водным раствором гидразин гидрата при рН 10 и перемешивании в течение 4 ч до появления устойчивой коричневой окраски; а также к полимер-композитному составу, полученному данным способом, который обладает антимикотической активностью против культур рода Candida, Aspergillus и Penicillium с возможностью подавлять активность протеиназ Candida albicans.

Изобретение относится к ветеринарной медицине, а именно к средствам лечения млекопитающих при некробактериозе. Средство содержит сульфат магния – 29,0; сульфат натрия – 30,0; сульфат меди – 5,0; сульфат цинка – 5,0; поливиниловый спирт(порошок) - 30,5-32,0; порошок новокаин - 0,5.
Изобретение относится к ветеринарии, а именно к способу лечения субклинического мастита у лактирующих коров. Коровам интрацистернально вводят в пораженные доли вымени лечебный препарат «Малавит» в концентрации 15-25%.

Изобретение относится к животноводству, в частности к микроэлементному препарату для животных. Препарат содержит 2Na- или 2K-соль этилендиамин-N,N1-диянтарной кислоты в количестве 20,0-50,0 мас.%; Na- или К-соль аминокислоты или аминокислоту в количестве 3,0-15,0 мас.%; железо(III) в количестве 0,3-3,0 мас.%; магний(II) в количестве 0,3-3,0 мас.%; марганец(II) в количестве 0,4-2,5 мас.%; медь(II) в количестве 0,05-0,25 мас.%; цинк(II) в количестве 0,3-2,5 мас.%; кобальт(II) в количестве 0,005-0,05 мас.%; селен(IV) в количестве 0,01-0,03 мас.%; йод(I) в количестве 0,03-0,08 мас.%; вода остальное.

Изобретение относится к области ветеринарии и может быть использовано для профилактики энзоотической атаксии ягнят, макро-микроэлементозов и коррекции дисбиотических расстройств.

Изобретение относится к технологии получения противоожоговых и ранозаживляющих лекарственных средств и может быть использовано в медицинской практике. Предлагается способ получения антибактериальной композиции, включающей основный ацетат меди, смешением растворов ацетата меди с концентрацией 0.001-0.01 М и раствора гидрокарбоната натрия с концентрацией 0.0012-0.012 М в мольном соотношении реагентов 1:1.2, содержащих поверхностно-активное вещество (ПАВ) в интервале концентраций от 2- до 7-кратной критической молярной концентрации мицеллобразования; повышение эффективности воздействия композиции, содержащей основный ацетат меди, достигается за счет нано- и микроразмеров образующихся частиц основного ацетата меди.

Изобретение относится к области медицины, биологии и фармакологии и представляет собой порошкообразный препарат с антибактериальным и регенерирующим эффектами, характеризующийся тем, что содержит наночастицы меди с дисперсностью 30-40 нм, наночастицы серебра с дисперсностью 40-50 нм, оксид цинка и кукурузный крахмал, причем компоненты в препарате находятся в определенном соотношении в мас.

Изобретение относится к областям медицины, биологии и фармакологии и представляет собой препарат для регенерации мягких тканей с антибактериальным эффектом, характеризующийся тем, что он имеет порошкообразную форму и содержит наночастицы меди с дисперсностью 30-40 нм, наночастицы серебра с дисперсностью 40-50 нм и кукурузный крахмал, причем компоненты препарата находятся в определенном соотношении в мас.%.

Изобретение относится к медицине, в частности к кровоостанавливающему материалу, способу осуществления кровоостанавливающей терапии раневой поверхности и способу получения гемостатического материала.
Изобретение относится к сельскому хозяйству, в частности к кормопроизводству, а именно к приготовлению силосованных кормов из зеленой массы. Способ приготовления и хранения силосованного корма включает измельчение зеленой массы растений.

Изобретение относится к сельскому хозяйству, а именно к способу повышения продуктивности цыплят-бройлеров при совместном применении внутримышечных инъекций наноформ железа и меди с электрохимически активированным католитом. Способ включает внутримышечные инъекции в бедро цыплят-бройлеров в 15-суточном возрасте лиозолей наночастиц железа с размером частиц 80,5±5 мкм в дозировке 2 мгкг живой массы, и по достижении 29-суточного возраста им проводится внутримышечная инъекция лиозолей наночастиц меди с размерностью 40±0,5 мкм в дозировке 2 мгкг живой массы. Причем в составе лиозолей наноформ железа и меди электрохимически активированный водный раствор католита стабилизирован аминокислотой глицин в количестве не менее 0,01 мас. с целью сохранения свойств католита с редокс-потенциалом Eh600 мВ и водородным показателем рН 9. Использование изобретения позволит повысить продуктивность птицы и качество мяса. 1 з.п. ф-лы, 2 табл.

Наверх